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Abstract. Let w be an element of the Weyl group of,sh. We prove that for a certain class of elements
(which includes the longest elemeng of the Weyl group), there exist a lattice polytop¢ ¢ R‘™), for each
fundamental weight; of sh1, such that for any dominant weight= Y"I'_, & o, the number of lattice points in
the Minkowski sumAY = Zi"zl a Al is equal to the dimension of the Demazure modgjgx). We also define
alinear mapA® : R“™ — P ®y R whereP denotes the weight lattice, such that cBanx) = e+ " e A"
where the sum runs through the lattice poixisf A
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1. Introduction

In this paper, we present some results concerning the first of a two-part programme to
prove the existence of degenerations of Schubert varieti84.0f) into toric varieties (by
degeneration of a Schubert variety into a toric variety, we mean a flat deformation where
the generic fibre is a Schubert variety and the special fibre is a toric variety). This involves
the construction of the lattice polytope which in turn, in the second part of the programme,
will provide the toric variety into which the corresponding Schubert variety degenerates.
In this direction, Gonciulea and Lakshmibai [10] recently proved such degenerations for
Schubert varieties in an arbitrary minisc@¢ P, as well as the class of Kempf varieties in
the flag varietySL(n)/B. For an arbitraryG of rank two, this has been proved by one of
the authors [4].

Let us describe our results more precisely. Rix N* andK an algebraically closed
field of characteristic 0. Leb be a Borel subalgebra of,sh(K) andh c b a Cartan
subalgebra. Let;, i = 1,...,n, be the corresponding set of positive simple roots so
that (ozi,ozjv) = &; where(a;j); ; is the Cartan matrix, and le; be the corresponding
fundamental weights. Denote I8, P*, W, £(—) and=< respectively the weight lattice, the
set of dominant weights, the Weyl group which is just the symmetric grouaptaf letters,
the length function and the Bruhat order @h LetA € PT andw € W. SetV, to be
the finite-dimensional irreducible representation of highest weighy,; to be a non-zero
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weight vector of weightwA and E,, (1) to be theb-moduleU (b)v,,; which is called the
Demazure module [5] associatedwo SetW' to be the stabilizer of; in W andW the
quotientW/W'. EndowW; with the induced Bruhat order that we shall denote equally
by < and ifo € W, then we shall denote b(o) the induced length of, which is the
minimum of the lengths of representativessof

The representation theory of a semisimple algebraic g®ug closely related to the
geometry of Schubert varieties (in particuldy B) since the Demazure modules can be
realized as the global sections of line bundles over Schubert varieties. Degenerations of
Schubert varieties into toric varieties will allow us to study the geometry of the former via
toric varieties which are combinatorial.

LetA = ), awi be a dominant weight, then the dimensiorEf(1) is a polynomial in
the variables; of degreef(w) because the dimension of its dug) (1)* can be described
as the Euler characteristic of the ample line bur@e £5* over the Schubert variety
associated taw in G/ P, ([7, 18.3.6] or [2, 2.3]). Whereas, given convex lattice polytopes
A; in R“™  a theorem of Ehrhart [6] implies that under the condition that a lattice point
in the Minkowski sumA := Y, & Aj = {) ; av; wherev; € A;} is the sum over of &
lattice points ofA;, the number of lattice points in is a polynomial of degreé(w) in
the variables;. On the other hand, suppose that we have a degeneration of the Schubert
variety S, equipped with line bundle§,,, ..., £, into the toric varietyX equipped with
line bundlesLy, ..., £y. Then dimH%(S,, ®; £2%) = dimH(X, &) L£2%). But to say
that X is equipped with line bundles;, . .., £, is equivalent to having lattice polytopes
AY, ..., A¥ in R“™ such that dimHO(X, ®; £LZ%) is the number of lattice points in the
Minkowski sum>_""_, & A (for example, see properties B3, B4 of Section 2.3 in [19]).

These facts lead us to construct a polytadgefor each fundamental weighi; and then
we form the appropriate Minkowski sum.

We prove first in this paper the case where- wp, the longest element of the Weyl
groupWw.

Theorem 1.1 There exist lattice polytopes; ¢ R“™ i = 1,...,n, such that for any
A=Y, aw € PT, the number of lattice points in the Minkowski sam:= Y, & A;
is the dimension of the irreducible representation V

Polytopes satisfying Theoremli(although there was no mention of the Minkowski sum
decomposition, they do have a Minkowski sum decomposition) have been constructed using
Gelfand-Tsetlin patterns in [9, 12], by Berenstein and Zelevinsky [1] and by Littelmann
[16] via the combinatorics of Lakshmibai-Seshadri paths.

Our polytopeA, is different and it turns out that the toric variety associated to this
polytope is the same as the one constructed by Gonciulea and Lakshmibai in [10]. In
fact the Minkowski sum decomposition gives a direct link between lattice points and the
standard monomial basis (see [14, 17]) of the irreducible representation since we can prove
that a lattice point ofA; can be written as a sum ovieof g lattice points ofA;.

Furthermore, since standard monomial theory exists also for Demazure modules (and for
other simple algebraic groups), we believe that our construction can be generalized to any
simple algebraic grou@ as follows.
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Conjecture 1.2 Letw € W. There exist lattice polytopes” c R‘™ i =1,...,n,
such that for any. = Zi”:laiwi € P, the number of lattice points in the Minkowski sum
AY:= Y & Al is the dimension of the Demazure modulg(B.

As a matter of fact, the polytopes constructed in Theorem 1.1 are such that the vertices
{v:}:ew are indexed byV,. We believe thaiA!” of the conjecture can be chosen as the
convex hull of{v, },,, embedded (by a permutation of coordinatesRift”.

Indeed, we prove that this is true whencan be written in a certain way (see Section 7
for details). Unfortunately, this does not cover all the elements of the Weyl group exceptin
the case wher& = SL(2) or SL(3). By weakening to a notion called polytopes with
integral structure, one of the authors proved in [3] that one can construct a polytope with
integral structure for anw € W such that the number of lattice points in the polytope is
the dimension of the associated Demazure module. However, there is no Minkowski sum
decomposition and these polytopes do not provide directly toric varieties.

This paper is organised as follows. In Section 2, we construct for each fundamental
weight w; a lattice convex polytopé\; whose vertices are indexed by the ¥dt We
shall prove later in Section 5 tha; is triangulable by primitive simplices parametrized
by maximal chains. We then present an example in Section 3. In Sections 4—-6, we show
how, in the case where = wy, a lattice point in the Minkowski sun} " ; & A; can
be written as a sum overof g lattice points ofA;, and that these points exhaust the
dimension of the irreducible representatignwherer = Zi”:laia)i. Sections 7 and 8
contain a discussion of the case of Demazure modules where we specify and prove the
cases where the conjecture is true. We give another example in Section 9 and finally, in
Section 10, we present applications of our results concerning combinatorial descriptions of
weight multiplicities as lattice points of a polytope with rational vertices.

We shall use the above notations throughout this paper. Furthermosg, let, s, be
the reflections associated to the positive simple roots. FoNamyN, we shall endoviRN
with the following partial-ordering: leX, Y € RN be such thaX # Y, then

X < YifandonlyifY — X € RY

2. Construction of the polytopeA; for each fundamental weightw;

Let 1 <i < n be fixed in this section. Recall th&¢; can be identified with the subset of
W consisting of elements such thatws; > w for all j #i. Itis also well known thaW\i

is in bijection with the set of-tuples(ry,...,rj) suchthatO<r; <ro < --- <r; <n.
Namely, we can think ofV = S,,1 as the group of permutations on the &tl1, ..., n}.
Then the bijectionw — (rq, ..., rj)isgiven by{ry,...,ri} =w{0,1,...,i —1}).

The induced Bruhat order AW is then given by:

(re,....r) <(s,....8) & (1,..., 1) <(s1,...,8)

where on the right hand side, theuples are considered as element®of
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Note that in this notation, the smallest elementQsl, 2,...,i — 1) that we shall
denote sometimes simply by 1 when there is no confusion, and the biggest element is
(n—i+1,n—i+2,...,n), and that the length of the latteris — i + 1)i. In fact, the
minimal representative af;, ..., r;) is

S,S-1 - S15,5,-1 "S- S, S -1 S

wheres, ---s; = 1ifrj < j and its length is the sum overof r; — j + 1.

We shall fix a particular reduced decompositionugf. Namely, we use the lexico-
graphic minimal expressiotg = $155139S1 - - - ShSh—1 - - - S1. Notice that each minimal
representative ofV; can be written as a subexpression of this reduced decomposition.

Remark 2.1 We shall think of this a® blocks where block 1 is;, block 2 issysy, .. .,
blocknis s,Sy—1- - - S1.

Let us write the standard basis vectorsRA*® asepq with 1 < q < p < n. Let
1<i <n,and(ry,...,r;) be an element ofV;, we then define

Mptin

n
(M, ....1) = Z Z €pq € RY™0)

p=n—i+1lq=p+i—n

Definition 2.2 Letc: 1 > --- > 7, be a chain ilV,. We defineS. to be the convex hull
of the points{go(rj)}’j“=1 and we define\; to be the convex hull of the poin{®(7)}cw; .

Lemma 2.3

(a) The vertices oA\; are the only lattice points ir\; and they are indexed by the elements
of W.

(b) The mapp is order-preserving.

(c) Letcity > -+ > tn—it+1i > 1be amaximal chainin W The polytope Ss a simplex
of dimension(n — i 4+ 1)i and its volume id/((n —i + 1)i)!.

Proof: The first two assertions are direct consequences of the definitipn &for part
(c), notice that the pointg(ty), .. ., ¢(tn-it+1i) are linearly independent and1) is zero
in R‘@) . So & is a simplex. Sincep(ty), ..., ¢(tn_i+1i) can be obtained from the
canonical basis via a matrix (with integer entries) of determinant-1igthe volume ofs,
is1/((n—i+ i)l O

We deduce from our definition the following properties between the polytapes

Proposition 2.4

(a) The intersection ofA; and A is {0} whenever i~ j.

(b) Letx =3, 4 Xpq€pq € Ai, thenxpq =0if p <n—i + 1.

(€) If X = 3>, 4 Xpg€pq € Ai is such that  # O, then %y # Oforallt’ = t,t +
1,..., lsti—n-
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Proof: Assertions (b) and (c) are straightforward. So let us prove (a). We can assume
thati < j. Notice that the coefficient af,; for any non-zero element of; is non-zero
while it is zero for any element ak ;. Thus (a) follows. O

Leta = > awi be a dominant weight (thus eashe N) andV; be the irreducible
sl,;+1-module of highest weighit.

Definition 2.5 We define the polytopa, to be the Minkowski sun}_"_; & A;.

Since theA;’s are lattice convex polytopes, the polytopeg is also a lattice convex
polytope. We can now state our theorem in the case wietew,.

Theorem 2.6 The number of lattice points in, is equal to the dimension of,V
3. Example

The first interesting example is;sIWe writewy = 555 535S and we have, in terms of
minimal representatives,

Wi = {1, 51, %51, 851}, We = {1, 8, 592, 150, $15552, 2515352}
W; = {1, 3, 553, $1,S3}

We then obtain vig the following table where each row contains the coefficientsgfra:

S S Sy 4 L) S1

€11 €22 €21 €33 €32 €31
s 0 0 0 0 0 1 1)
S 0 0 0 0 1 1 2)
S1 0 0 0 1 1 1 ?3)
$ 0 0 0 0 1 0 0,2)
B 0 0 0 1 1 0 0, 3)
9 0 0 1 0 1 0 1,2)
$153 0 0 1 1 1 0 1,3)
SIS 0 1 1 1 1 0 2,3)
3 0 0 0 1 0 0 0,1,3)
$S3 0 1 0 1 0 0 0,2,3)
993 1 1 0 1 0 0 1,2,3)

The images of0), (0, 1), (0, 1, 2) are all(0, 0,0, 0, 0, 0).
Let us now consider the adjoint representation. The highest weightiisv;. One then
verifies easily by hand that a lattice point&f + Az is the sum of a lattice point at; and
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a lattice point ofA3. Hence a quick computation shows that the lattice points are the ones
in Ay andAjz together with 8 other points:

€31+ €33, €31+€33+ €0 E3n+ext+enten
€32+ €31 +€3+€», €32+6€3+E3+€En+en
€31+ €32+ 2633, €31+ 63+ 2633+ €, €31+ €30+ 2633+ €0+ €11

Thus there are 15 lattice points iy + A3z which is the dimension of gl
Remark thatpp(2) + ¢(0, 1, 3) = ¢(3) + ¢(0, 1, 2) is the only sum repeated here. This
can be seen to correspond to the tensor product decomposition

Vi, ® Vi = Vo, ® (Vo) = gly = sla @ Vo

4. Correspondence with semi-standard Young tableaux

LetA = Y|, aw be a dominant weight. Sé¥ be the disjoint union of th&V; and
W) = ]_[i”:l n?zlvvi. We can associate to an elemendtifi) via ¢ a lattice point of
A;. Namely, an elemertw;j); j of W(1) is sent toZi,j @(wij) in A,.
However this association is not necessarily injective (that is, a lattice point can be the
image of another elementiv(1)). We claim that with respect to a certain partial ordering
of W, there is a unique such element which is decreasing. At the end of this section, we
shall show that the set of lattice points corresponding to the elemeniginis in bijection
with the set of semi-standard Young tableaux of type
Let us first define our partial order ¥, denoted by, which extends the induced Bruhat

ordering inW,. Let(ry,...,r;) and(sy, ..., ;) be two elements ofV, then
(re,...,r) <(s, ..., (=L ..., =Lry,....r) <(1...,-Ls,....,8)
n—i n—j

where the elements on the right hand side afR"in

Remark 4.1 Using the notations above, if we have< s theni < j. Furthermore, there

is a unigue maximal elemeit, 2, ..., n) and a unique minimal eleme().

Lemma4.2

(a) The sedV is a lattice that is every pair of elements & have a well definethaxand
min.

(b) Ifr e W, se W; andi < j, then we havenin(r, s) € W, andmax(r, s) € W;.
(c) (MAX—MIN) Letr, s € W, theng(r) + ¢(S) = p(max(r, S)) + ¢(min(r, S)).

Proof: Letr = (rq,...,r;) be an element afy. By adding—1's on the left as above, we
can associate 1o, an elemenR = (Ry, ..., R,) of R".



LATTICE POLYTOPES FOR DEMAZURE MODULES 155

Definition 4.3 Letr, sbe elements ofV andR, Sthe corresponding associated elements
in R". We define migR, S) = (T, ..., Ty) whereT, = min(R,, §) and minr, s) the
element o)V associated to miiR, S) by taking away all the-1's.

We define mag, s) similarly.

One verifies easily assertions (a) and (b) from this definition. It suffices therefore to
check max—min.

Letr = (r1,...,ri)ands = (s, ..., sj) wherei < j. Then
n Mpti-—n Sp+j—n
e +e = > Y epnt Z Y e
p=n—i+1q=p+i—n p=n—j+1g=p+j—n
Mpti—n Sp+j-n Sptj—n
= Z D Gt Z D St Z D
p=n—i+1lq=p+i—n p=n—j+1lg=p+j—n p=n—i+1qg=p+j—n
Mptin Sp+j—n n—i Sp+j—n
= Z D et D, et D D en
p=n—i+1 \g=p+i—n g=p+j-n p=n—j+1lg=p+j-n
n min(r p4i—n.Sp+j—-n) n max( p+i—n,Sp+j-n)
= > X Gat > > e
p=n—i+1  g=p+i—n p=n—j+1  g=p+j-n
= @(min(r, s)) + ¢(max(, s)) O

We shall now state and prove our claim.

Proposition 4.4 Let6 = {6ij}i=1..n j=1,...a D€ an element afV(1). Then there exists a
unique elemeny: = {v5;} of W(1) such that

() vij < Yweifi <korifi =kand j<¢;

(i) X506 =2 eWip).

Before proving this proposition, let us remark that condition (i) says that

YYo= 2Py Y 2V, X 2V nena .y X Yn1 X0 X Yna,

This is similar to the definition for a Young tableaux of Lakshmibai and Seshadri ofitype
modulo liftings to the Weyl groupV, see [14]. As we shall see, our theorem says that this
is exactly the same definition.

Proof: We shall prove the existence by induction@n= Y , &. Itis clear that the
induction hypothesis holds fer= 1. (In fact, by max—min of Lemma.3, it holds equally
fora = 2).

Let us now suppose that the induction hypothesis holda fol.. Letr be maximal such
thata, # 0. By the induction hypothesis, we can suppose@hat 0 \ {65, } satisfies the
conditions (i) and (ii) of the proposition.
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We shall now divide’ into three disjoint totally-ordered sets. Let
Ex=1{6j16j <6a), E-=1{6j16j =64}
and
Eo = {6 | 6 and 6,5, are not comparable

Note that the elements &, are all inW;.

If Eqis empty, then we can insekt, in the sequence to obtain a totally-ordered sequence
and hence by rearranging the subscripts, we obtain an elemém(bf satisfying the
required conditions.

Suppose now the is not empty. Therd,,, is in neitherEL, E. nor Eq. Let¢ be the
maximal element irEy. By max—min of Lemma 4.2, replacirgandé,,, by max¢@, 6:4,)
and mir(¢, 6;5,) does not alter the sum via. Furthermore, if we leE’,, E. andEj be
the new partition as defined above relativé)tp = max(@, 4, ), then the cardinal oE;
is strictly less tharkg since mir(¢, 6;5,) will belong toE’..

Now repeat the same procedure ulgjlis empty and we have the existence sifigds
a finite set.

Let us turn to the uniqueness which is a consequence of the following lemma.

Lemma 4.5 Letr and s be two distinct elements of When there exist,kmy such that

one of the following conditions is satisfied

(i) the gm -coordinate isl for ¢(r) and the g -coordinate forp(s) isOforallm, < ¢ < k.

(i) the gm -coordinate isl for ¢(s) and the g,-coordinate forp(r) isOforallmy < ¢ < k.
Furthermore let us suppose th@} is satisfied(\we have obviously the same statement

with the roles of r and s exchanged whgi) is satisfied. Then we can choose k and

my such that for all te W, satisfying t < s, the gm -coordinate isl for ¢(r) and the

e¢-coordinate forp(t) isOforallmy < £ < k.

Proof: Letus denote = (r1,...,rj) ands = (s1,...,S). Sincer ands are distinct,
there existk such that eithery > s, or s¢ > r¢. Suppose we hawg > s (resp.s¢ > rg).
Sincery > & > k— 1 (resp.s > rx > k— 1), r (resp. s) has non-zero entries in the
(n —i + k)" block. By the definition of our embedding, it is clear that if we pyt= ry
(resp.my = &), then the conditions of (i) (resp. (ii)) are satisfied.

To prove the last statement, let us suppose that (i) is satisfied. Then, therk suididhat
re > S. Now lett € W, be such that < s. By Remark 4.1, we must have> j and hence
we can writet = (i, ..., tj) by adding—1's on the left. Sincé < s, we have, < s < rg.

It follows again from our embedding that we have our result by lettiRg= ry. O

We can now finish our proof. Leét andd’ = {6/;} be two elements iiV(1) satisfying
the conditions of the proposition. Lebe maximal such tha # 0. Therd,,, andey, are
maximal in¢ and¢’ respectively. I, # 6/, , then by applying the previous lemma, we
can suppose that there exiktsn, such that the entrgcy, is 1 fore(6;5,) and the entriesy,

for ¢(6/,,) is O for allm, < £ < k. Hence by the same lemma, the same entrie$¢q’§)
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are O for alli, j sincet/, is maximal ino’. It follows that}_; ; ¢ (6ij) — 3= ; ¢(8};) # 0

which contradicts the fact thatandd’ satisfy the second condition of the proposition.
Thus6ra, = 67, . Now by induction org, the sum of they 's, the elements, 6" must be

the same (the case= 1 is equivalent to the fact thatis an embedding). O

Thus we have proved what we claimed at the start of this section. Let us dendtéby
the set of elements W (1) satisfying property (i) of the proposition. Now given an element
6 in W(L)q, using the notationgy, ..., r;) for elements in\, we can arrange eack
as a row of numbers flushright, and stack them in order with the largest row on top, the
smallest row on the bottom, what we obtain then is a semi-standard Young tableau of type
A. For example, the sequen¢®, (0, 1), (0, 2), (0, 2, 3) corresponds to the semi-standard
Young tableau

0] 2

0

3
0|2
1
1

By the uniqueness proved in the proposition, we obtain a well-defined map/romy
to the set of semi-standard Young tableaux of typehich is obviously injective. On the
other hand, given a semi-standard Young tableau oftypes obtain an element ¢ (A)q4
by reading off the rows. It is clear that this is the inverse of the former map. Now by
Lemma 2.3, lattice points in\; are in bijection with elements &k, thus Proposition 4.4
says thatV(1)4 is in bijection with the set of lattice points iy, which can be written as
a sum over of g lattice points ofA;, we can hence state

Theorem 4.6 The set of lattice points ak; which can be written as a sum over i qf a
lattice points ofA; is in bijection with the set of semi-standard Young tableaux of type

Remark 4.7 In fact, the existence part of Proposition 4.4 can be proved with semi-
standard Young tableaux since it involves only max—min of Lemma 4.2 and not the explicit
embedding. The idea is to put the maximal entry of each column at the top row and then
use induction which is roughly what we have done.

5. Characterization of lattice points in A

Let A = Zi”:laiwi be a dominant weight. Recall from Definition 3.2 thaj is the
Minkowski sumZi”=1 a Aj, whereAq, ..., Ay are the polytopes associated to the funda-
mental weightsv, . . ., w, which were defined in Section 2. In this section we shall prove
the following theorem:

Theorem 5.1 A lattice point in the Minkowski su@:i”:la; Aj can be written as the sum
of & lattice points inA1, a; lattice points ofA, and so on.
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As in the previous section, denote by the union over all of W, equipped with the
partial order defined in the same section, and for any dominant wejglgnote byV(u)q
the set of elements i/ (u) satisfying property (i) of Proposition 4.4. Let= {6;; }i j be
an element 0¥V ()4, we shall denote bg,, (9) the convex cone generated fay6;;)};i ;-

Theorem 5.2 Let x € A;, then there exist a dominant weightand ad € W(u)q such
that x € C, ().

This theorem is a direct consequence of the following technical lemma.

.....

.....

p{j € R, such that
(1) o, € Wi,
(i) of) <o ifi <korifi =kand j<I.
(i) 35y Py = 2 - /
(V) 3y Y5 pieoi) = Yy X0y Bl e (o).
Proof: We shall prove the lemma by induction on the_; & .

The assertion is obvious when the sum is 1. So let us suppose that the sum is strictly
bigger than one. Ldtbe maximal such tha > 0. By the induction hypothesis, we can

assume thdioij li=1,..1: j=1...a \{01a } satisfies (i) and (i) of the lemma. For simplicity we
shall denoter,, by o andq = pia, -

If o =ojforalli=1...,1,j=1,...,5 orif o = 0j for somej < g — 1, thenwe
are done.

So let us suppose the contrary. Then there existso.g minimal such that # 7. Let
K = ors be maximal such tha:= ", pj < g. Denote bym;; = min(o, oij) € W
and byM,’ = max(, oij) € W. Note that we have

MIIJ :MI"I*1>...EM|Cd>0>mij Z e 2z Mg

Now using repeatedly max—min of Lemma&4we obtain:

| &
Z Pij¢(oij) = Z Pij ¢ (oij) + Z Pij ¢ (0ij)
i=1 j= 0ij <T gij =K
+ > pie) +¢©0) + (@ — P)(o)
= Z Pij ¢ (oij) + Z Pij ¢ (0ij)

+ 3 pilemip) +e(M)) + prsek) + (@ — Pp(o)

T=0jj <K
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Now if prs <q — P, then we must have = oy 5 1. Consequently, we have
g i
Zpij¢(0i1)= Z pij (oij) + Z pij (0(Mij) + (M) + (@ — P — prs)g(o)

| -
i=1j=1 0jj <T T=20jj 2K

Thus we obtain a chain

M|rs>"'iM|Cd>U>mrsimr,sfli"'imc,d>‘Uc,dfl>"'><711>‘1

from which we can compress into a chd;} wherei = 1,...,landj =1,....&
satisfying the required properties of the lemma.
If prs >q— P, then:

aj

Z Pij¢(oij) = Z Pij ¢ (0ij) + Z Pij ¢ (0ij)

|
i=1 j= 0jj <T aij >K

+ Z pij (¢ (mij) + (P(Mlij))

+ (@ — P)(pk) +¢(0)) + (prs — (@ — P)o(k)

= Z Pij ¢ (0ij) + Z Pij ¢ (0ij)

0jj <T aij >K
+ Z pij (o (mij) +<P(M|ij))
Tf“ij <K

+(- P)((p(mrs) + w(ers)) + (prs — (@ — P)o(x)

Thus we obtain a chain
Olg—1> ">K>Mg =My 1>:-+>Mg>0cd-1""°> 011> 1

from which we can compress into a chd;} wherei = 1,....landj = 1,....&
satisfying (i), (i) and (iii) of the lemma (look at the coefficents). Therefore we have

ai [

D i) => > piee)+ > pie(M?) + (@ — P)o(M*)

|
i=1l j= i=1j=1 T=20jj <K

We now observe that the length of the remaining elemMifts . .., M/S are strictly greater
than that ofo. Thus we can repeat the same reasoning and the lemma is proved because
there is a maximal element \y. O

Corollary 5.4 The polytope); is triangulable by primitive simplices of dimensiam—
i + Di.
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Proof: Recall from [11] that a simplex is called primitive of dimensigrif its vertices
are lattice points and its volume igd!.

It is clear from the proof of the preceding lemma applied to the sequignde_1. a
thatA; is the union of all thes, wherec is a chain inW; (see Definition 2.2). Moreover, if
c is a (strict) subchain dof, then&. lies in the boundary o&. Since by Lemma 2.3% is
a primitive simplex of dimensiotn — i + 1)i whenc is a maximal chain, to show tha;
is triangulable by primitve simplices, it suffices to show that the interior of any two distinct
simplicesS, and S do not meet.

Consider two chains: o1 > --- > o, = 1 andc: 7; > --- > ty > 1. Suppose that the
intersection of the interiors & and<; is not empty and tha® belongs to this intersection.
We can therefore writ® as (recall thap(1) = (0, ..., 0) € R¢"0)

J4 m
Y piee) =Q=) aw(m) ()
j=1 k=1

wherep;, gk €]0, 1[andpr +-- -+ pe <1, 0h+---+0m < 1.

Assume that; # t1. Writingop = (s1,...,5) andty = (i3, ..., t). By Lemma 4.5,
there exists a coordinaggy which is non-zero on the left hand side(e§, whereas itis zero
on the right hand side (becauggis maximal in the chair’). So we have a contradiction
and therefore; = ;.

Without loss of generality, we can suppgse> .. We can then rewritéx) as follows:

4 m
(P1— (D) + ) Pie(0) = Q' =Y qp(m)  (+%)

j=2 k=2

Consequently, we must hay® = ;. Now by repeating the same argument (or use
induction on¢ 4+ m) on (x%), we conclude that = m, p; = g; ando; = ; for all
j=1,...,¢ Thatisc = c¢'. Thus the corollary is proved. a

Proof of Theorem 5.1: Suppose that is a lattice point ofz:zlai Aj. Without loss of
generality we can assume tteat£ 0. We can writex = X; + - - - + X, where

li
X = pi1¢(0i1) + - - + Pir@(oir;)  with pjj > Oandz pij =g

j=1
whereo;; € W;. By Theorem 5.2, we can assume thatis a strictly increasing sequence
of elements o).

If r =1, thenpy, = a and sox = g ¢(or,) which implies tha — x is a lattice point
of Vi laA.

If rj > 1, then by Lemma 4.5, there exists a coordirggesuch that the, g coordinate
of x is equal topy,. So py, is a positive integer and — py, (o) is a lattice point of
YiZiaAi + @ — pr)A.

Thus, in both cases the assertion follows by inductiondn, a;. O
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6. End of proof of Theorem 2.6

By Theorem 51, an integral point imy; is a sum over of g lattice points ofA;. Hence

by Theorem 4, the set of lattice points af; is in bijection with the set of semi-standard
Young tableaux of typ&. Now by a classical result from the theory of invariants (see for
example [8] or [18]) that the number of semi-standard Young tableaux ofitypexactly
the dimension of the gl;-moduleV,. Thus Theorem B is proved.

7. The case of Demazure modules

In the previous sections, we explained how to construct for each fundamental weight a
polytopeA; whose vertices are indexed by the¥ét LetW" be the sefo e W, | 0 < w}
wherew is the class ofv in W;. Then we can define the polytope” to be the convex hull
of the set of vertices oA; corresponding to the s&¥*. It is clear that the vertices af”
are indexed by the s&t/”.

We would like to embedA” in R*™ in such a way that given a dominant weight
A = ) Gwi, the number of lattice points ih; ¢; A" is the dimension of the Demazure
moduleE,,(1). For somew we can construct such an embedding. In this section we shall
describe this embedding and explain why it works.

Recall thatW is considered as the permutations of the {€etl, ..., n}, with simple
transpositions = (i — 1,i). Consider the unique factorization of a permutatiore W
in the form

w = S(1, ¢1)s(2, Cp) - --s(N, Cy)

where we denots(a, b) = s3%-1---S% ands(a,a+ 1) = 1. Thenc; is the cardinal
of the set{d such thatd < w=(j), w(d) < j}. It follows that there exisk € N*,
l<ayy<ap<---<a<nandl<b; <ajforallj=1,..., ksuchthat

w = s(ay, by)s(ay, by) - - - s(ax, bk)

Note that we havayg = s(1, 1)s(2, 1) - - - s(n, 1). We shall use this notation in this section.

Definition 7.1 Letd < e be positive integers. We shall call the subexpressieg, by)
-+ - S(ae, be) Of w, a part if the following conditions are satisfied:

() @+ 1< byforallm> e,
(i) ag.1+1l<byforalld <mc<e.

A part ofw is connected if it is not the product of two distinct partsuof

It is clear thatw is the product of connected parts, say= P --- P, and that when
1<i #j <I, thenP commutes withP;.

Theorem 7.2 Suppose thatv € W is either the identity or else each connected part
S(ag, by) - - - S(ae, be) Of w satisfies one of the following conditions
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() by =bgys > = be.

(i) ag=bg < agr1 =bgs1 < -+ <@g =De,

Then for each,ithere exists an embedding of A in R'™ such that for any dominant
weighth = >, Giwj, we haveCard AY NZ‘™) = dim E,, () whereA? = Y. cip” (AY).

Remark 7.3

(1) As remarked by one of the referees, there is no obvious relation between the set of
Kempf elements (for the definition of Kempf elements, see [13]) and the set of
whose connected parts satisfy condition (i) or (ii) of the theorem. Note that in the case
of sls, all the elements of the Weyl group satisfy the conditions of the theorem, while
5 is not a Kempf element.

(2) Inthe case of | there are exactly 7 elementsWiwhich satisfy neither of the 2 condi-
tions. Namely theyarg(1, 1)s(3, 2),s(2, 1)s(3, 3),s(2, 1)s(3, 2),s(1, 1)s(2, 2)s(3, 2),

s(1, 1)s(2, 1)s(3, 3), s(1, 1)s(2, 1)s(3, 2) ands(1, 1)s(2, 2)s(3,1). However, a case
by case analysis shows that, by using the same construction, the theorem is true in these
cases.

(3) Leti be a dominant weight. i’ = w moduloW,, the stabiliser oh, thenE,, (1) =
E. (A). Therefore, if we can find & satisfying the conditions of Theoren®7 then the
number of lattice points imAY is equal to the dimension d&, (mA) for anym € N.

In particular, such elements can always be found in the case of fundamental weights
(that is, when the stabiliser & for somei).

Let us fixw = s(ag, by)s(ay, by) - - - s(ak, by).

Let us make the idea behind our embedding more precise. Bificethe convex hull of
its vertices and that the vertices are in one-to-one correspondence with the elenvétits of
we simply need to specify the image of the vertex corresponding to an elemem”,
denoted byy” (o). We have

o=(1,....,r)=s,n—i +Ls(ro,n—i+2)---s(rj,i).

The following description ofp” (¢) may seem vague, but with the example that follows
it will become more transparent. We shall index the standard basig®f using the
expression o, that is, we write the standard basiseag wherep = 1,..., kandq =
bp, ..., ap. Consider the rightmost subexpressioruoidentical to the above expression
of o. Then we define the coefficient efq of ¢ (o) to be 1 if the index belongs to this
subexpression, and zero otherwise.

Let us clarify all this with an example. Lat = 5,555 = S(2, 1)s(3, 1) be an element
of the Weyl group of gl. It satisfies condition (i) of Theorem 7.2. We have

W = {1, 51, 981, 951}, Wy = {1, S, %, 19, 1%, 515352}
Wy = {1, 3, S}

According to the discussion abowg? (1) is the zero vector for any. To specifyp}’ (s1),
we “embed”s; as right as possible in the expressigs;S:ss;, SO we getp}’(s) =
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(0,0,0,0,1). Similarly, we “embed”s,s; as right as possible i&,$;%35,5;, and we get
e (2s1) = (0,0,0, 1, 1) and so forth. Hence, we obtain the following table.

©

S5
8BS

32
1S
S13%
$51%3S
$3

$S3

P O P OO OO O o o | ¥
OO P PP OO OO Ool&
H B PP OPRPROTUPROOI|E
co RrRrRPrRPrPRPR B R oO|®
O O OO0 o0 O r k Bk

Although it is easy to describe the imagecofn this way, this description needs to be
formalised so that we can prove that it works.

Definition 7.4 Letw = s(az, by)---s(a, by). Definep; = (pi...., p) by reverse
induction (i.e., starting from and going down to 1). Setf,; = +oo, then

max{l | b <j <a, | <pj,} ifitexists
p; = .
J -1 otherwise

In other words, if we writal; = s(@;, bj), thenp! is the biggest integdrsuch thatg
occurs inu; (orinuuy - --uk). And pi[l is the biggest integéf such that _1S appears
as a subexpression ofu.;1 - - - Ux. And so on.

Forinstance, letuslook atthe example above where wedet,; s, 55,5 = (2, 1)s(3, 1).
Here we havey = 2,b; = 1,a, = 3, b, = 1. Thus according to the definitign = (2),
p2 = (1, 2), p3 = (1,1, 2). Note that ifw = wp, thenp; = (n—i +1,...,n).

Remark 7.5 Note that the class ab in W isw = (0,1,2,...,1 — 2, ag, ..., ay),
wherel is maximal such thap} = --- = p|_; = —1. Therefore an elementy, ..., r;) of
W isinW" ifand only ifr,_y =1 — 2 andr; < ap forl < j <i.

Now we can formalise the descriptiongf given above. Letv = s(ay, by) - - - s(a, by)
and let us write the standard basisRf™) aseyq with p = 1,...,k andq = by, by +
1,...,ap. We define the map” : W* —> R‘™ by sending

(1, ..., 1) —> Z Z €pq

p=pi I=a=n
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Definition 7.6

(i) We define, by abuse of notation,” to be the convex hull of the image @ via ¢".
(i) Let » =Y, ciwj be a dominant weight, then we defing to be the Minkowski sum

n
i1 GAP.

8. Proof of Theorem 7.2

We shall first prove that the conditions (i) and (ii) of Theorem 7.2 give nice properties on
pi. Then we shall define a partial order on the unionAgf similar to the one given in
Section 4. Finally, we prove Theorem 7.2 by showing that there is a one-to-one corre-
spondence between lattice pointsAf and the standard monomial basis of the Demazure
moduleE,, (1).

In this section, we shall fix an elememwt= s(ay, by) - - - s(ax, bx) of W which satisfies
the conditions of Theorem.Z. By definition, non-negative entries pf are distinct. We
shall denote byB(p;) the set of non-negative entriesmt

Lemma8.1 Letus suppose that(B;) is not empty and letjuresp. v;) be minimal(resp.
maximal) in B(pj).
(i) The element@y,, by,)s(ay +1, bu+1) - - - S(ay, by, ) occurs(as a subexpressigrin a
connected part ofy.
(i) The set Bp;) is a set of consecutive integetbatis B(p;)) = {m e N* | uj < m < v;}
where y andv; are as defined ifi).
(iii) Ifi < jand B(p;) is non-emptytheny; < vj.

Proof: Assertion (i) is a direct consequence of the definition of a connected part.
By definition, B(p;) C {1,...,k}. Let us suppose that there exists> 1 such that
r € B(pi) andr — 1 & B(p;). To prove (ii), il suffices to show thatis minimal in B(p;).
There existy such thatr = p'J Hence, by the definition qgf;, we haveb, < | < &,
and that eithej —1 <b,_;ora_; < j — 1.
Ifb —1<j—1<Db_3thenb_; > b.. We are therefore in a connected partuof
satisfying condition (i) of Theorem 7.2. It follows thp'} ,=-1
Ifa_1 <j—1,thenj—1>gforalll =1,...,r—1. Itfollows agamtha'pJ ,=—1
Consequentlyp _, = —1in both cases and therefmes minimal in B(p;).
Finally, for (iii). Suppose that; < v, thena,; < a,. Sincev; = pl andv; = pJ,We
would have

b, <i<j<a, <a,

Thereforev; p]j > v;, contradiction. o

In view of the lemma, we defing(p;) to bes(ay,, by )s(ay +1, by, +1) - - - S(ay,, by). By
part (i), s(p;) occurs in a connected part of
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Corollary 8.2 Leti < j be such that Bp;) and B(p;) are not empty. Letiy v, uj, v;

be as defined in Lemn@&l. Then we have one of the following three possibilities

(i) s(pi) and gp;) both occur in a connected part af which satisfies conditiofi) of
Theorem7.2. Furthermorev; = v;.

(i) s(pi) and g(p;j) both occur in a connected part af which satisfies conditioi) of
Theoren.2. Furthermore v + j —i = vj, Uy = uj.

(iii) s(pi) and gp;j) occur in different connected partsof Furthermore this implies that
i<janda, +1<bforallu; <I <vj.

Example 8.3 Let us look at some examples:

(1) Letw = wp, thenB(pij) ={mMeZ |n—i+1l<m=<njandsouyi =n—i+1,
vji = N.

(2) Letn = 3 andw = s(1, 1)s(3, 1), thenB(p1) = {2}, u1 = vy = 2, B(p2) = {1, 2},
U =1,v, =2, andB(pg) = {2}, U, = vp = 2.

We shall now define a partial order oh® := [ [, W".
Letr =(re,....r) e W”, r'=(q,...,rH) e Wj“’ withi < j. And letu;, vi, uj, vj be
asinLemma8.1.

Lemma 8.4 Suppose that(®;) and gp;) both occur in a connected part of which
satisfies conditiofi) of Theoren¥.2, we definamax(r, r’), min(r, r’) as in Sectiod. Then
maxr,r’) € ij andmin(r, r’) € W".

Proof: From Section 4, we know that méxr’) € W; and min(r, r’) € W;. So we only
need to show that they are W;” andW"” respectively.
Letd(i) = vi — u; + 1. By Remark 7.5, we can write

r = (0, 1,...,i —d(l) —1,ri_d<i)+1,...,ri)
and
r'=(0,1,...,j—d(j) — 1,rj_d(j)+1,...,rj).
By Corollary 8.2,] := B(pi)NB(pj) is the set of integers between ntax u;) andv; = v;.
Letl € I, then sincep| = v = vj = p/, there existsn such that = p_,, = p]_,. It
follows fromRemark 7.5thattm—1 <ri_p, <gand—-m-1<j-m-1< rJf_m <aq.

To finish the proof, we shall showtt'leg;ﬂ-fi >rpforallm < max(i —d(i), ] —d(j)).
If j —d(j) <i—d(),thenl = B(p;) C B(p;). Sincej > i, we obtain by inspection

thatrp ; j>m+j—i—-1>m-1=ryforallm=i—d().
Ifi—d(@) < j—d(j), theni < jandl = B(p;) is a strict subset oB(p;). Note that
P|_gj) = —1. We claim thaj — d(j) > ay, 1.

Let us prove our claim. If we have—d(i) < j —d(j) < by,_1, then pi[d(ml =-1
since we are working in a connected part satisfying condition (i) of Theor2mBut this
will imply that B(p;) has at mosti(i) — 1 elements which is absurd.
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So we havg —d(j) > ay,-1. It follows from the above expressions forandr’ that
m=m-1>ay 1—(j —d(j) —m) > amyy—j > myi_j

forall j —i +ui <m<j—d(j).
Lastly,if j =i <m < j —i4uj,thenrpioj =m+i—j—-1<m-1=rg. Hence
our proof is complete. O

Lemma 8.5 Suppose that@®;) and Sp;) both occur in a connected part af which sat-
isfies conditiorii) of Theorenv.2, we definenin(r, r’) := (my, ..., m;) andmax(r, r') .=
(M4, ..., M) as follows
(i) mi:=min(ry,r)) and M := max(r;,r{) siu; <I < v;;
(i) m :=r{and M :=r otherwise.

Thenmax(r, r’) e W andmin(r, r’) € ij.

Proof: By Corollary 8.2, := B(p;) N B(pj) is the set of integers between = u; and
v = vj +1i — j. Since we are working in a connected part satisfying condition (ii) of
Theorem 72, we can write as in the previous lemma:

r = (0, 1,...,i —d(i)—l, ri_d<i)+1,...,ri)
and
r,:(o,l,...,i —d(i)—1,ri/7d(i)+l,...,I’i/,...,l’]{)

wherem — 1 < rm, r;, < m. Itis now clear that max, r’) € W and mir(r, r’) Wy
O

Definition 8.6 If B(pi) N B(p;j) is not empty, then we define maxr’) and mirn(r, r’)
according to the lemmas above. On the other handxifj and B(p;) N B(p;) is empty,
then we define max, r’) = r’ and mir(r, r’) = r. Notice that ifB(p;) is empty, then\*
has only one element and therefore this definition is well-defined.

Moreover, we define a binary relatief, on W by:

r <, r'ifand only if maxr,r’) =r"and minr,r’) =r
where here, we do not assume that j.

Remark8.7 Wheni < j andB(pi)NB(p;) is empty, the binary relation=<,, r’ coincides
with the partial ordering defined in Section 4.

Example 8.8

(1) Letw = wo, then this definition is the same as the one defined in Section 4.
(2) Letn = 2 andw = s(1, 1)s(2, 2), thenW;” = {1 = (0),s1 = (1)} andW}’ = {1 =
0,1),s = (0,2), 515 = (1, 2)}. We have therefore,

0,1)<(0,2) <(1,2) < (1,0, 1) < (0,2 < (0), (0) < (1)
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and max(0), (1, 2)) = (1), min((0), (1, 2)) = (0, 2). Note that the maximal element
is (1).

Lemma 8.9 The binary relation=,, defines a partial ordering om/*. Furthermore
together with the operationmax and min, it defines a lattice structure oMV* (see
Lemm&d.2).

Proof: The only point which is unclear is transitivity. But by Corollar8if s(p;), s(p;)
ands(p;) are in the same connected part, then eithee vj = vc oru; = uj = ux. The
former is just an analogue of the partial ordering in Section 4. The latter can be verified
easily using Lemma 8.4. Finally, the fact that the operations max and min induces a lattice
structure onV" is clear from the definition. O

Theorem 8.10 Leti = Z{‘zl Ciw; be a dominant weight. Then a lattice pointAy can
be written as the sum of dattice points inAY, ¢, lattice points inA} and so on.

Proof: This theorem is the analogue of Theorem,%nd it can be proved similarly.
The key point is that the proofs of Theorenifnd Theorem 2 only require a partial
ordering equipped with a max—min operation satisfing Lemma 4.3 &ndihe analogues
of Lemma 4.3 and & can be easily shown. O

Example 8.11 Let us first look at example 2 of8. Considetw = 5,5, = s(1, 1)s(2, 2).
It satisfies condition (i) of TheoremZ2.

We obtain immediately thai; = (1) andp, = (1, 2). As above, we have in terms of
minimal representatives,

W = {1, 5}
Wy = {1, , 519}

We then obtain vig,” the following table:

S1 S

€11 €22
s 1 0 (1)
S 0 1 (0, 2)
S1S2 1 1 1,2)

The right most column corresponds to the notations of the elemem®’inThe images
of (0, 1) and(0) are both 0.

If we consider the adjoint representation, then the highest weight i w, and one
verifies easily by hand that the lattice pointsAY + AY are the ones im\} and AY
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together with the point&; + e,,. Thus the number of lattice points is 5 which is exactly
the dimension of the Demazure modlg (w1 + wy).

Note thatp}’ (1) + ¢35 (0, 2) = ¢;’(0) + ¢35 (1, 2). Again this can be seen to correspond
to the tensor product decompositiontefmodules.

We prove the following key lemmas. As before, werlet (rq, ..., r;) € W* andr’ =
(ry,....r) e Wy’ withi < j. Recall thatw = s(ay, by) - - - s(a, by).

Lemma 8.12 Suppose that@®;) and p;) both occur in a connected part of which
satisfies conditiofi) of Theoren¥.2. Thenr <, r’ if and only if there exist i< r’ < win
W such that the class of(resp. r) in W* (resp. W) isr (resp.r’).

Proof: ByLemma 8.4, the partial ordering,, coincides with the one defined in Section 4.
It follows that the “if” part has already been proved using semi-standard Young tableaux.
Now suppose that <, r’, we define

r::s(ri_ui+ui,i — Vi +ui)s(ri_vi+u‘+1,i — v + U + 1) ce8(ri, i) e W

where we les(a — 1, a) to be the identity inV, and

!/

r = 8(r_y s J = V) FU5)S(H 10 = 0j U+ 1) -8, ) € W if Ui > v
andifu; < uj, we set

o= S(fiyrus | = v 4 U)S(Hi—ypu1, | — v+ U 4+1) - S(r_, 4y s
j—vp4uj)--s )

Note thatv; = v;. In the first case, it is easy to see that the clags of W; isr’. For the
second, we use the fact that, u;—1 < j — vj + u; — 1 (see the proof of Lemma 8.4).
Moreover, these are clearly reduced expressions. $isGer’, ri—m < r;_, for all mand

we haver <r’ < win W as required. O

Lemma 8.13 Suppose that(®;) and gp;) both occur in a connected part af which
satisfies conditiorii) of Theorenv.2. Thenr’ <, r if and only if there existT<r < w
in W such that the class of(resp. r) in W (resp. W) isr (resp.r’).

Proof: Supposethat <, r. Thisimpliesthat—1 <r/ <r <lIforl =i—vi+u;,...,i
(see the proof of Lemma 8.5). Note that here= syS11---S; wheret” < j is minimal
such thatr/ = t’ andr = §S41---5 wheret < i is minimal such that; = t. In

particulart < t’. We shall simply define’ :=r" = sS41---Sj, I :=5S41---SS+1--*§j
andr’ <r < w as required.

On the other hand suppose tha r < win W. As above, we have' = s/S41- - - Sj
wheret’ < j is minimal such that; = t’. Recall that we are working in a connected part
satisfying condition (ii) of Theorem.Z.

Ifi <t/,thenl —1=r/_,forl <i,andsa <r,. We then have’ <, r.
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If t' <i, then sinceg’ < r’ <r, we havesys41---Sj, and consequentlgSy1 - - - §
can be written as subexpressions of a reduced expressionltdollows thatr’ <r. DO

Lemma 8.14 Suppose that(®;) and gp;) occur in different connected parts. Then
r <, r’ifand only if there exist < r’ < w in W such that the class of(resp. r) in W*

(resp. W’) isr (resp.r’).

Proof: By Remark 8.7, the partial ordering,, coincides with with the one defined in
Section 4. It follows that the “if” part has already been proved using semi-standard Young
tableaux.

Since we are working in different connected parts, and distinct connect parts commute,
r andr’ commute also. Therefore if we define=r andr’ = rr" in W. By definition, we

always have <r’ < w. O
Corollary 8.15 Letrq,..., rybe elements oV suchthat, <,, --- <, rm. Thenthere
exist litings , ..., r;m in W™ such that the class offisr; (in the appropriate W) and

n=<--=rnm

Corollary 8.16 Letx be a dominant weight. There exists a bijection between the set of
lattice points ofA}’ and the standard monomial basis of the Demazure modyle Hsee
[14, 17)).

Proof: We can prove an analogue of Propositiod.4Using this and TheoremB), we
can write a lattice point i\’ as the sumzim:lri such thatr; € WY andry <, ro <,

- <y I'm. Corollary 815 then implies that the set of lattice pointsA} is in bijection
with the standard monomial basisBf, (1). O

Example 8.17 In the case of example 2 of® the reader can verify that the three chains
can be lifted as follows:

1399 299,12% 29,9 5%

and there are no liftings of (0) andr’ of (1, 2) such that’ <.

9. An Example

Let us consider a slightly more complicated case.ihet 515551 = S(1, 1)s(3, 1) be an
element of the Weyl group of gl It satisfies condition (i) of Theorem2. In this case, we
havep; = (3), p2 = (1, 3) andps = (-1, —1, 3). Thus,

W' = {1, 51, 51, S3%51}

W' = {1, 8, 8%, 19, $1S3%2}

W3' = {1, sg}
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As before, we compute the following table:

Sl 3 S Sy

€11 €33 €32 €31
S1 0 0 0 1 1)
91 0 0 1 1 )
SB9S1 0 1 1 1 3)
S 0 0 1 0 0,2)
B 0 1 1 0 0, 3)
S1S2 1 0 1 0 1,2
S1S3S2 1 1 1 0 1,3)
3 0 1 0 0 0,1,3)

The reader can verify for example for the adjoint representation as in Section 4 that the
number of lattice points in} + AY is the dimension of the Demazure mod&g(w; + w3)
which is 7.

10. Some applications

We shall apply our results in this section to obtain a combinatorial description of the weight
multiplicities of a Demazure module, and we also present a polytope which is closely
connected to the weight.

Letd = Zi”:laiwi be a dominant weighty = s(ay, by) - - - s(ax, bx) be an element of
W satisfying the conditions of TheoremZ7and denote byn’ (1) the multiplicity of the
weightu in E,, (A).

Let epq be the standard basis as in Section 7 and = 1, ..., n be the set of simple
roots as in the introduction.

Definition 10.1 We define a linear map
A R™ — PRz R=:Pg

by sendingepq t0 «g.
We shall denote byA? the affine map. — A” from R‘™ to Pg.

Theorem 10.2 The character of the Demazure modulg(E) is given by

charE, () = e ) e '™
X

where the sum runs through the lattice points xAgf.
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Proof: Letu € P. To prove the theorem, it suffices to prove that
w w w w -1
my (u) = CardZ“™ N AY N (AY) ()

Recall that the weight of a standard monomial of tygde the weight of the corresponding
weight vector inE, (1) (see [17, 14]). Therefore it suffices to show that for a lattice point
x of AY, AY(x) is the weight of the standard monomia{x) corresponding tx as in the
proof of Theorem 2.

Let x be a lattice point ofA}. According to Proposition .@, we can find{o;j}, i =
1,....,nandj = 1,..., g satisfying the conclusions of the proposition and such that
X =11 >0 ¢ (0ij). Itfollows that the weight off (x) is the sumd_; ; oij (wi). Since
AV(x) =T, Z?‘zl A (¢ (aij)), we are reduced to the case whers a fundamental
weight.

According to Lemma 2.3 and TheorenB3there is a bijection between the weights of
V,, and the vertices aA;, which in turn are indexed by the element3/df. Explicitly, the
vertex(ry, ..., r;) corresponds to the weight

ior r
51"'515‘2"'52"'S'i"'S(wi):wi _Ziaq:wi — Z Xj:aq

p=10=p ap=p| 4=]

On the other handy, ..., r;) corresponds to the poi@apzpii Z[{:i €yq (see Section 7).
Therefore

r r
ALl 22 2| == 3 D

ap=p 9=] ap=p} d=]

and we are done since the multiplicity of any weighdf is 1. O

Corollary 10.3 Theimage oA} via A’ is the convex hull dfo (1) | o € W withe < w}.
In particular it is the Minkowski sum ; & A} (A").

Corollary 10.4 Letu be aweight of E (1), thenAY (u) := (A¥)"1(1) N AY is a convex
polytope with rational vertices containing all the points which correspond to the weight
Moreover KAY () = A (k).
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