Tight Graphs and Their Primitive Idempotents

ARLENE A. PASCASIO
Mathematics Department, De La Salle University, Manila 1004, Philippines

Abstract. In this paper, we prove the following two theorems.

Theorem 1 Let Γ denote a distance-regular graph with diameter $d \geq 3$. Suppose E and F are primitive idempotents of Γ, with cosine sequences $\sigma_{0}, \sigma_{1}, \ldots, \sigma_{d}$ and $\rho_{0}, \rho_{1}, \ldots, \rho_{d}$, respectively. Then the following are equivalent.
(i) The entry-wise product $E \circ F$ is a scalar multiple of a primitive idempotent of Γ.
(ii) There exists a real number ϵ such that

$$
\sigma_{i} \rho_{i}-\sigma_{i-1} \rho_{i-1}=\epsilon\left(\sigma_{i-1} \rho_{i}-\sigma_{i} \rho_{i-1}\right) \quad(1 \leq i \leq d)
$$

Let Γ denote a distance-regular graph with diameter $d \geq 3$ and eigenvalues $\theta_{0}>\theta_{1}>\cdots>\theta_{d}$. Then Jurišić, Koolen and Terwilliger proved that the valency k and the intersection numbers a_{1}, b_{1} satisfy

$$
\left(\theta_{1}+\frac{k}{a_{1}+1}\right)\left(\theta_{d}+\frac{k}{a_{1}+1}\right) \geq \frac{-k a_{1} b_{1}}{\left(a_{1}+1\right)^{2}} .
$$

They defined Γ to be tight whenever Γ is not bipartite, and equality holds above.

Theorem 2 Let Γ denote a distance-regular graph with diameter $d \geq 3$ and eigenvalues $\theta_{0}>\theta_{1}>\cdots>\theta_{d}$. Let E and F denote nontrivial primitive idempotents of Γ.
(i) Suppose Γ is tight. Then E, F satisfy (i), (ii) in Theorem 1 if and only if E, F are a permutation of E_{1}, E_{d}.
(ii) Suppose Γ is bipartite. Then E, F satisfy (i), (ii) in Theorem 1 if and only if at least one of E, F is equal to E_{d}.
(iii) Suppose Γ is neither bipartite nor tight. Then E, F never satisfy (i), (ii) in Theorem 1.

Keywords: tight graph, distance-regular, association scheme, Krein parameter

1. Introduction

Let Γ denote a distance-regular graph with vertex set X and diameter $d \geq 3$. Let E_{0}, E_{1}, \ldots, E_{d} denote the primitive idempotents of Γ (see definitions in the next section). It is well-known

$$
\begin{equation*}
E_{i} \circ E_{j}=|X|^{-1} \sum_{h=0}^{d} q_{i j}^{h} E_{h} \quad(0 \leq i, j \leq d), \tag{1}
\end{equation*}
$$

where \circ denotes the entry-wise matrix product and where $q_{i j}^{h}$ are the Krein parameters. By (1), and since $E_{0}, E_{1}, \ldots, E_{d}$ are linearly independent we see that for all integers $i, j(0 \leq i, j \leq d)$, the following are equivalent.
(i) $E_{i} \circ E_{j}$ is a scalar multiple of a primitive idempotent of Γ.
(ii) $q_{i j}^{h} \neq 0$ for exactly one $h \in\{0,1, \ldots, d\}$.

In this paper, we investigate pairs E_{i} and E_{j} for which (i), (ii) hold above. We state our main results in Theorems 1.1 and 1.3 below.

Theorem 1.1 Let Γ denote a distance-regular graph with diameter $d \geq 3$. Suppose E and F are primitive idempotents of Γ, with cosine sequences $\sigma_{0}, \sigma_{1}, \ldots, \sigma_{d}$ and $\rho_{0}, \rho_{1}, \ldots, \rho_{d}$, respectively. Then the following are equivalent.
(i) $E \circ F$ is a scalar multiple of a primitive idempotent of Γ.
(ii) There exists a real number ϵ such that

$$
\sigma_{i} \rho_{i}-\sigma_{i-1} \rho_{i-1}=\epsilon\left(\sigma_{i-1} \rho_{i}-\sigma_{i} \rho_{i-1}\right) \quad(1 \leq i \leq d)
$$

Let Γ denote a distance-regular graph with diameter $d \geq 3$ and eigenvalues $\theta_{0}>\theta_{1}>\cdots>$ θ_{d}. In [4], Jurišić, Koolen and Terwilliger proved that the valency k and the intersection numbers a_{1}, b_{1} satisfy

$$
\begin{equation*}
\left(\theta_{1}+\frac{k}{a_{1}+1}\right)\left(\theta_{d}+\frac{k}{a_{1}+1}\right) \geq \frac{-k a_{1} b_{1}}{\left(a_{1}+1\right)^{2}} \tag{2}
\end{equation*}
$$

They defined Γ to be tight whenever Γ is not bipartite and equality holds in (2). They showed that Γ is tight precisely when Γ is " 1 -homogeneous" and $a_{d}=0$. They also obtained the following characterization of tight graphs, which will be useful later.

Theorem 1.2 ([4]) Let Γ denote a nonbipartite distance-regular graph with diameter $d \geq 3$, and eigenvalues $\theta_{0}>\theta_{1}>\cdots>\theta_{d}$. Let θ and θ^{\prime} denote eigenvalues of Γ, with respective cosine sequences $\sigma_{0}, \sigma_{1}, \ldots, \sigma_{d}$ and $\rho_{0}, \rho_{1}, \ldots, \rho_{d}$. Let $\epsilon \in \mathbb{R}$. Then the following are equivalent.
(i) Γ is tight, θ, θ^{\prime} are a permutation of θ_{1}, θ_{d} and $\epsilon=\frac{\sigma \rho-1}{\rho-\sigma}$.
(ii) $\theta \neq \theta_{0}, \theta^{\prime} \neq \theta_{0}$, and

$$
\sigma_{i} \rho_{i}-\sigma_{i-1} \rho_{i-1}=\epsilon\left(\sigma_{i-1} \rho_{i}-\sigma_{i} \rho_{i-1}\right) \quad(1 \leq i \leq d)
$$

Combining Theorems 1.1 and 1.2, we obtain the following result.
Theorem 1.3 Let Γ denote a distance-regular graph with diameterd ≥ 3, and eigenvalues $\theta_{0}>\theta_{1}>\cdots>\theta_{d}$. Let E and F denote nontrivial primitive idempotents of Γ.
(i) Suppose Γ is tight. Then E, F satisfy (i), (ii) in Theorem 1.1 if and only if E, F are a permutation of E_{1}, E_{d}.
(ii) Suppose Γ is bipartite. Then E, F satisfy (i), (ii) in Theorem 1.1 if and only if at least one of E, F is equal to E_{d}.
(iii) Suppose Γ is neither bipartite nor tight. Then E, F never satisfy (i), (ii) in Theorem 1.1.

2. Preliminaries

In this section, we review some definitions and basic concepts. For more background information, the reader may refer to the books of Bannai and Ito [1], Brouwer et al. [2] or Godsil [3].

Throughout, Γ will denote a finite, undirected, connected graph without loops or multiple edges, with vertex set X, path-length distance function ∂ and diameter $d:=\max \{\partial(x, y) \mid$ $x, y \in X\}$. We say Γ is distance-regular whenever for all integers $h, i, j(0 \leq h, i, j \leq d)$ and for all $x, y \in X$ with $\partial(x, y)=h$, the number

$$
p_{i j}^{h}:=|\{z \in X \mid \partial(x, z)=i, \partial(y, z)=j\}|
$$

is independent of x and y. The integers $p_{i j}^{h}$ are called the intersection numbers for Γ. We abbreviate $a_{i}:=p_{1 i}^{i}(0 \leq i \leq d), b_{i}:=p_{1 i+1}^{i}(0 \leq i \leq d-1), c_{i}:=p_{1 i-1}^{i}(1 \leq i \leq d)$, and $k_{i}:=p_{i i}^{0}(0 \leq i \leq d)$. Observe

$$
\begin{equation*}
c_{i}+a_{i}+b_{i}=k \quad(0 \leq i \leq d) \tag{3}
\end{equation*}
$$

where $k:=k_{1}=b_{0}, c_{0}:=0$ and $b_{d}:=0$.
It is known, by [1], (Chapter 3, Proposition 1.2)

$$
\begin{equation*}
k_{i}=\frac{b_{0} b_{1} b_{2} \cdots b_{i-1}}{c_{1} c_{2} c_{3} \cdots c_{i}} \quad(0 \leq i \leq d) \tag{4}
\end{equation*}
$$

Hereon, we assume Γ is distance-regular.
Let $\operatorname{Mat}_{X}(\mathbb{C})$ denote the algebra of matrices over \mathbb{C} with rows and columns indexed by X. For each integer $i(0 \leq i \leq d)$, the ith distance matrix $A_{i} \in \operatorname{Mat}_{X}(\mathbb{C})$ has x, y entry

$$
\left(A_{i}\right)_{x y}=\left\{\begin{array}{ll}
1, & \text { if } \partial(x, y)=i \\
0, & \text { if } \partial(x, y) \neq i
\end{array} \quad(x, y \in X)\right.
$$

Then

$$
\begin{aligned}
A_{0} & =I \\
A_{0}+A_{1}+\cdots+A_{d} & =J \\
A_{i}^{t} & =A_{i} \quad(0 \leq i \leq d) \\
A_{i} A_{j} & =\sum_{h=0}^{d} p_{i j}^{h} A_{h} \quad(0 \leq i, j \leq d),
\end{aligned}
$$

where J denotes the all 1's matrix. The matrices $A_{0}, A_{1}, \ldots, A_{d}$ form a basis for a commutative semi-simple \mathbb{C}-algebra M, called the Bose-Mesner algebra of Γ. By [1], (Section 2.3)
M has a second basis $E_{0}, E_{1}, \ldots, E_{d}$ such that

$$
\begin{align*}
E_{0} & =|X|^{-1} J \\
E_{0}+E_{1}+\cdots+E_{d} & =I \\
E_{i}^{t} & =E_{i} \quad(0 \leq i \leq d) \tag{5}\\
E_{i} E_{j} & =\delta_{i j} E_{i} \quad(0 \leq i, j \leq d) .
\end{align*}
$$

The $E_{0}, E_{1}, \ldots, E_{d}$ are called the primitive idempotents of Γ, and E_{0} is called the trivial idempotent.

Set $A:=A_{1}$ and define $\theta_{0}, \theta_{1}, \ldots, \theta_{d} \in \mathbb{C}$ such that

$$
A=\sum_{i=0}^{d} \theta_{i} E_{i}
$$

It is known $\theta_{0}=k$, and that $\theta_{0}, \theta_{1}, \ldots, \theta_{d}$ are distinct real numbers. Moreover, $k \geq \theta_{i} \geq$ $-k(0 \leq i \leq d)$, see [1], (Theorem 1.3). We refer to θ_{i} as the eigenvalue of Γ associated with $E_{i}(0 \leq i \leq d)$. We call θ_{0} the trivial eigenvalue of Γ. For each integer $i(0 \leq i \leq d)$, let m_{i} denote the rank of E_{i}. We refer to m_{i} as the multiplicity of $E_{i}\left(\right.$ or $\left.\theta_{i}\right)$. We observe from (5) that $m_{0}=1$.

Let θ denote an eigenvalue of Γ, let E denote the associated primitive idempotent, and let m denote the multiplicity of E. By [1], (Section 2.3) there exist $\sigma_{0}, \sigma_{1}, \ldots, \sigma_{d} \in \mathbb{R}$ such that

$$
E=|X|^{-1} m \sum_{i=0}^{d} \sigma_{i} A_{i}
$$

It follows from [1], (Chapter 2, Proposition 3.3 (iii)) that $\sigma_{0}=1$. We call $\sigma_{0}, \sigma_{1}, \ldots, \sigma_{d}$ the cosine sequence of Γ associated with E (or θ). The cosine sequence associated with E_{0} consists entirely of ones, see [2], (Section 4.1B). We shall often denote σ_{1} by σ.

Lemma 2.1 Let Γ denote a distance-regular graph with diameter $d \geq 3$. For any θ, σ_{0}, $\sigma_{1}, \ldots, \sigma_{d} \in \mathbb{C}$, the following are equivalent.
(i) $\sigma_{0}, \sigma_{1}, \ldots, \sigma_{d}$ is a cosine sequence of Γ and θ is the associated eigenvalue.
(ii) $\sigma_{0}=1$, and

$$
\begin{equation*}
c_{i} \sigma_{i-1}+a_{i} \sigma_{i}+b_{i} \sigma_{i+1}=\theta \sigma_{i} \quad(0 \leq i \leq d) \tag{6}
\end{equation*}
$$

where σ_{-1} and σ_{d+1} are indeterminates.
(iii) $\sigma_{0}=1, k \sigma=\theta$ and

$$
\begin{equation*}
c_{i}\left(\sigma_{i-1}-\sigma_{i}\right)-b_{i}\left(\sigma_{i}-\sigma_{i+1}\right)=k(\sigma-1) \sigma_{i} \quad(1 \leq i \leq d) \tag{7}
\end{equation*}
$$

where σ_{d+1} is an indeterminate.

Proof:

(i) \Leftrightarrow (ii) See [2], (Proposition 4.1.1).
(ii) \Leftrightarrow (iii) Follows from (3).

Lemma 2.2 (Christoffel-Darboux Formula) Let Γ denote a distance-regular graph with diameter $d \geq 3$. For cosine sequences $\sigma_{0}, \sigma_{1}, \ldots, \sigma_{d}$ and $\rho_{0}, \rho_{1}, \ldots, \rho_{d}$ of Γ,

$$
\begin{equation*}
(\sigma-\rho) \sum_{h=0}^{i} k_{h} \sigma_{h} \rho_{h}=\frac{b_{1} b_{2} \cdots b_{i}}{c_{1} c_{2} \cdots c_{i}}\left(\sigma_{i+1} \rho_{i}-\sigma_{i} \rho_{i+1}\right) \quad(0 \leq i \leq d) \tag{8}
\end{equation*}
$$

where σ_{d+1} and ρ_{d+1} are indeterminates.
Proof: See [1], (Theorem 1.3) or [3], (Lemma 3.1).
Corollary 2.3 Let Γ denote a distance-regular graph with diameter $d \geq 3$, and let σ_{0}, $\sigma_{1}, \ldots, \sigma_{d}$ denote a sequence of complex numbers. Then the following are equivalent.
(i) $\sigma_{0}=1$, and

$$
\begin{equation*}
(\sigma-1) \sum_{h=0}^{i} k_{h} \sigma_{h}=\frac{b_{1} b_{2} \cdots b_{i}}{c_{1} c_{2} \cdots c_{i}}\left(\sigma_{i+1}-\sigma_{i}\right) \quad(0 \leq i \leq d) \tag{9}
\end{equation*}
$$

where σ_{d+1} is an indeterminate.
(ii) $\sigma_{0}, \sigma_{1}, \ldots, \sigma_{d}$ is a cosine sequence of Γ.

Proof:

(i) \Rightarrow (ii) We show (7) holds. Pick an integer $i(1 \leq i \leq d$). By (9) (with i replaced by $i-1$) we have

$$
\begin{equation*}
(\sigma-1) \sum_{h=0}^{i-1} k_{h} \sigma_{h}=\frac{b_{1} b_{2} \cdots b_{i-1}}{c_{1} c_{2} \cdots c_{i-1}}\left(\sigma_{i}-\sigma_{i-1}\right) \tag{10}
\end{equation*}
$$

Subtracting Eq. (10) from Eq. (9) and eliminating k_{i} from the result using (4), we get (7) as desired. Now $\sigma_{0}, \sigma_{1}, \ldots, \sigma_{d}$ is a cosine sequence by Lemma 2.1 (i) and (iii).
(ii) \Rightarrow (i) Observe $\sigma_{0}=1$ by Lemma 2.1 (ii). To obtain (9), in Lemma 2.2 let $\rho_{0}, \rho_{1}, \ldots, \rho_{d}$ denote the cosine sequence for E_{0}, that is, $\rho_{i}=1(0 \leq i \leq d)$.

The graph Γ is said to be bipartite whenever $a_{i}=0$ for $0 \leq i \leq d$.
Lemma 2.4 Let Γ denote a distance-regular graph with diameter $d \geq 3$, valency k, and eigenvalues $\theta_{0}>\theta_{1}>\cdots>\theta_{d}$. Let $\sigma_{0}, \sigma_{1}, \ldots, \sigma_{d}$ denote the cosine sequence for θ_{d}. Then the following are equivalent.
(i) Γ is bipartite.
(ii) $\theta_{d}=-k$.
(iii) $\sigma_{i}=(-1)^{i} \quad(0 \leq i \leq d)$.

Proof:

(i) \Leftrightarrow (ii) See [2], (Proposition 3.2.3).
(i), (ii) \Rightarrow (iii) Follows easily from Lemma 2.1 (i), (ii).
(iii) \Rightarrow (ii) Observe $\sigma_{1}=-1$, and $\theta_{d}=\sigma_{1} k$ by Lemma 2.1 (i), (iii), so $\theta_{d}=-k$.

Lemma 2.5 Let Γ denote a bipartite distance-regular graph with diameter $d \geq 3$, and eigenvalues $\theta_{0}>\theta_{1}>\cdots>\theta_{d}$. Pick any integer $i(0 \leq i \leq d)$. Then
(i) $\theta_{i}=-\theta_{d-i}$,
(ii) $m_{i}=m_{d-i}$,
(iii) Let $\sigma_{0}, \sigma_{1}, \ldots, \sigma_{d}$ denote the cosine sequence for θ_{i}. Then the cosine sequence for θ_{d-i} is $\sigma_{0},-\sigma_{1}, \sigma_{2},-\sigma_{3}, \ldots,(-1)^{d} \sigma_{d}$.

Proof:

(i), (ii) See [2], (Proposition 3.2.3).
(iii) By Lemma 2.1 (ii) and recalling that $a_{0}, a_{1}, \ldots, a_{d}$ are all 0 , it suffices to show

$$
\begin{equation*}
c_{j}(-1)^{j-1} \sigma_{j-1}+b_{j}(-1)^{j+1} \sigma_{j+1}=\theta_{d-i}(-1)^{j} \sigma_{j} \quad(0 \leq j \leq d) \tag{11}
\end{equation*}
$$

By Lemma 2.1 (i), (ii), and since $\sigma_{0}, \sigma_{1}, \ldots, \sigma_{d}$ is a cosine sequence for θ_{i},

$$
\begin{equation*}
c_{j} \sigma_{j-1}+b_{j} \sigma_{j+1}=\theta_{i} \sigma_{j} \quad(0 \leq j \leq d) \tag{12}
\end{equation*}
$$

Evaluating (12) using Lemma 2.5 (i) we obtain (11), as desired.
Let $\sigma_{0}, \sigma_{1}, \ldots, \sigma_{d}$ denote a finite sequence of nonzero real numbers. By the number of sign changes in this sequence we mean the number of integers $i(0 \leq i \leq d-1)$ such that $\sigma_{i} \sigma_{i+1}<0$. For an arbitrary finite sequence of real numbers, the number of sign changes in it is the number of sign changes in the sequence obtained by disregarding the zero terms.

Lemma 2.6 Let Γ denote a distance-regular graph with diameter $d \geq 3$, and eigenvalues $\theta_{0}>\theta_{1}>\cdots>\theta_{d}$. Let $\sigma_{0}, \sigma_{1}, \ldots, \sigma_{d}$ denote a cosine sequence of Γ, and let θ denote the corresponding eigenvalue. For any integer $i(0 \leq i \leq d)$, the following are equivalent.
(i) $\theta=\theta_{i}$.
(ii) $\sigma_{0}, \sigma_{1}, \ldots, \sigma_{d}$ has exactly i sign changes.

Moreover, suppose $i \geq 1$, and that (i), (ii) hold. Then the sequence $\sigma_{0}-\sigma_{1}, \sigma_{1}-\sigma_{2}, \ldots$, $\sigma_{d-1}-\sigma_{d}$ has exactly $i-1$ sign changes.

Proof: See [2], (Corollary 4.1.2) or [3], (Lemma 2.1).
Lemma 2.7 Let Γ denote a distance-regular graph with diameter $d \geq 3$, and eigenvalues $\theta_{0}>\theta_{1}>\cdots>\theta_{d}$. Let $\sigma_{0}, \sigma_{1}, \ldots, \sigma_{d}$ denote the cosine sequence associated with θ_{1}. Then

$$
\begin{equation*}
\sigma_{0}>\sigma_{1}>\cdots>\sigma_{d} \tag{13}
\end{equation*}
$$

Proof: By Lemma 2.6, the sequence $\sigma_{0}-\sigma_{1}, \sigma_{1}-\sigma_{2}, \ldots, \sigma_{d-1}-\sigma_{d}$ has no sign changes. Recall, $\sigma_{1}=\theta_{1} k^{-1}$ and $\sigma_{0}=1$ by Lemma 2.1 (iii), so

$$
\begin{equation*}
1=\sigma_{0}>\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{d} \tag{14}
\end{equation*}
$$

Suppose (13) fails. Then there exists an integer $i(1 \leq i \leq d-1)$ such that

$$
\begin{equation*}
\sigma_{i-1}>\sigma_{i}=\sigma_{i+1} \tag{15}
\end{equation*}
$$

Setting $\sigma_{i}=\sigma_{i+1}$ in (7), we find in view of (15) that

$$
\begin{equation*}
\sigma_{i}=\sigma_{i+1}<0 \tag{16}
\end{equation*}
$$

Assume for now that $i=d-1$, so $\sigma_{d-1}=\sigma_{d}<0$. Using (15), and by setting $i=d$ in (7) we obtain

$$
\begin{aligned}
0 & =c_{d}\left(\sigma_{d-1}-\sigma_{d}\right) \\
& =k(\sigma-1) \sigma_{d},
\end{aligned}
$$

so $\sigma_{d}=0$, a contradiction. Hence, $i<d-1$. We may now argue, by (14), (15), (7) and (16)

$$
\begin{aligned}
0 & \geq-b_{i+1}\left(\sigma_{i+1}-\sigma_{i+2}\right) \\
& =-b_{i+1}\left(\sigma_{i+1}-\sigma_{i+2}\right)+c_{i+1}\left(\sigma_{i}-\sigma_{i+1}\right) \\
& =k(\sigma-1) \sigma_{i+1} \\
& >0
\end{aligned}
$$

a contradiction. We now have (13), as desired.
Let Γ denote a distance-regular graph with diameter $d \geq 3$, and let M denote the Bose Mesner algebra of Γ. Since M is closed under the entrywise matrix product o , there exist scalars $q_{i j}^{h} \in \mathbb{C}$ such that

$$
\begin{equation*}
E_{i} \circ E_{j}=|X|^{-1} \sum_{h=0}^{d} q_{i j}^{h} E_{h} \quad(0 \leq i, j \leq d) . \tag{17}
\end{equation*}
$$

We call the $q_{i j}^{h}$ the Krein parameters of Γ.

3. The main results

Let E and F denote primitive idempotents of a distance-regular graph Γ. In this section, we focus on finding necessary and sufficient conditions such that $E \circ F$ is a scalar multiple of a primitive idempotent of Γ.

Lemma 3.1 Let Γ denote a distance-regular graph with diameter $d \geq 3$. For all integers $h, i, j(0 \leq h, i, j \leq d)$, the following are equivalent.
(i) $E_{i} \circ E_{j}$ is a scalar multiple of E_{h}.
(ii) $q_{i j}^{r}=0$ for all $r \in\{0,1, \ldots, d\} \backslash h$.

Proof: Follows immediately from (17) and the linear independence of $E_{0}, E_{1}, \ldots, E_{d}$.

Lemma 3.2 Let Γ denote a distance-regular graph with diameter $d \geq 3$. Let E, F and H denote primitive idempotents of Γ, and let $\sigma_{0}, \sigma_{1}, \ldots, \sigma_{d} ; \rho_{0}, \rho_{1}, \ldots, \rho_{d}$ and $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{d}$ denote the associated cosine sequences. Then the following are equivalent.
(i) $E \circ F$ is a scalar multiple of H.
(ii) $\gamma_{i}=\sigma_{i} \rho_{i} \quad(0 \leq i \leq d)$.

Moreover, suppose (i), (ii) hold. Then the scalar referred to in (i) is equal to

$$
\begin{equation*}
m_{\sigma} m_{\rho} m_{\gamma}^{-1}|X|^{-1} \tag{18}
\end{equation*}
$$

where m_{σ}, m_{ρ} and m_{γ} denote the multiplicity of E, F and H respectively.
Proof: Observe

$$
\begin{align*}
& E=|X|^{-1} m_{\sigma} \sum_{i=0}^{d} \sigma_{i} A_{i} \tag{19}\\
& F=|X|^{-1} m_{\rho} \sum_{i=0}^{d} \rho_{i} A_{i} \tag{20}\\
& H=|X|^{-1} m_{\gamma} \sum_{i=0}^{d} \gamma_{i} A_{i} \tag{21}
\end{align*}
$$

(i) \Rightarrow (ii) By assumption, there exists $\alpha \in \mathbb{C}$ such that

$$
\begin{equation*}
E \circ F=\alpha H \tag{22}
\end{equation*}
$$

Eliminating E, F and H in (22) using (19)-(21), and evaluating the result we find

$$
\begin{equation*}
m_{\sigma} m_{\rho} \sigma_{i} \rho_{i}=\alpha|X| m_{\gamma} \gamma_{i} \quad(0 \leq i \leq d) \tag{23}
\end{equation*}
$$

Setting $i=0$ in (23), and recalling $\sigma_{0}=1, \rho_{0}=1$ and $\gamma_{0}=1$, we find

$$
\begin{equation*}
\alpha=m_{\sigma} m_{\rho} m_{\gamma}^{-1}|X|^{-1} . \tag{24}
\end{equation*}
$$

Eliminating α in (23) using (24), we obtain

$$
\sigma_{i} \rho_{i}=\gamma_{i} \quad(0 \leq i \leq d)
$$

as desired.
(ii) \Rightarrow (i) By (19)-(21),

$$
\begin{aligned}
E \circ F & =|X|^{-2} m_{\sigma} m_{\rho} \sum_{i=0}^{d} \sigma_{i} \rho_{i} A_{i} \\
& =|X|^{-2} m_{\sigma} m_{\rho} \sum_{i=0}^{d} \gamma_{i} A_{i} \\
& =\alpha H,
\end{aligned}
$$

where α is as in (24).
In the next lemma, we consider some examples.
Lemma 3.3 Let Γ denote a distance-regular graph with diameter $d \geq 3$, and eigenvalues $\theta_{0}>\theta_{1}>\cdots>\theta_{d}$.
(i) $E_{0} \circ E_{i}=|X|^{-1} E_{i} \quad(0 \leq i \leq d)$.
(ii) Suppose Γ is bipartite. Then

$$
E_{d} \circ E_{i}=|X|^{-1} E_{d-i} \quad(0 \leq i \leq d)
$$

Proof:

(i) Follows easily from (5).
(ii) By Lemma 2.4, the cosine sequence for E_{d} is $1,-1,1, \ldots,(-1)^{d}$. Let $\sigma_{0}, \sigma_{1}, \ldots, \sigma_{d}$ denote the cosine sequence for E_{i}. By Lemma 2.5, the cosine sequence for E_{d-i} is $\sigma_{0},-\sigma_{1}, \sigma_{2}, \ldots,(-1)^{d} \sigma_{d}$. Combining the above information with Lemma 3.2, we find $E_{d} \circ E_{i}$ is a scalar multiple of E_{d-i}. The scalar is $|X|^{-1}$ by (18), Lemma 2.5 (ii), and the fact that $m_{0}=1$.

Theorem 3.4 Let Γ denote a distance-regular graph with diameter $d \geq 3$. Let E and F denote primitive idempotents of Γ, with cosine sequences $\sigma_{0}, \sigma_{1}, \ldots, \sigma_{d}$ and $\rho_{0}, \rho_{1}, \ldots, \rho_{d}$, respectively. The following are equivalent.
(i) $E \circ F$ is a scalar multiple of a primitive idempotent of Γ.
(ii) There exists a real number ϵ such that

$$
\begin{equation*}
\sigma_{i} \rho_{i}-\sigma_{i-1} \rho_{i-1}=\epsilon\left(\sigma_{i-1} \rho_{i}-\sigma_{i} \rho_{i-1}\right) \quad(1 \leq i \leq d) \tag{25}
\end{equation*}
$$

Proof:

(i) \Rightarrow (ii) Suppose $E \circ F$ is a scalar multiple of a primitive idempotent H of Γ. Let $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{d}$ be the cosine sequence for H. First, assume $E \neq F$ and set

$$
\begin{equation*}
\epsilon=\frac{\sigma \rho-1}{\rho-\sigma} \tag{26}
\end{equation*}
$$

Pick an integer $i(1 \leq i \leq d)$. Observe by Lemma 3.2, Corollary 2.3, Lemma 2.2 and Eq. (26),

$$
\begin{aligned}
\sigma_{i} \rho_{i}-\sigma_{i-1} \rho_{i-1} & =\gamma_{i}-\gamma_{i-1} \\
& =(\gamma-1) \frac{c_{1} c_{2} \cdots c_{i-1}}{b_{1} b_{2} \cdots b_{i-1}} \sum_{h=0}^{i-1} k_{h} \gamma_{h} \\
& =(\sigma \rho-1) \frac{c_{1} c_{2} \cdots c_{i-1}}{b_{1} b_{2} \cdots b_{i-1}} \sum_{h=0}^{i-1} k_{h} \sigma_{h} \rho_{h} \\
& =(\sigma \rho-1)\left(\frac{\sigma_{i} \rho_{i-1}-\sigma_{i-1} \rho_{i}}{\sigma-\rho}\right) \\
& =\epsilon\left(\sigma_{i-1} \rho_{i}-\sigma_{i} \rho_{i-1}\right),
\end{aligned}
$$

as desired.
Next suppose $E=F$. Then $\sigma_{i}=\rho_{i}$ for $0 \leq i \leq d$, so in view of Lemma 3.2,

$$
\gamma_{i}=\sigma_{i}^{2} \quad(0 \leq i \leq d)
$$

Observe $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{d}$ are all non-negative, so $H=E_{0}$ by Lemma 2.6. In particular, $\gamma_{i}=1$ for $0 \leq i \leq d$, so

$$
\sigma_{i}^{2}=1 \quad(0 \leq i \leq d) .
$$

Now, (25) holds for all $\epsilon \in \mathbb{R}$.
(ii) \Rightarrow (i) Set

$$
\begin{equation*}
\gamma_{i}:=\sigma_{i} \rho_{i} \quad(0 \leq i \leq d) \tag{27}
\end{equation*}
$$

By Lemma 3.2, it suffices to show $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{d}$ is a cosine sequence. By Corollary 2.3, this will occur if we can show

$$
\begin{equation*}
(\gamma-1) \sum_{h=0}^{i} k_{h} \gamma_{h}=\frac{b_{1} b_{2} \cdots b_{i}}{c_{1} c_{2} \cdots c_{i}}\left(\gamma_{i+1}-\gamma_{i}\right) \tag{28}
\end{equation*}
$$

for $0 \leq i \leq d$, where γ_{d+1} is indeterminate. Setting $i=1$ in (25), we obtain

$$
\begin{equation*}
\sigma \rho-1=\epsilon(\rho-\sigma) \tag{29}
\end{equation*}
$$

By Lemma 2.2,

$$
\begin{equation*}
(\sigma-\rho) \sum_{h=0}^{i} k_{h} \sigma_{h} \rho_{h}=\frac{b_{1} b_{2} \cdots b_{i}}{c_{1} c_{2} \cdots c_{i}}\left(\sigma_{i+1} \rho_{i}-\sigma_{i} \rho_{i+1}\right) \tag{30}
\end{equation*}
$$

for $0 \leq i \leq d$. We first show (28) holds at $i=d$. Observe that the right side of (30) vanishes at $i=d$. Combining this observation with (27) and (29), we find

$$
\begin{align*}
(\gamma-1) \sum_{h=0}^{d} k_{h} \gamma_{h} & =(\sigma \rho-1) \sum_{h=0}^{d} k_{h} \sigma_{h} \rho_{h} \tag{31}\\
& =\epsilon(\rho-\sigma) \sum_{h=0}^{d} k_{h} \sigma_{h} \rho_{h} \tag{32}\\
& =0 \tag{33}
\end{align*}
$$

so (28) holds at $i=d$.
Next, we show (28) holds for $i<d$. Multiplying Eq. (30) by ϵ, and simplifying the resulting equation using (25) and (29), we obtain

$$
\begin{equation*}
(\sigma \rho-1) \sum_{h=0}^{i} k_{h} \sigma_{h} \rho_{h}=\frac{b_{1} b_{2} \cdots b_{i}}{c_{1} c_{2} \cdots c_{i}}\left(\sigma_{i+1} \rho_{i+1}-\sigma_{i} \rho_{i}\right) \tag{34}
\end{equation*}
$$

which implies (28) in view of (27). We have shown (28) for $0 \leq i \leq d$, so $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{d}$ is a cosine sequence by Corollary 2.3.

We conclude by determining which nontrivial primitive idempotents E and F satisfy (i), (ii) of Theorem 3.4. We consider three cases.

Theorem 3.5 Let Γ denote a tight distance-regular graph with diameter $d \geq 3$, and eigenvalues $\theta_{0}>\theta_{1}>\cdots>\theta_{d}$. Let E and F denote nontrivial primitive idempotents of Γ. The following are equivalent.
(i) $E \circ F$ is a scalar multiple of a primitive idempotent of Γ.
(ii) E, F are a permutation of E_{1}, E_{d}.

Suppose (i), (ii) hold, and let H denote the primitive idempotent of Γ such that $E \circ F$ is a scalar multiple of H. Then the eigenvalue associated with H is θ_{d-1}. Moreover,

$$
\begin{equation*}
k \theta_{d-1}=\theta_{1} \theta_{d} \tag{35}
\end{equation*}
$$

Proof:

(i) \Leftrightarrow (ii) Follows from Theorem 1.2 and Theorem 3.4.

If (i), (ii) hold then the eigenvalues of Γ associated with E and F are a permutation of θ_{1} and θ_{d}. Let $\sigma_{0}, \sigma_{1}, \ldots, \sigma_{d}$ and $\rho_{0}, \rho_{1}, \ldots, \rho_{d}$ denote the cosine sequences for θ_{1}
and θ_{d}, respectively. By Lemma $2.6, \sigma_{0}, \sigma_{1}, \ldots, \sigma_{d}$ has 1 sign change and $\rho_{0}, \rho_{1}, \ldots, \rho_{d}$ has d sign changes. Combining this with Lemma 3.2 and Lemma 2.7, we observe that the cosine sequence for H, namely $\sigma_{0} \rho_{0}, \sigma_{1} \rho_{1}, \ldots, \sigma_{d} \rho_{d}$ has $d-1$ sign changes. By Lemma 2.6, the eigenvalue associated with H is θ_{d-1}. Finally, applying Lemma 2.1 (iii), we get $\sigma_{1}=\theta_{1} k^{-1}, \rho_{1}=\theta_{d} k^{-1}$, and $\sigma_{1} \rho_{1}=\theta_{d-1} k^{-1}$, giving (35), as desired.

Theorem 3.6 Let Γ denote a bipartite distance-regular graph with diameter $d \geq 3$, and eigenvalues $\theta_{0}>\theta_{1}>\cdots>\theta_{d}$. Let E and F denote nontrivial primitive idempotents of Γ. The following are equivalent.
(i) $E \circ F$ is a scalar multiple of a primitive idempotent of Γ.
(ii) At least one of E, F is equal to E_{d}.

Proof:

(i) \Rightarrow (ii) Let $\sigma_{0}, \sigma_{1}, \ldots, \sigma_{d}$ and $\rho_{0}, \rho_{1}, \ldots, \rho_{d}$ denote the cosine sequences for E and F, respectively. By Theorem 3.4, there exists a real number ϵ such that

$$
\begin{equation*}
\sigma_{i} \rho_{i}-\sigma_{i-1} \rho_{i-1}=\epsilon\left(\sigma_{i-1} \rho_{i}-\sigma_{i} \rho_{i-1}\right) \quad(1 \leq i \leq d) \tag{36}
\end{equation*}
$$

First assume $E=F$. Setting $i=1$ in (36), we observe $\sigma_{1}^{2}=\sigma_{0}^{2}=1$. Observe $\sigma_{1} \neq 1$ since E is nontrivial, so $\sigma_{1}=-1$. Now $E=E_{d}$ by Lemma 2.4 (i), (ii).

Next assume $E \neq F$. Setting $i=1,2$ in (36), we get

$$
\begin{align*}
\sigma \rho-1 & =\epsilon(\rho-\sigma) \tag{37}\\
\sigma_{2} \rho_{2}-\sigma \rho & =\epsilon\left(\sigma \rho_{2}-\sigma_{2} \rho\right) . \tag{38}
\end{align*}
$$

Let θ and θ^{\prime} denote the eigenvalues for E and F, respectively. Then by Lemma 2.1 (iii),

$$
\begin{equation*}
\sigma=\frac{\theta}{k}, \quad \rho=\frac{\theta^{\prime}}{k} . \tag{39}
\end{equation*}
$$

Recalling that $a_{0}, a_{1}, \ldots, a_{d}$ are 0 since Γ is bipartite, and setting $i=1$ in (6) and (3), we get

$$
\begin{equation*}
\sigma_{2}=\frac{\theta^{2}-k}{k(k-1)}, \quad \rho_{2}=\frac{\theta^{\prime 2}-k}{k(k-1)} \tag{40}
\end{equation*}
$$

Eliminating ϵ in (38) using (37), and simplifying the result using (39) and (40), we obtain

$$
\left(\theta^{2}-k^{2}\right)\left(\theta^{\prime 2}-k^{2}\right)=0
$$

Observe $\theta \neq k$ and $\theta^{\prime} \neq k$, since E and F are nontrivial, so one of θ, θ^{\prime} is equal to $-k$. Thus, one of E, F is equal to E_{d}.
(ii) \Rightarrow (i) Follows immediately from Lemma 3.3 (ii).

Theorem 3.7 Let Γ denote a distance-regular graph with diameter $d \geq 3$, and suppose Γ is neither tight nor bipartite. Let E and F denote nontrivial primitive idempotents of Γ. Then $E \circ F$ is never a scalar multiple of a primitive idempotent of Γ.

Proof: Immediate from Theorem 1.2 and Theorem 3.4.

Acknowledgments

The author wishes to thank Professor Paul Terwilliger for his ideas and many valuable suggestions, and Jack Koolen for observing that H is associated to θ_{d-1} in Theorem 3.5.

References

1. E. Bannai and T. Ito, Algebraic Combinatorics I: Association Schemes, Benjamin-Cummings Lecture Note Ser. 58, Benjamin-Cummings, Menlo Park, CA. 1984.
2. A.E. Brouwer, A.M. Cohen, and A. Neumaier, Distance-Regular Graphs, Springer, New York, 1989.
3. C.D. Godsil, Algebraic Combinatorics, Chapman and Hall, New York, 1993.
4. A. Jurišić, J. Koolen, and P. Terwilliger, "Tight distance-regular graphs," submitted.
