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ABsTRACT. We discuss some set—theoretical questions concerning the
notion of sup-measurability of functions of two variables and the exis-
tence and uniqueness of solutions of ordinary differential equations.

It is well known that the notion of measurability of sets and functions
plays an important role in various fields of the classical and modern analysis.
For functions of several variables, a related notion of sup-measurability was
introduced and investigated (see e.g. [2] and the references given therein). It
turned out that this notion can successfully be applied to some topics from
analysis and, in particular, to the theory of ordinary differential equations.

Let N = {0,1,...,n,...} denote the set of all natural numbers (which
is identified with the first infinite ordinal w) and let R denote the real line.
Let Cp(R x R) be the Banach space of all bounded continuous real-valued
functions defined on R x R. Then, for each function ® from this space, we
can consider the ordinary differential equation

y = ®(z,y)
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and, for a point (zg,y0) € R x R, we can speak on the corresponding
Cauchy problem of finding a solution y = y(z) of this equation, satisfying
the initial condition y(zg) = yo. It is well known (see, e.g. [11]) that such
a solution does always exist and, since ¢ is bounded, the solution is global,
i.e. it is defined on the whole real line R. On the other hand, we cannot
assert, in general, the uniqueness of a solution. There are simple examples
of continuous bounded functions ¢ on R x R for which the corresponding
Cauchy problem admits at least two distinct solutions (in this connection,
let us mention the famous work [8] of Lavrentieff where a much stronger
result was obtained).

Actually, we need some additional properties of the original function
¢ € C3(R x R) in order to have the uniqueness of a solution of the dif-
ferential equation

y' = 0(z,y) (y(z0) = wo)-
For instance, if ® satisfies the so-called local Lipschitz condition with respect
to the second variable y, then we have a unique solution for every Cauchy
problem corresponding to ®.

Let us denote by Lip;(R x R) the family of all those functions from
Cy(R x R) which satisfy the local Lipschitz condition with respect to y.
Then, obviously, Lip;(R x R) is a dense vector subspace of Cp(R x R).

Thus one can conclude that, for all functions ¢ belonging to some dense
subset of Cp(R x R), the Cauchy problem

Y = @(z,y) (y(zo) =yo, z0o € R, yo €R)

has a unique solution. Orlicz [9] essentially improved this result and showed
that it holds true for almost all (in the category sense) functions from the
Banach space C,(R x R). More precisely, one can formulate the following
statement.

Theorem 1. The set U of all those functions from Cy(R x R) for which
the corresponding Cauchy problem has a unique solution (for any point
(zo,90) € R x R) is a dense Gs-subset of Cp(R x R).

Notice that the proof of Theorem 1 can be obtained by using the well—-
known Kuratowski lemma from general topology. This lemma states that if
X is an arbitrary topological space and Y is a o-quasicompact topological
space, then the canonical projection

pry : X xY —-X

has the property that the image of any F,-subset of the product space X xY
is an F;-subset of X.
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Remark 1. Evidently, the Banach space Cp(R x R) is not separable. Let
FE denote the subset of this space, consisting of all those functions which
are constant at infinity. Then E is a closed separable vector subspace of
Cy(RxR) and hence £ is a Banach space, as well. Clearly, a direct analogue
of Theorem 1 holds true for E. Actually, in [9] Orlicz deals with the space E.
A number of analogues of Theorem 1, for other spaces similar to C;(R x R)
or E, are discussed in [1].

Remark 2. Unfortunately, the set U considered above has a bad algebraic
structure. In particular, U is not a subgroup of the additive group of
Cy(R x R) and, consequently, U is not a vector subspace of Cy(R x R).
Indeed, suppose for a while that U is a subgroup of C,(R x R). Then U
must be a proper subgroup of C3(R x R). Let W be an arbitrary function
from Cp(R x R) \ U. Obviously, we have the equality

Un(¥+U)=0.

But each of the sets U and ¥ + U is the complement of a first category
subset of Cy(R x R). Therefore the intersection U N (¥ + U) must be the
complement of a first category subset of C,(R x R), too, and hence

UN(Y+U)#0.

Thus we obtained a contradiction which yields that U cannot be a subgroup
of Cb(R X R)

For some other properties of U interesting from the set-theoretical and
algebraic points of view, see e.g. [1].

Theorem 1 mentioned above shows that, for many functions from the
space Cp(R x R), we have the existence and uniqueness of a solution of the
Cauchy problem. Naturally, we can consider a more general class of func-
tions ® : R xR — R, not necessarily continuous or Lebesgue measurable,
and investigate for such functions the corresponding Cauchy problem from
the point of view of the existence and uniqueness of a solution.

For this purpose, let us introduce and examine the following three classes
of functions acting from R x R into R: the class of sup-continuous map-
pings, the class of sup-measurable mappings and the class of weakly sup-
measurable mappings.

We shall say that a mapping ® : R x R — R is sup-continuous (sup-
measurable) with respect to the second variable y if, for every continuous
(Lebesgue measurable) function ¢ : R — R, the superposition

¢, : R—R
given by the formula
Py(z) = P(z, ¢(z)) (z € R)
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is also continuous (Lebesgue measurable).

Let us mention that, actually, the first notion yields nothing new: it
turns out that the class of all sup-continuous mappings coincides with the
class of all continuous mappings acting from R x R into R. For the sake
of completeness, we present here the proof of this simple (and probably
well known) fact.

Theorem 2. Let ® be a mapping acting from R x R into R. Then the
following two assertions are equivalent:

1) ® is continuous;

2) ® is sup-continuous.

Proof. The implication 1) = 2) is trivial. So it remains to establish only
the converse implication 2) = 1). Let ¢ be sup-continuous, and suppose
that & is not continuous. Then there exist a point (zg,yo) of R x R, a real
number £ > 0 and a sequence of points

{(Zn,yn) : n€N, n>0} CR xR

such that

a) limy, 4 00 (-Tn-/ yn) = (55071/0);
b) |®(xn, yn) — P(x0,y0)| > € for all n € N\ {0}.
We may assume, without loss of generality, that the sequence of points

{zn, : neN, n>0}CR
is injective and x,, # x¢ for each n € N\ {0}. Indeed, if
fm R>R(n=12..)

denotes the function identically equal to y,, then the function

¢, : R—=R
is continuous and &y (x,) = ®(2y.yn). Therefore, for some positive real
number 6 = 0(z,) and for all points x belonging to the open interval

Jxn — 0, x, + d], we have the inequality

@, (x) — P(z0,90)| > €
or, equivalently,

|(z, yn) — P(z0,y0)| > €.

From this fact it immediately follows that the above-mentioned sequence
{z, : n€ N, n> 0} can be chosen injective and satisfying the relation

(Vn € N\ {0})(zn # 20)-

Now, it is not difficult to define a continuous function f : R — R such
that

(Vn € N)(f(zn) = yn)-
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For this function f, we get the continuous superposition
¢, : R—R.
Since limy,_, 4~ Tn = Tg, we must have the equality
Jim - p(z,) = y(zo)
and, consequently,
lim (Tny yn) = P(z0,0)

n—-+4oo

which is impossible. This contradiction finishes the proof of Theorem 2. O

A completely different situation is for sup-measurable mappings.

On the one hand, simple examples show that if & : R xR — R
is a Lebesgue measurable mapping, then it need not be sup-measurable.
Actually, the existence of such examples follows directly from the well-known
fact that the composition of Lebesgue measurable functions (acting from R
into R) need not be Lebesgue measurable.

On the other hand, it turns out that there exist (under some additional
set—theoretical axioms) various sup-measurable mappings which are not
measurable in the Lebesgue sense. In order to present this result, let us
first formulate and prove one simple auxiliary statement.

Lemma 1. Suppose that ¥ is a mapping acting from R x R into R. Then
the following two assertions are equivalent:

1) ¥ is sup-measurable;

2) for every continuous functionp : R — R, the function ¥, is Lebesgue
measurable.

Proof. The implication 1) = 2) is trivial. Let us show that the converse
implication 2) = 1) is true, too. Let W satisfy 2) and let ¥ be an arbitrary
Lebesgue measurable function acting from R into R. Applying the well-
known theorem of Luzin, we can find a countable partition {X; : k < w}
of R and a countable family {¢} : k < w} of functions from R into R,
such that

a) all sets X, (1 < k < w) are closed in R and Xy is of Lebesgue measure
7€r0;

b) all functions ¥ (1 < k < w) are continuous;

c¢) for each index k < w, the restriction of ¥ to X} coincides with the
restriction of ¥ to Xj.

Let us denote by x; the characteristic function of X;. Then it is not
difficult to check the equality

Uy=> xiWy
k<w
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According to our assumption, all superpositions Wy, (1 < k < w) are
Lebesgue measurable. In addition, the function ¥, is equivalent to zero.
Thus, we easily conclude that the superposition ¥y, is Lebesgue measurable,
too. O

Now, we can formulate and prove the following statement (cf. [2], [3], [5]
and [6]).

Theorem 3. Let ¢ denote the cardinality of the continuum, let A denote the
standard Lebesque measure on R and let [R]|<¢ be the family of all subsets
of R, whose cardinalities are strictly less than c. There exists a subset Z of
R x R such that

1) no three distinct points of Z belong to a straight line (in other words,
Z is a set of points in general position);

2) Z is a Lebesgue nonmeasurable subset of R x R;

3) if [R]<¢ C dom(\), then the characteristic function of Z is sup-
measurable.

Proof. Obviously, we can identify ¢ with the first ordinal number a such
that card(a) = c. Let A2 denote the standard two-dimensional Lebesgue
measure on the plane R x R and let {Z; : £ < a} be the family of all
Borel subsets of R x R having strictly positive As-measure. In addition, let
{¢¢ : & < a} be the family of all continuous functions acting from R into
R. As usual, we identify any function from R into R with its graph lying
in the plane R x R. Now, using the method of transfinite recursion, we are
going to define an a-sequence of points
{(ze9e) + €<a} CRxR

satisfying the following conditions:

a)if £ <o, ( <aand £ # (, then z¢ # x¢;

b) for each £ < a, the point (x¢,ye) belongs to the set Zg;

c) for each £ < a, the point (z¢,y¢) does not belong to the union of the
family {¢¢ : ¢ <&}

d) for each £ < a, no three distinct points of the set {(z¢,y¢) @ ¢ <&}
belong to a straight line.

Suppose that, for an ordinal £ < «, the partial &-sequence of points
{(z¢,ye) ¢ <&} has already been defined. Let us consider the set Zg. We
have X\o(Z¢) > 0. According to the classical Fubini theorem, we can write

AM{z € R : Z¢(z) € dom(N) & A(Zg(x)) > 0}) >0

where Z¢(x) denotes the section of Z¢ corresponding to a point z € R.
Taking account of the latter formula, we see that there exists an element

ze € R\ {z¢ : (<&}
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for which A(Z¢(z¢)) > 0. In particular, we get the equality
card(Z¢(z¢)) = c.
Consequently, there exists an element

Ye € Ze(we) \ U{oc(ze) : ¢ <&}
Moreover, y¢ can be chosen in such a way that the corresponding point
(x¢,ye) does not belong to the union of all straight lines having at least two
common points with the set {(z¢,yc) : ¢ <&}
We have thus defined the point (z¢,y¢) € R xR. Proceeding in this man-
ner, we are able to construct the a-sequence {(z¢,ye) : & < a} satisfying
conditions a), b), ¢) and d). Finally, let us put

Z ={(z¢,ye) + £<a}

and let ® denote the characteristic function of Z (obviously, Z is considered
as a subset of the plane R x R). Notice that Z can also be regarded as
the graph of a partial function acting from R into R. Hence the inner As-
measure of Z is equal to zero. On the other hand, the construction of Z
immediately yields that Z is a Ao-thick subset of the plane. Consequently,
Z is nonmeasurable in the Lebesgue sense and the same is true for its
characteristic function ®. It remains to check that ® is a sup-measurable
mapping under the assumption [R|<¢ C dom(\). Let us take an arbitrary
continuous function ¢ : R — R. Then ¢ = ¢, for some ordinal { < a.
Now, we can write

[t eR ¢ O(e,0¢(@) £ 0} = {2 € R : (2.0¢(x)) € 7}
and it easily follows from condition c) that
card{z € R : (z,¢¢(x)) € Z}) < card(§) + w < c.

Since the inclusion [R]<® C dom(\) holds, we obtain that the function
¢4, = Py almost vanishes (with respect to A) and, in particular, ®4 is
A-measurable. Applying Lemma 1, we conclude that ® is sup-measurable.
|

Remark 3. It is reasonable to stress here that the set Z (and, consequently,
its characteristic function ®) is defined within the theory ZFC. We used
an additional set-theoretical hypothesis only to prove that & is a sup-
measurable mapping. Let us also recall that the first construction of a
Lebesgue nonmeasurable subset of the Euclidean plane, no three points of
which belong to a straight line, is due to Sierpinski (see, for instance, [10]).

Now, starting with the function ® defined above, we wish to consider an
ordinary differential equation y' = ¥(z,y) with a Lebesgue nonmeasurable
W and we are going to show that, in some situations, it is possible to obtain
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the existence and uniqueness of a solution of this equation (for any initial
conditions).

First of all, we need to determine the class of functions, to which a solution
must belong. It is natural to take the class AC;(R) consisting of all locally
absolutely continuous functions on R. In other words, ¢ € AC;(R) if and
only if, for each point x € R, there exists a neighbourhood V' (x) such that
the restriction 1|V (x) is absolutely continuous. Another characterization of
locally absolutely continuous functions on R. is the following one: a function
¥ belongs to AC;(R) if and only if there exists a Lebesgue measurable
function f : R — R such that f is locally integrable and

V@ = [ " F )t + (0)

for any = € R.
Let ¥ be a mapping from R x R into R and let (zg,70) € R x R. We
say that the corresponding Cauchy problem

y' = U(z,y) (y(zo) = yo)

has a unique solution (in the class AC;(R)) if there exists a unique function
1 € AC)(R) satisfying the relations:

a) Y (z) = ¥(z,9(x)) for almost all (with respect to the Lebesgue mea-
sure \) points =z € R;

b) ¥(z0) = yo.

For example, if our mapping ¥ is bounded, Lebesgue measurable with
respect to x and locally satisfies the Lipschitz condition with respect to v,
then, for each (zg,70) € R x R, the corresponding Cauchy problem has
a unique solution. Notice that, in this example, ¥ is necessarily Lebesgue
measurable and sup-measurable. Notice also that Theorem 1 can be ex-
tended to a certain class of Banach spaces consisting of mappings acting
from R x R into R which are Lebesgue measurable with respect to z and
continuous with respect to y.

The next statement shows that the existence and uniqueness of a solution

can be fulfilled for some nonmeasurable mappings ¥, too (cf. e.g. [6, p. 82]).

Theorem 4. There is a Lebesgue nonmeasurable mapping
v : RxR—-R
such that the Cauchy problem
y = ¥(z,y) (y(z0) = 10)

has a unique solution for any point (xg,yo) € R x R.
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Proof. Let Z be the set constructed in the proof of Theorem 3. Denote by
® the characteristic function of Z. Fix a real number ¢ and put

U(z,y) =P(z,y) +t (z € R, y € R).

We assert that W is the required mapping. Indeed, ¥ is Lebesgue non-
measurable because @ is Lebesgue nonmeasurable. Let now (zg,y) be an
arbitrary point of the plane R x R. Consider a function v : R — R
defined by the formula

Y(x) = to + (yo — two) (z € R).
The graph of this function is a straight line, so it has at most two common
points with the set Z. Consequently, the function
v, : R—=R

is equal to t for almost all (with respect to the Lebesgue measure \) points
from R. We also have ¢/(z) = ¢ for all z € R. In other words, 1 is a
solution of the Cauchy problem

y' =¥(z,y) (y(zo) = yo)-
It remains to show that v is a unique solution from the class AC;(R).
For this purpose, let us take an arbitrary solution ¢ of the same Cauchy
problem, belonging to AC;(R). Then, for almost all points = € R, we have
the equality
¢'(z) = (z, §(2)) + L.

It immediately follows from this equality that the function ®, is measurable
in the Lebesgue sense. But, as we know,

card{z € R : ®4(z) #0}) <c.

So we obtain that ®y4 is equivalent to zero and hence ¢'(z) =t for almost
all x € R. Therefore we can conclude that

¢(x) =tz + (yo — tzo) (z € R).
This completes the proof of Theorem 4. O

Remark 4. The latter theorem was proved in the theory ZFC. However, we
do not know whether it is possible to establish within ZFC the existence of
a sup-measurable mapping which is not measurable in the Lebesgue sense.

Assuming Martin’s Axiom and using an argument similar to the proof of
Theorem 3, one can show that there exists a mapping

¢ : RxR—R

satisfying the conditions:
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1) for every Lebesgue measurable function ¢ : R — R, the superposi-
tions
T — ®(P(x),z) (v € R),
x — O(z,0(z)) (x € R)
are also Lebesgue measurable;

2) @ is not measurable in the Lebesgue sense.

In fact, for the existence of ®, we do not need the whole power of Martin’s
Axiom. It suffices to apply a certain set-theoretical hypothesis weaker than
Martin’s Axiom (cf. Theorem 5 below).

On the other hand, it is not difficult to prove that if a mapping

vV :RxR—R

has the property that, for any two Borel functions f and ¢ acting from R
into R, the superposition

z— ¥(f(z),9(z)) (x € R)

is Lebesgue measurable, then W is Lebesgue measurable, too (see e.g. [5]).
Moreover, one can assert that if the above—mentioned superposition is Le-
besgue measurable for all continuous functions f and g acting from R into
R, then V is Lebesgue measurable (cf. Lemma 1).

Let ® be a mapping acting from R x R into R. We shall say that &
is weakly sup-measurable if, for any continuous function ¢ : R — R
differentiable almost everywhere (with respect to A), the superposition &
is Lebesgue measurable.

Evidently, from the point of view of the theory of ordinary differential
equations, the notion of a weakly sup-measurable mapping is more impor-
tant than the notion of a sup-measurable mapping, because any solution
of an ordinary differential equation must be continuous and differentiable
almost everywhere.

Clearly, Theorem 3 can be formulated in terms of weakly sup-measurable
mappings. In this connection, the following question arises naturally: does
there exist a weakly sup-measurable mapping which is not sup-measurable?
In order to give a partial answer to this question, we need one auxiliary
statement due to Jarnik (see [4]).

Lemma 2. There exists a continuous function f : R — R nowhere ap-
proximately differentiable.

In fact, Jarnik proved in [4] that the set of all those functions from the
Banach space C([0,1]), which are nowhere approximately differentiable, is
residual in C'([0,1]). In our further considerations, we need only one such a
function.



SUP-MEASURABLE AND WEAKLY SUP-MEASURABLE MAPPINGS 221

Theorem 5. Suppose that

1) [R]<¢ C dom(\);

2) for any cardinal number k < ¢ and for any family {X¢ @ £ < K} of
A-measure zero subsets of R, we have

U{Xe : £ <k} #R.

Then there exists a weakly sup-measurable mapping ® which is not sup-
measurable.

Proof. We can identify c¢ with the first ordinal number « such that
card(a) = c. Let f be a function from Lemma 2. Let {By : ¢ < a}
be some Borel base of the o-ideal of all Lebesgue measure zero subsets of
R and let {¢¢ : & < a} be the family of all continuous functions acting
from R into R and differentiable almost everywhere in R. We are going to
construct (by transfinite recursion) an injective a-sequence

{(ze,ye) + €<a} CRXR

of points belonging to the graph of f. Suppose that, for an ordinal ¢ < a,
the partial &-sequence {(x¢,y¢) : ¢ <&} has already been defined. Notice
that, for each ¢ < &, the closed set

Pr={zeR : ¢c(z) = f(z)}
is of Lebesgue measure zero. Indeed, if A(P;) > 0, then we can find a
density point = of P; belonging to P, such that there exists an approximate
derivative f;,(x), which is impossible. Consequently, A(P;) = 0 for all ¢ < ¢,
and the set

R\ ({Be + ¢<&PU{R = (<&Pufze : ¢<&})
is not empty. Let z¢ be an arbitrary point from this set and let y¢ = f(z¢).

Proceeding in such a manner, we are able to define the required family

of points {(z¢,v¢) : € < a}. Now, we put
Z:{(Ifayﬁ) : £<O‘}7 X:{IE : §<O‘}
and denote by ® the characteristic function of Z. Then it can easily be seen
that ® is a weakly sup-measurable mapping (cf. the proof of Theorem 3).
On the other hand, let us consider the superposition ®;. Obviously, we
have
Oi(z) =14 (z,f(x) e Z oz e X.

It follows from our construction that X is a Sierpinski type subset of the
real line R (for the definition and various properties of Sierpiriski sets, see
e.g. [10]). In particular, X is not measurable in the Lebesgue sense and,

therefore, @ is not Lebesgue measurable, too. We thus conclude that @ is
not a sup-measurable mapping. O
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Remark 5. Tt is well known that assumptions 1) and 2) of Theorem 5 are
logically independent (see, for instance, [7]). Slightly changing the argument
presented above, one can show (under the assumptions of Theorem 5) that
there exists a weakly sup-measurable mapping which is not sup-measurable
and, in addition, is not Lebesgue measurable.

We do not know whether Theorem 5 is valid in the theory ZFC.

Remark 6. Evidently, the notion of sup-measurability can be formulated in
terms of the Baire property instead of the measurability in the Lebesgue
sense. It is easy to verify that, for the Baire property, a direct analog of
Theorem 3 holds true. The corresponding analog of Theorem 5 holds true,
too (in this case, we do not need Lemma 2; it suffices to apply the existence
of a continuous nowhere differentiable function acting from R into R).

Remark 7. Taking Theorem 4 into account, it is reasonable to pose a prob-
lem of finding appropriate analogs of Theorem 1 for sup-measurable (weakly
sup-measurable) mappings. More precisely, it would be interesting to de-
scribe all those topological vector spaces of sup-measurable (weakly sup-
measurable) mappings, for which Theorem 1 is valid. We see that, accord-
ing to Theorems 3 and 4, some of the above-mentioned spaces can contain
Lebesgue nonmeasurable mappings.

Finally, let us point out that several logical and set-theoretical aspects of
the classical Cauchy-Peano theorem (on the existence of solutions of ordi-
nary differential equations) are discussed in [12].
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