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Abstract. We investigate the following problem: how different can a cellular algebra be from its Schurian
closure, i.e., the centralizer algebra of its automorphism group? For this purpose we introduce the notion of a
Schurian polynomial approximation scheme measuring this difference. Some natural examples of such schemes
arise from high dimensional generalizations of the Weisfeiler-Lehman algorithm which constructs the cellular
closure of a set of matrices. We prove that all of these schemes are dominated by a new Schurian polynomial
approximation scheme defined by them-closure operators. A sufficient condition for them-closure of a cellular
algebra to coincide with its Schurian closure is given.
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1. Introduction

The starting point of the paper is the Graph Isomorphism Problem (ISO), a famous unsolved
problem in computational complexity theory (see [8]). The problem is to test whether two
finite graphs are isomorphic by means of an efficient algorithm. Despite many efforts, at
present the best isomorphism test for graphs withn vertices makes at least exp(O(

√
n logn))

steps in the worst case (see [3] for the discussion of this and related topics).
In [14] an approach to the ISO based on the notion of acellular algebrawas developed.

Let MatV be the full matrix algebra overC on a finite setV . A subalgebra of MatV is called
cellular if it is closed under the Hadamard (componentwise) multiplication◦, the Hermitian
conjugation∗ and contains the matrix all of whose entries are equal to 1.1 One of the most
important examples of cellular algebras is the centralizer algebraZ(G,V) of a permutation
groupG on V , i.e., the set of all matrices of MatV stable with respect to the induced action

∗Research supported by the Volkswagen-Stiftung Program on Computational Complexity.
†Research partially supported by the DFG Grant KA 67314-1, by ESPRITS Grants 7097 and ECUS 030, and by
the Volkswagen-Stiftung.



30 EVDOKIMOV, KARPINSKI AND PONOMARENKO

of G on MatV . Conversely, we associate to each cellular algebraW its automorphism group
Aut(W) which is by definition the group of all permutations ofV preserving any matrix
of W. This defines a cellular superalgebra Sch(W)=Z(Aut(W),V) of the algebraW with
the same automorphism group, called theSchurian closureof W. We note thatW does not
necessarily coincide with Sch(W) (see [15]). If it does, then the algebra is calledSchurian.

The idea of the cellular algebra approach to the ISO is the following. It is well-known
that this problem is polynomial-time equivalent to the problem of finding the orbits of the
automorphism group Aut(0) of a graph0 (see [12]). However, these orbits can easily be
derived from the algebraZ(Aut(0),V) whereV is the vertex set of0. The last algebra is
in fact the Schurian closure of the smallest cellular algebraW(0) containing the adjacency
matrix of 0. Hoping that the algebraW(0) is always Schurian2 in 1968 B. Weisfeiler
and A. Lehman proposed some way to compute it. Their procedure is a special case of a
more general algorithm called now theWeisfeiler-Lehman algorithm(see [14], Section C8),
which given matricesA1, . . . , As ∈ MatV efficiently (in polynomial time) constructs their
cellular closure [A1, . . . , As], i.e., the smallest cellular algebra containing them. From the
algebraic point of view, this algorithm constructs a sequenceL0 ⊂ L1 ⊂ · · · ⊂ Lt = Lt+1

of linear subspaces of MatV whereLt = [ A1, . . . , As], so thatL0 is linearly spanned by
A1, . . . , As andLi+1 is the smallest subspace of MatV containing(Li · Li ) ◦ (Li · Li )

∗.
The Weisfeiler-Lehman algorithm gives a polynomial-time reduction of the ISO to the

problem of constructing the Schurian closure of a cellular algebra. Here we face a common
situation in mathematics: we want to construct some object but have in hand only an
approximation to it. Certainly, it would be more convenient to deal with a sequence of some
natural approximations giving eventually the object we are interested in. For this reason
we introduce in this paper the notion of aSchurian polynomial approximation scheme.

Let us have a rule according to which given a cellular algebraW ≤ MatV and a positive
integerm a cellular algebraW(m) ≤ MatV can be constructed. We say that the operators
W 7→ W(m) (m = 1,2, . . .) define a Schurian polynomial approximation scheme if the
following conditions are satisfied:

1. W = W(1) ≤ · · · ≤ W(n) = · · · = Sch(W);
2. (W(m))(l ) = W(m) for all l ∈ [m];
3. W(m) can be constructed in timenO(m)

wheren is the cardinality ofV . Condition (1) obviously implies Aut(W(m)) = Aut(W) for
all m≥ 1. Further, condition (3) means that the algebraW(m) is in a sense the trace of some
m-dimensional object. All known to us Schurian polynomial approximation schemes are
defined just in this way. On the other hand the last condition prevents a scheme from being
degenerate.

In this paper we describe a special Schurian polynomial approximation scheme and study
its main properties. The key notion of our approach is that ofm-closure. To define it, given
W andm denote byŴ(m) the smallest cellular subalgebra of MatVm containing the algebras
Z(Sym(V),Vm) and W ⊗ · · · ⊗ W (m times). ThenW̄(m) is by definition the cellular
algebra being the restriction of̂W(m) to V (included inVm diagonalwise). We callW̄(m)

them-closureof W.



NEW HIGH DIMENSIONAL WEISFEILER-LEHMAN ALGORITHM 31

Theorem 1.1 The m-closure operators W7→ W̄(m) (m = 1,2, . . .) constructed above
define a Schurian polynomial approximation scheme.

Probably the book [14] was the first source where a series of constructions and pro-
cedures (deep stabilization) carrying into Schurian polynomial approximation schemes
was considered. For example, a weaker analog of the algebraW̄(2) is obtained from the
dual graph described in Section O6.4 of this book. One more construction just outlined in
Section O6.2 underlies the algorithm of [7] which given a cellular algebraW ≤ MatV and
a positive integerm produces a cellular algebraBm(W) ≥ W with the same automorphism
group by using a subalgebra of MatVm canonically defined byW (for the exact definitions
see Section 4 of this paper). This defines the Schurian polynomial approximation scheme
Bm : W 7→ Bm(W) (m = 1,2, . . .). The ideas of [14] also gave rise to them-dim W-L
methodbased on them-dimensional stabilization procedure which refines a given initial
coloring ofVm (see [5] and Section 4). It is worth noting that form= 2 this procedure is the
combinatorial analog of the Weisfeiler-Lehman algorithm for finding the cellular closure of
a set of matrices (see above). Them-dim W-L method is generally used in isomorphism-like
problems for graphs, the initial coloring ofVm chosen according to the isomorphism type
of m-vertex labeled subgraphs (cf. [14], Section O6.3). Similarly, replacing a graph by a
cellular algebra we come to the algorithmsAm : W 7→ Am(W) (m = 1,2, . . .) defining a
Schurian polynomial approximation scheme (for the exact definition see Section 4).

In connection with the above discussion the natural question arises: what are the relations
between the cellular algebrasAm(W), Bm(W) and W̄(m)? The next proposition gives a
partial answer to the question.

Theorem 1.2 The Schurian polynomial approximation scheme defined by the m-closure
operators dominates ones defined by Am and Bm. More exactly,

W̄(m) ≥ Am(W), W̄(m) ≥ Bm(W)

for all cellular algebras W and m≥ 1.

One of the most important problems concerning Schurian polynomial approximation
schemes is a good estimation of the smallestm≥1 for whichW(m)= Sch(W). Note, that
if such m was bounded by a constant then by condition (4) the ISO could be solved in
polynomial time. We do not know whether this is true for ours or someone else’s Schurian
polynomial approximation scheme. However, in the first case we can give an upper bound
for m in terms of the split number of a cellular algebra defined below.

The split numbers(W) of a cellular algebraW is by definition the smallests for which
there existv1, . . . , vs ∈ V such thatWv1,...,vs = MatV whereWv1,...,vs is the smallest cellular
subalgebra of MatV containingW and all diagonal{0,1}-matrix with exactly one nonzero
element standing in row and columnvi . Clearly,s(W) ≤ n−1 for all W. Some non-trivial
upper bounds for this number can be found in [2] and [6]. We also mention paper [10] where
a similar invariant (called freedom degree) was defined for a permutation group.

Theorem 1.3 Let W be a cellular algebra with s(W) ≤ m− 1. ThenSch(W) = W̄(m).
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The idea of the proof is to study the cellular algebraŴ(m) ≤ MatVm defined above. We
show that this algebra contains (in a sense) all cellular algebras of the formWv1,...,vm−1 with
vi ∈ V . By using this fact we find a faithful regular orbit of the componentwise action of
the group Aut(W) on Vm (coinciding with an orbit of Aut(Ŵ(m))). Comparing the cellular
algebras being the restrictions ofŴ(m) to this orbit and the diagonal ofVm we conclude
that the last algebra is Schurian. This means that so isW̄(m).

As an easy corollary (s(W)≤1) we get the following statement.

Corollary 1.4 If a cellular algebra W≤MatV has no proper cellular superalgebras, then
W̄(2) = Sch(W).

The paper consists of six sections. The second one contains main definitions and some
preliminary results concerning cellular algebras. In Section 3 we define the notion ofm-
closure and in detail study the properties ofm-closed cellular algebras. As a result we get the
proof of Theorem 1.1. Sections 4 and 5 are devoted to Theorems 1.2 and 1.3 respectively.
In Section 6 we discuss some open problems.

Notation. As usual byC we denote the complex field.
Throughout the paperV denotes a finite set withn = |V | elements. A subset ofV × V

is called a relation onV . For a relationR on V we define its supportVR to be the smallest
setU ⊂ V such thatR⊂ U ×U .

Under an equivalenceE onV we always mean an ordinary equivalence on a subset ofV
(coinciding withVE), the set of its equivalence classes is denoted byV/E.

The algebra of all complex matrices whose rows and columns are indexed by the elements
of V is denoted by MatV , its unit element (the identity matrix) byIV and the all one matrix
by JV .ForU ⊂ V the algebra MatU can be viewed in a natural way as a subalgebra of MatV .

The transpose of a matrixA is denoted byAT , its Hermitian conjugate byA∗.
Each bijectiong : V → V ′ (v 7→ vg) defines a natural algebra isomorphism from MatV

onto MatV ′ . The image of a matrixA underg is denoted byAg.

The group of all permutations ofV is denoted by Sym(V).
For integersl ,m the set{l , l + 1, . . . ,m} is denoted by [l ,m]. If l = 1, we write [m]

instead of [1,m].

2. Cellular algebras

By acellular algebra WonV we mean a subalgebra of MatV containing the identity matrix
IV , the matrixJV all of whose entries are equal to 1, and closed under the Hermitian conju-
gation and the Hadamard (componentwise) multiplication◦. Below we give a combinatorial
characterization of cellular algebras. It is convenient to view{0,1}-matrices belonging to
MatV as the adjacency matrices of relations onV . Throughout the paper we identify these
matrices with the corresponding relations.

The next statement follows from Proposition E1 and Section C11 of [14].

Proposition 2.1 A linear subspace W⊂ MatV is a cellular algebra if and only if there
exists a linear baseR = R(W) of W consisting of{0,1}-matrices such that
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1.
∑

R∈R R= JV ;
2. R ∈ R⇔ RT ∈ R;
3. there exists a disjoint partition V=⋃s

i=1 Vi of V into nonempty sets Vi such that
(a) IVi ∈ R for all i ;
(b) for all R ∈ R there exist i, j ∈ [s] such that R⊂ Vi × Vj ;
(c) the number of1’s in the uth row(resp. vth column) of the matrix R∈ R, R ⊂

Vi × Vj , does not depend on the choice of u∈ Vi (resp. v ∈ Vj ), this number is
denoted by dout(R) (resp. din(R));

4. given R, S, T ∈ R the number

p(u, v; S, T) = |{w ∈ V : (u, w) ∈ S, (w, v) ∈ T}|, u, v ∈ V

does not depend on the choice of(u, v) ∈ R.

Remark 2.2 It is easily seen that the baseR and the partitionV =⋃s
i=1 Vi are uniquely

determined byW.

The linear baseR of a cellular algebraW defined in Proposition 2.1 is called thestandard
basisof W and its elements thebasis matricesor basis relations. Any subsetVi ⊂ V (resp.
a possibly empty union ofVi ’s) is called acell (resp. acellular set) of W. The set of all of
them is denoted by Cel(W) (resp. Cel∗(W)). Given a relationR ∈ W its supportVR is,
obviously, a cellular set ofW.

Below we will use the following generalization of statement (4) of Proposition 2.1. Let
u, v ∈ V andτ = (R1, . . . , Rl ) ∈ Rl . We say that(v0, . . . , vl ) ∈ Vl+1 is a(u, v)-path of
the typeτ if v0 = u, vl = v and(vi−1, vi ) ∈ Ri for all i ∈ [l ]. The number of all such paths
will be denoted byp(u, v; τ).
Lemma 2.3 (Path Proposition [14],Theorem C10) Let W be a cellular algebra. Then
given R∈ R(W) the integer p(u, v; τ) does not depend on the choice of(u, v) ∈ R.

The set of all cellular algebras onV is ordered by inclusion. The largest and the small-
est elements of this set are respectively the full matrix algebra MatV and the simplex
Z(Sym(V),V), i.e., the algebra with the linear base{IV , JV }. For cellular algebrasW and
W′ we write W ≤ W′ if W is a subalgebra ofW′. If A1, . . . , As ∈ MatV , then the inter-
section of all cellular algebras onV containingW and all the matricesAi is also a cellular
algebra onV . It is denoted byW[ A1, . . . , As]. We use notation [A1, . . . , As] if W is a
simplex andWv1,...,vs if Ai = Ivi = I{vi } with vi ∈ V for all i .

Two cellular algebrasW onV andW′ onV ′ are calledisomorphicif Wg = W′ for some
bijectiong : V → V ′ called anisomorphismfrom W to W′. The group of all isomorphisms
from W to itself contains a normal subgroup

Aut(W) = {g ∈ Sym(V) : Ag = A for all A ∈ W}
called theautomorphism groupof W.

Following Section G3.1 of [14] let us define for cellular algebras the notion of tensor
product. LetW1 ≤ MatV1 andW2 ≤ MatV2 be cellular algebras onV1 andV2. Obviously,
the subalgebraW1 ⊗ W2 of MatV1 ⊗ MatV2 =MatV1×V2 is closed under the Hadamard
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multiplication in MatV1×V2. It also contains the matricesIV1×V2 = IV1 ⊗ IV2 and JV1×V2 =
JV1⊗ JV2. SoW1⊗W2 is a cellular algebra onV1×V2 called the tensor product ofW1 and
W2. Clearly,R(W1⊗W2) = R(W1)⊗R(W2) and Aut(W1⊗W2) = Aut(W1)×Aut(W2).

A large class of cellular algebras comes from permutation groups as follows (see [14],
Section F). LetG be a permutation group onV . Then its centralizer algebra

Z(G,V) = {A ∈ MatV : Ag = A for all g ∈ G}

is a cellular algebra onV the standard basis of which consists of all orbits of the natural
action ofG on V × V . For a cellular algebraW on V we set

Sch(W) = Z(Aut(W),V).

Clearly,W ≤ Sch(W) and Aut(W) = Aut(Sch(W)). The algebraW is calledSchurianif
W = Sch(W). Certainly, Sch(W) is a Schurian algebra for allW. It follows from [1, 15]
that there exist cellular algebras which are not Schurian.

Any isomorphism of cellular algebras obviously induces a bijection between the standard
bases of them. The converse statement is not true. This motivates the following definition
(cf. [14], Section E5). Cellular algebrasW onV andW′ onV ′ are calledweakly isomorphic
if there exists an algebra isomorphismϕ : W → W′ such thatϕ(R(W)) = R(W′). Any
suchϕ is called aweak isomorphismfrom W to W′. The following statement describes the
basic properties of weak isomorphisms.

Proposition 2.4 Letϕ : W→ W′ be a weak isomorphism. Then
1. ϕ(A ◦ B) = ϕ(A) ◦ ϕ(B) andϕ(A∗) = ϕ(A)∗ for all A, B ∈ W.
2. ϕ induces a natural bijection X7→ Xϕ from Cel∗(W) ontoCel∗(W′) preserving cells

such thatϕ(I X) = I Xϕ . Moreover, |X| = |Xϕ| and, in particular, |V | = |V ′|.

Proof: The first part of statement (1) is trivial. The second follows from the observation
that givenR ∈ R(W), the matrixRT is the only matrix ofR(W) whose product byR is
not orthogonal toIV with respect to the Hadamard multiplication. LetX ∈ Cel∗(W). Then
the equalitiesI X I X = I X ◦ I X = I X imply thatϕ(I X)ϕ(I X) = ϕ(I X) ◦ ϕ(I X) = ϕ(I X).
So there existsX′ ⊂ V ′ such thatϕ(I X) = I X′ . SinceI X′ ∈ W′, we haveX′ ∈ Cel∗(W′).
SetXϕ = X′. SinceIV =

∑
X∈Cel(W) I X andϕ(IV ) = IV ′ , the mappingX 7→ Xϕ gives a

bijection from Cel(W) to Cel(W′), which proves the first part of statement (2). Note that
ϕ(JV ) = JV ′ . Soϕ(JX) = ϕ(I X JV I X) = I Xϕ JV ′ I Xϕ = JXϕ for all X ∈ Cel∗(W) and the
rest of statement (2) follows from the equalityJ2

X = |X|JX. 2

Remark 2.5 We note that the equalityϕ(R(W)) = R(W′) in the definition of a weak
isomorphism can be replaced by the first equality of statement (1)

Let W be a cellular algebra onV and E be an equivalence onV . We say thatE is an
equivalenceof W if it is the union of basis relations ofW. A nonempty equivalenceE of W
is calledindecomposable(in W) if E is not a disjoint union of two nonempty equivalences
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of W. Otherwise, it is calleddecomposable. Since the algebraW is closed with respect
to the Hadamard multiplication, each equivalence ofW can uniquely be represented as a
disjoint union of indecomposable ones called theindecomposable componentsof E. It can
be proved that the property to be an equivalence (resp. indecomposable equivalence) of a
cellular algebra is preserved under weak isomorphisms.

Let E be an equivalence ofW. For eachU ∈V/E the setWE,U = IU WIU can be viewed
as a cellular algebra onU with the standard basis

R(WE,U ) = {IU RIU : R ∈ R(W), R⊂ E, IU RIU 6= 0}. (1)

Obviously, each basis relation ofWE,U can uniquely be represented in the formIU RIU with
R ∈ R(W). If E = JU whereU ∈ Cel∗(W), then the algebraWE,U is denoted byWU and
called the restriction ofW to U .

Lemma 2.6 If E is an indecomposable equivalence of W, then
1. the mappingϕU,U ′ : WE,U → WE,U ′ such thatϕU,U ′(IU AIU ) = IU ′AIU ′ , A ∈ W, is a

well-defined weak isomorphism from WE,U to WE,U ′ for all U ,U ′ ∈ V/E.
2. |U ∩ X| = |U ′ ∩ X| > 0 for all cell X of W, X ⊂ VE, and all U,U ′ ∈ V/E.

Proof: First we prove that

IU RIU 6= 0 for all U ∈ V/E, R ∈ R(W), R⊂ E. (2)

Indeed, ifIU RIU = 0, thenVR ∩U = ∅. SoE is the union of two nonempty equivalences
of W : IVREIVR and IVE\VREIVE\VR, which contradicts the indecomposability ofE.

Let now U,U ′ ∈V/E and ϕ = ϕU,U ′ . Then formulas (1) and (2) imply thatϕ is a
well-defined linear isomorphism fromWE,U to WE,U ′ . It is also an algebra isomorphism,
since

ϕ(IU R1IU · IU R2IU ) = ϕ(IU R1R2IU ) = IU ′R1R2IU ′ = IU ′R1IU ′ · IU ′R2I ′U

for all R1, R2 ∈ R(W), R1, R2 ⊂ E. This proves statement (1). It follows from formula (1)
that each cell of the algebraWE,U is of the formU ∩ X whereX ∈ Cel(W), X ⊂ VE. By
statement (1)ϕ = ϕU,U ′ is a weak isomorphism. Thus statement (2) is the consequence of
statement (2) of Proposition 2.4, since(U ∩ X)ϕ = U ′ ∩ X by the definition ofϕ. 2

3. Extended algebras andm-closures

Let W be a cellular algebra onV . For each positive integerm set

Ŵ(m) = [ W⊗ · · · ⊗W︸ ︷︷ ︸
m

Z(Sym(V),Vm)]
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with Sym(V) acting onVm in a natural way:(v1, . . . , vm)
g = (vg

1, . . . , v
g
m), g ∈ Sym(V).

We call the cellular algebrâW(m)≤MatVm the m-dimensional extended algebraof W.
Obviously,Ŵ(1) = W and

Aut
(
Ŵ(m)

) = {(g, . . . , g)︸ ︷︷ ︸
m

: g ∈ Aut(W)} (3)

for all m.
Now we are going to describe some relations belonging toŴ(m). To do this we define

for an arbitraryS⊂ [m]2 a binary relationPS on Vm by

(ū, v̄) ∈ PS⇔∀(i, j ) ∈ S: ui = v j (4)

whereū = (u1, . . . ,um), v̄ = (v1, . . . , vm) ∈ Vm. It follows that PS ∈ Z(Sym(V),Vm)

for all S⊂ [m]2.

Examples. Let M ⊂ [m].

1. Set

DM = PS whereS= JM ∪ I [m]\M . (5)

Clearly,DM ⊂ IVm for all M , D∅ = IVm andD[m] = I1 where

1 = {(v, . . . , v) ∈ Vm : v ∈ V}. (6)

2. Set

EM = PS whereS= IM . (7)

Clearly,EM is an equivalence onVm for all M andE∅ = JVm, E[m] = IVm.

Below we will mainly use the relationsDM andEM as well as matrices

Â = IV ⊗ · · · ⊗ IV︸ ︷︷ ︸
m−1

⊗ A, A ∈ W (8)

also belonging toŴ(m).
Each classU of the equivalenceE[m−1] is of the form

U = Uv1,...,vm−1 = {(v1, . . . , vm−1, v) : v ∈ V}

for somevi ∈ V . Let us define a bijectionζU as follows:

ζU : V → U, v 7→ (v1, . . . , vm−1, v).

The following lemma describes the simplest properties of the map.
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Lemma 3.1 In the above notation the following statements hold:
1. AζU = IUÂIU = IUÂ = ÂIU for all A ∈ W;
2. (Wv1,...,vm−1)

ζU ≤ ŴE,U whereŴ = Ŵ(m) and E= E[m−1].

Proof: Statement (1) is trivial. It follows from it thatWζU ≤ ŴE,U . On the other hand,(
Ivi

)ζU = I(v1,...,vm−1,vi ) = IU D{i,m} IU ∈ ŴE,U for all i ∈ [m− 1]. 2

Thus(Wv1,...,vm−1)
ζU = WζU [(Iv1)

ζU , . . . , (Ivm−1)
ζU ] ≤ ŴE,U .

For l ∈ [m] let us define another map

δm
l : Vl → Vm, (v1, . . . , vl ) 7→ (v1, . . . , vl , . . . , vl ). (9)

It is easy to see thatδm
l is an injection andδm

l (V
l ) (coinciding with the support ofD[l ,m] ) is

a cellular set ofŴ(m).
The important feature of the cellular algebraŴ(m) is the possibility to extend the algebra

W without changing its automorphism group. To show it set

W̄(m) = ((Ŵ(m)
)
1

)δ−1

.

whereδ = δm
1 : V → Vm is the injection (9) and1 = δ(V) is the cellular set (6). Clearly,

W̄(m) ≥ W and Aut(W̄(m)) = Aut(W) (see (3)). We say thatW is m-closedif W = W̄(m).
Each algebra is certainly 1-closed. However it is not the case form ≥ 2. In fact we will
show later that a non-Schurian cellular algebra cannot bem-closed for allm≥ 2.

Below we list some properties of the operatorsW 7→ Ŵ(m), W 7→ W̄(m).

Lemma 3.2 For all cellular algebras W,W1,W2 on V and positive integer m
1. W1 ≤ W2 impliesŴ(m)

1 ≤ Ŵ(m)
2 andW̄(m)

1 ≤ W̄(m)
2 ;

2. ̂(W1 ∩W2)
(m) ≤ Ŵ(m)

1 ∩ Ŵ(m)
2 , (W1 ∩W2)

(m) ≤ W̄(m)
1 ∩ W̄(m)

2 ;
3. the intersection of m-closed cellular algebras is m-closed;
4. (Ŵ(l ))δ

m
l ≤ (Ŵ(m))X for all l ∈ [m] where X= δm

l (V
l );

5. W̄(m) is l-closed for all l∈ [m].

Proof: Statement (1) is clear. (2) follows from (1). If̄W(m)
1 =W1 andW̄(m)

2 =W2, then
(W1 ∩W2)

(m) ≤ W1 ∩ W2 by (2). Since the inverse inclusion is obvious, we have (3).
Further, our definitions imply that

(Z(Sym(V),Vl ))δ
m
l ⊂Z(Sym(V),Vm), (W⊗ · · · ⊗W︸ ︷︷ ︸

l

)δ
m
l ⊂ I X(W⊗ · · · ⊗W︸ ︷︷ ︸

m

)I X.

whereX = δm
l (V

l ). As far asX is a cellular set ofŴ(m), (4) follows.
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It follows from statement (4) and the equalityδm
l ◦δl

1 = δm
1 (see (9)) thatW̄′(l )≤ W̄′(m) for

all W′. Applying it toW′ = W̄(m) we see that it suffices to prove statement (5) forl = m. We
will check that them-dimensional extended algebras ofW andW̄(m) coincide. Clearly, the
second contains the first. To prove the inverse inclusion setRj = PSj whereSj ={(i, j ) : i ∈
[m]}, j ∈ [m] (see (4)). A straightforward calculation in MatVm = MatV ⊗ · · · ⊗ MatV
shows that for allj ∈ [m]

RT
j AδRj = JV ⊗ . . .⊗ JV︸ ︷︷ ︸

j−1

⊗ A⊗ JV ⊗ . . .⊗ JV︸ ︷︷ ︸
m− j

, A ∈ MatV

whereδ is the map (9). Since the Hadamard multiplication in MatV ⊗ · · · ⊗MatV can be
done factorwise,

A1⊗ · · · ⊗ Am =
(
RT

1 Aδ1R1
) ◦ · · · ◦ (RT

mAδmRm
)

for all A1, . . . , Am ∈ MatV .

ThusW̄(m) ⊗ · · · ⊗ W̄(m) ⊂ Ŵ(m) by the definition ofW̄(m). 2

It follows from statement (5) of Lemma 3.2 that the cellular algebraW̄(m) is m-closed.
We call it them-closureof W.

The following proposition describes some relations between the notions ofm-closure
and Schurian closure Sch(W) of a cellular algebraW. It shows that in a sensēW(m) can be
interpreted as an approximation to Sch(W).

Proposition 3.3 For each cellular algebra W on V the following statements hold:
1. Aut(W̄(m)) = Aut(W) for all m ≥ 1;
2. W = W̄(1) ≤ · · · ≤ W̄(n) = · · · = Sch(W);
3. (W̄(m))

(l )= W̄(m) for all l ∈ [m].

Proof: Statement (1) is clear. Let us prove (2). The inclusionW̄(l ) ≤ W̄(m) for l ≤ m
is contained in the proof of statement (5) of Lemma 3.2. The equalityW̄(m)=Sch(W) for
m ≥ n follows from Theorem 1.3, since, obviously,s(W) ≤ n − 1 for all W. (Note that
Theorem 1.3 is proved in Section 5 independently of this assertion.) Finally, (3) coincides
with statement (5) of Lemma 3.2. 2

Proposition 3.4 Given a cellular algebra W on V and a positive integer m the standard
bases of the cellular algebraŝW(m) andW̄(m) can be constructed in time nO(m).

Proof: Since the standard bases ofW⊗ · · · ⊗W (m times) andZ(Sym(V),Vm) can be
found in timenO(m), the standard basis of̂W(m) (and so ofW̄(m)) can be found within the
same time due to the Weisfeiler-Lehman algorithm for constructing the cellular closure of
a set of matrices (see Section 1). 2

Remark 3.5 The time analysis of the Weisfeiler-Lehman algorithm done in [13] gives an
O(mn5m logn) upper bound for the time of constructing the algebrasŴ(m) andW̄(m). The
algorithm from [4] enables us to reduce it toO(mn3m logn).
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Propositions 3.3 and 3.4 show that the operatorsW 7→ W̄(m) (m = 1,2, . . .) define a
Schurian polynomial approximation scheme (see Section 1). This proves Theorem 1.1.

We complete the section by a statement being of use later. For eachR⊂ V × V set

XR = {(u, . . . ,u, v) ∈ Vm : (u, v) ∈ R}.

Proposition 3.6 Let W be a cellular algebra on V and m≥ 2. Then
1. ∀R⊂ V × V : R ∈ R(W̄) ⇔ XR ∈ Cel(Ŵ);
2. ∀X ∈ Cel(Ŵ)∀ i, j ∈ [m] ∃R ∈ R(W̄) : ((v1, . . . , vm) ∈ X ⇒ (vi , v j ) ∈ R)
whereW̄ = W̄(m) andŴ = Ŵ(m).

Proof: Below we writev1 · · · vm instead of(v1, . . . , vm). Let us prove statement (1).
Assume thatR ∈ R(W̄). Choose(u, v) ∈ Rand denote byS1, T, S2 the basis relations of̂W
containing the pairs(um,um−1v), (um−1v,um−1v) and(um−1v, vm) respectively. Clearly,
p(um, vm; τ) = 1 whereτ = (S1, T, S2). By the Path Proposition (Lemma 2.3) the equality
holds for all(u′)m, (v′)m with (u′, v′) ∈ R. SoT = I XR, whenceXR ∈ Cel(Ŵ). Conversely,
let XR ∈ Cel(Ŵ). Chooseum−1v ∈ XR and denote byS′1, R′, S′2 the basis relations
of Ŵ containing the pairs(um−1v,um), (um, vm) and (vm,um−1v) respectively. Clearly,
p(um−1v,um−1v; τ ′) = 1 whereτ ′ = (S′1, R′, S′2). By the Path Proposition the equality
holds for all points ofXR. It follows that R′ = Rδ whereδ is defined in (9). That is
R ∈ R(W̄).

To prove statement (2) we assume without loss of generality thati = m− 1, j = m.
Let X ∈ Cel(Ŵ). Choosev̄ = v1 · · · vm ∈ X and denote byR the basis relation ofW̄
containing the pair(vm−1, vm). By statement (1) we haveXR ∈ Cel(Ŵ). Set

S= (XR× X) ∩ E{m−1,m}

whereE{m−1,m} is defined in (7). Clearly,S ∈ R(Ŵ), din(S) = 1 and(vm−1
m−1vm, v̄) ∈ S.

So for anyv̄′ ∈ X there exists̄u′ ∈ XR such that(ū′, v̄′) ∈ S. If v̄′ = v′1 · · · v′m, then
ū′ = (v′m−1)

m−1v′m, whence(v′m−1, v
′
m) ∈ R. 2

4. High dimensional Weisfeiler-Lehman procedures

In this section we prove Propositions 4.1 and 4.2 from which Theorem 1.2 follows.
A map f from Vm onto [d] is called acoloringof Vm. Any set f −1(i ) ⊂ Vm is called a

color classof f . Let m ≥ 2. Denote byR f the partition ofV × V into the classes of the
form

Ru,v = {(u′, v′) ∈ V × V : f (u′, . . . ,u′, v′) = f (u, . . . ,u, v)}, u, v ∈ V.

Conversely, given a partitionR of V × V let us define a coloringfR of Vm by

fR(v̄) = fR(v̄
′) ⇔ ∀R ∈ R ∀i, j ∈ [m] : ((vi , v j ) ∈ R ⇔ (v′i , v

′
j ) ∈ R).
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In this notation for a cellular algebraW on V we set

A1(W) = W, Am(W) = [R f ], m≥ 2

where f is the coloring ofVm derived from f0 = fR(W) by the following procedure.

4.1. m-dim stabilization

Input: a coloring f0 of Vm.
Output: a coloring f of Vm.

Step 1.Setl = 0.
Step 2.For eachv̄ ∈ Vm find a formal sumS(v̄) =∑u∈V fl (v̄/u) where

v̄/u = (v̄1,u, . . . , v̄m,u) with v̄i,u = (v1, . . . , vi−1,u, vi+1, . . . , vm)

and

fl (v̄/u) = ( fl (v̄1,u), . . . , fl (v̄m,u)).

Step 3.Find a coloringfl+1 of Vm such that

fl+1(v̄) = fl+1(v̄
′)⇔ ( fl (v̄) = fl (v̄

′), S(v̄) = S(v̄′)).

If the numbers of color classes offl and fl+1 are different, thenl := l +1 and go to Step 2.
Otherwise setf = fl .

Proposition 4.1 Let W be a cellular algebra on V . Then̄W(m) ≥ Am(W).

Proof: We will show by induction onl that each color class offl is a union of the
cells of the algebraŴ(m). Then givenR ∈ R(W̄(m)), by statement (1) of Proposition 3.6
f (v̄) = f (v̄′) for all v̄, v̄′ ∈ XR and we are done.

By statement (2) of Proposition 3.6 and the fact thatW ≤ W̄(m) the above claim is true
for l = 0. Suppose it is true for allk < l . Let v̄ ∈ Vm. For eachu ∈ V set

Pu(v̄) = (v̄, v̄1,u, . . . , v̄m,u, v̄).

It is easy to see that the pathPu(v̄) from v̄ to itself is of the typeτ = (R0, . . . , Rm) for some
basis relationsRi ⊂ PSi , (see (4)) where

Si = {( j, j ), (i, i + 1) ∈ [m]2 : j 6= i, j 6= i + 1}, i ∈ [0,m].

Moreover, any(v̄, v̄)-path of the typeτ coincides withPu(v̄) for someu ∈ V .
Let v̄, v̄′ ∈Vm belong to the same cell of̂W(m). Then by the induction hypothesis

fl−1(v̄) = fl−1(v̄
′). Besides by the Path Proposition (Lemma 2.3)p(v̄, v̄; τ) = p(v̄′, v̄′; τ).
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If Pu(v̄) andPu′(v̄
′) are of the typeτ , thenv̄i,u andv̄′i,u′ belong to the same cell of̂W(m) for

all i . So by the induction hypothesisfl−1(v̄/u) = fl−1(v̄
′/u′). ThusSl−1(v̄) = Sl−1(v̄

′)
and consequentlyfl (v̄) = fl (v̄′). 2

Another implementation of them-dimensional procedure was described in [7]. We are
going to prove that this procedure constructs a cellular subalgebra of them-closure.

For i ≥ 1 set

AV,i = E[i−1] ◦MatVi =
∑

(v1,...,vi−1)∈Vi−1

Iv1,...,vi−1 ⊗MatV

whereIv1,...,vi−1 = Iv1 ⊗ · · · ⊗ Ivi−1. Clearly,AV,i is a subalgebra of MatVi closed under the
Hadamard multiplication and the Hermitian conjugation. Let us define a linear map

πi : AV,i+1→ AV,i , i ≥ 1,

by

πi

( ∑
(v1,...,vi )

Iv1,...,vi ⊗ Av1,...,vi

)
=

∑
(v1,...,vi−1)

Iv1,...,vi−1 ⊗
∑
vi∈V

Av1,...,vi . (10)

In these terms the procedure from [7] can be described as follows.

4.2. Procedure Bm (m≥ 1)

Input: a cellular algebraW on V .
Output: a cellular algebraBm(W) ≥ W.

Step 1.Construct the setRm = {R̂ : R ∈ R(W)} ⊂ AV,m and the cellular algebra

W(m) = [Rm, D{1,m}, . . . , D{m−1,m}
]

whereR̂ andD{i,m} are as in (8) and (5) respectively.
Step 2.For i = m− 1, . . . ,1 find sucsessively the linear spaces

W(i ) = πi (W(i + 1)) ⊂ AV,i .

SetW′ = [W(1)].
Step 3.If W′ 6= W, thenW:=W′ and go to Step 1. Otherwise, setBm(W) = W′.

Proposition 4.2 Let W be a cellular algebra on V and m≥ 1. Then Bm(W) ≤ W̄(m).

Proof: For i ∈ [m] set

Wi = E[i−1] ◦
(
D[i,m]Ŵ

(m)D[i,m]
)
.
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ThenWi ⊂ ϕi (AV,i ) whereϕi :AV,i → AV,m is the linear map induced by the injection
δm

i : Vi → Vm defined in (9). We will prove that

π ′i (Wi+1) ⊂ Wi for all i ∈ [m− 1]

whereπ ′i = ϕiπiϕ
−1
i+1 andπi is defined by (10).

A straightforward check shows that

π ′i (A) = D[i,m] E[m]\{i }AE[m]\{i }D[i,m], A ∈ ϕi+1(AV,i+1).

Soπ ′i (Wi+1) ⊂ Wi for all i . By the definition ofW(m) at Step 1W(m) ⊂ Wm. Therefore,

W(1) = π1 · · ·πm−1(W(m)) ⊂ ϕ−1
1 π ′1 · · ·π ′m−1(Wm) ⊂ ϕ−1

1 (W1) = W̄(m),

which completes the proof. 2

5. Proof of Theorem 1.3

In this section we prove Theorem 1.3. GivenW with s(W) ≤ m− 1 we will show that the
algebraW̄ = W̄(m) is Schurian.

By the hypothesis of the theoremWv1,...,vm−1 = MatV for some(v1, . . . , vm−1) ∈ Vm−1.
Denote byE the indecomposable component (in̂W = Ŵ(m)) of the equivalenceE[m−1]

for which U = Uv1,...,vm−1 is one of the classes. By statement (2) of Lemma 3.1 we have
ŴE,U ≥ (Wv1,...,vm−1)

ζU = MatU , whenceŴE,U = MatU . By statement (1) of Lemma 2.6
and statement (2) of Proposition 2.4

ŴE,U ′ = MatU ′ for all U ′ ∈ Vm/E. (11)

Statement (2) of Lemma 2.6 implies that

(Vm)E =
s⋃

i=1

Xi (12)

where Xi ∈ Cel(Ŵ) with U ′ ∩ Xi 6= ∅ for all U ′ ∈Vm/E. It follows from (11) that
|U ′ ∩ Xi | = 1 for all U ′ andi . In particular,s= n.

For anyU ′ ∈ Vm/E letϕU,U ′ : ŴE,U → ŴE,U ′ be the weak isomorphism from statement
(1) of Lemma 2.6 (withŴ instead ofW). By (11)ϕU,U ′ is induced by a bijectiongU,U ′ :
U → U ′, i.e.,ϕU,U ′(A) = AgU,U ′ for all A ∈ ŴE,U . Set

hU ′ = ζU gU,U ′ζ
−1
U ′ , U ′ ∈ Vm/E (13)

Clearly,hU ′ ∈ Sym(V) for all U ′. Moreover, by Lemma 3.1 and the definition of the iso-
morphismϕU,U ′ we have

AhU ′ = AζU gU,U ′ ζ
−1
U ′ = (IU ÂIU )

gU,U ′ ζ
−1
U ′ = (ϕU,U ′(IU ÂIU ))

ζ−1
U ′ = (IU ′ ÂIU ′)

ζ−1
U ′ = A



NEW HIGH DIMENSIONAL WEISFEILER-LEHMAN ALGORITHM 43

for all A ∈ W whereÂ = IV ⊗ · · · ⊗ IV ⊗ A (see (8)). Thus

hU ′ ∈ Aut(W) for all U ′ ∈ Vm/E. (14)

We are to show that givenR ∈ R(W̄) and(u, v), (u′, v′) ∈ R there existsU ′ ∈ Vm/E such
that (

uhU ′ , vhU ′
) = (u′, v′). (15)

Then it will imply by (14) that Aut(W) acts transitively on each basis relation ofW̄, i.e.,
the cellular algebrāW is Schurian.

Let R ∈ R(W̄) and(u, v), (u′, v′) ∈ R. Consider the following path

(u, . . . ,u, v)→ (v1, . . . , vm−1,u)→ (v1, . . . , vm−1, v)→ (u, . . . ,u, v).

Denote its type by(R0, R1, R2) whereRi ∈ R(Ŵ), i = 0,1,2. Clearly (see (4)),

R0 ⊂ P{(m−1,m)}, R1 ⊂ E, R2 ⊂ P{(m,m)}. (16)

By statement (1) of Proposition 3.6 the points(u, . . . ,u, v) and(u′, . . . ,u′, v′) belong to
the same cell ofŴ. So by the Path Proposition there exists a path from(u′, . . . ,u′, v′) to
itself of the type(R0, R1, R2). By (16) it is of the form

(u′, . . . ,u′, v′)→ (v′1, . . . , v
′
m−1,u

′)→ (v′1, . . . , v
′
m−1, v

′)→ (u′, . . . ,u′, v′)

for some(v′1, . . . , v
′
m−1) ∈ Vm−1, andU ′ = Uv′1,...,v

′
m−1

is a class moduloE. To complete
the proof it suffices to check thatuhU ′ = u′ andvhU ′ = v′. We prove only the first equality,
since the second one is proved similarly.

Since R1 ∈ R(Ŵ), the points(v1, . . . , vm−1,u) and (v′1, . . . , v
′
m−1,u

′) belong to the
same cell ofŴ. From R1 ⊂ E it follows that the cell coincides withXi for somei . Since
|U ∩ Xi | = |U ′ ∩ Xi | = 1 (see above) we have

U ∩ Xi = {(v1, . . . , vm−1,u)}, U ′ ∩ Xi = {(v′1, . . . , v′m−1,u
′)}.

By the definition ofgU,U ′ (see also Lemma 2.6) we see that(U ∩ Xi )
gU,U ′ = U ′ ∩ Xi . So

(v1, . . . , vm−1,u)
gU,U ′ = (v′1, . . . , v′m−1,u

′).

On the other hand, by the definition ofhU ′ (see (13))

(v1, . . . , vm−1, w)
gU,U ′ = (v′1, . . . , v′m−1, w

hU ′
)

for all w ∈ V . ThereforeuhU ′ = u′. Theorem is proved. 2
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6. Concluding remarks and open problems

There is a lot of problems concerning Schurian polynomial approximation schemes. We
concentrate here only on two of them.

1. Let S: W 7→ Sm(W) andT : W 7→ Tm(W) (m=1,2 . . .) be two Schurian polynomial
approximation schemes. We say thatS is reducible toT if there exists a linearly bounded
function f : N→N whereN={1,2, . . .} such thatSm(W) ≤ Tf (m)(W) for all cellular
algebrasW and allm. SandT are called equivalent if each of them is reducible to the other.
Theorem 1.2 shows that the schemesA andB (see Section 4) are reducible to the scheme
defined by them-closure operators.

Problem 6.1 Are all the three schemes equivalent?3

2. From the algorithmic point of view the Schurian polynomial approximation scheme
defined by them-closure operators is based on finding the cellular closure of a set of
matrices. This problem can efficiently (in polynomial time) be solved by the standard
Weisfeiler-Lehman algorithm.

Problem 6.2 Is the above problem inNC? In other words, can the cellular closure of an
n× n-matrix be found by nO(1) parallel computers in time(logn)O(1)?

(For the exact definition ofNC and related concepts see [11].) The main difficulty here is
that the cellular closure is defined by means of two binary operations (the ordinary matrix
multiplication and the Hadamard one) which do not commute with each other. Note, that
for each of them the problem of constructing the closure with respect to it is inNC.

Notes

1. Throughout the paper we assume that the unity of a cellular algebra coincides with the identity matrix of MatV .
In this case cellular algebras coincide with coherent algebras introduced in [9].

2. A counterexample was revealed in [1].
3. It was proved in the Electronic Journal of Combinatorics 6 (1999), #R18 that the schemeA is equivalent to the

scheme defined by them-closure operators.
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