Lattice Polytopes Associated to Certain Demazure Modules of $\mathbf{~ s l}_{n+1}$

RAIKA DEHY
dehyr@ictp.trieste.it

Abdus Salam Institute, Mathematics Section, P.O. Box 586-34100 Trieste, Italy

RUPERT W.T. YU
yuyu@ mathlabo.univ-poitiers.fr CNRS ESA 6086, Université de Poitiers, Boulevard 3, Teleport 2, BP179, 86960 Futurescope cedex, France

Received December 16, 1997; Revised June 19, 1998

Abstract

Let w be an element of the Weyl group of sl_{n+1}. We prove that for a certain class of elements w (which includes the longest element w_{0} of the Weyl group), there exist a lattice polytope $\Delta_{i}^{w} \subset \mathbb{R}^{\ell(w)}$, for each fundamental weight ω_{i} of sl_{n+1}, such that for any dominant weight $\lambda=\sum_{i=1}^{n} a_{i} \omega_{i}$, the number of lattice points in the Minkowski sum $\Delta_{\lambda}^{w}=\sum_{i=1}^{n} a_{i} \Delta_{i}^{w}$ is equal to the dimension of the Demazure module $E_{w}(\lambda)$. We also define a linear map $A^{w}: \mathbb{R}^{\ell(w)} \longrightarrow P \otimes_{\mathbb{Z}} \mathbb{R}$ where P denotes the weight lattice, such that char $E_{w}(\lambda)=e^{\lambda} \sum e^{-A^{w}(x)}$ where the sum runs through the lattice points x of Δ_{λ}^{w}.

Keywords: lattice polytope, Demazure module, Minkowski sum, character formula

1. Introduction

In this paper, we present some results concerning the first of a two-part programme to prove the existence of degenerations of Schubert varieties of $S L(n)$ into toric varieties (by degeneration of a Schubert variety into a toric variety, we mean a flat deformation where the generic fibre is a Schubert variety and the special fibre is a toric variety). This involves the construction of the lattice polytope which in turn, in the second part of the programme, will provide the toric variety into which the corresponding Schubert variety degenerates. In this direction, Gonciulea and Lakshmibai [10] recently proved such degenerations for Schubert varieties in an arbitrary miniscule G / P, as well as the class of Kempf varieties in the flag variety $S L(n) / B$. For an arbitrary G of rank two, this has been proved by one of the authors [4].
Let us describe our results more precisely. Fix $n \in \mathbb{N}^{*}$ and K an algebraically closed field of characteristic 0 . Let \mathfrak{b} be a Borel subalgebra of $\operatorname{sl}_{n+1}(K)$ and $\mathfrak{h} \subset \mathfrak{b}$ a Cartan subalgebra. Let $\alpha_{i}, i=1, \ldots, n$, be the corresponding set of positive simple roots so that $\left\langle\alpha_{i}, \alpha_{j}^{\vee}\right\rangle=a_{i j}$ where $\left(a_{i j}\right)_{i, j}$ is the Cartan matrix, and let ω_{i} be the corresponding fundamental weights. Denote by $P, P^{+}, W, \ell(-)$ and \preceq respectively the weight lattice, the set of dominant weights, the Weyl group which is just the symmetric group of $n+1$ letters, the length function and the Bruhat order on W. Let $\lambda \in P^{+}$and $w \in W$. Set V_{λ} to be the finite-dimensional irreducible representation of highest weight $\lambda, v_{w \lambda}$ to be a non-zero
weight vector of weight $w \lambda$ and $E_{w}(\lambda)$ to be the \mathfrak{b}-module $U(\mathfrak{b}) v_{w \lambda}$ which is called the Demazure module [5] associated to w. Set W^{i} to be the stabilizer of ω_{i} in W and W_{i} the quotient W / W^{i}. Endow W_{i} with the induced Bruhat order that we shall denote equally by \preceq and if $\sigma \in W_{i}$, then we shall denote by $\ell(\sigma)$ the induced length of σ, which is the minimum of the lengths of representatives of σ.

The representation theory of a semisimple algebraic group G is closely related to the geometry of Schubert varieties (in particular G / B) since the Demazure modules can be realized as the global sections of line bundles over Schubert varieties. Degenerations of Schubert varieties into toric varieties will allow us to study the geometry of the former via toric varieties which are combinatorial.

Let $\lambda=\sum_{i} a_{i} \omega_{i}$ be a dominant weight, then the dimension of $E_{w}(\lambda)$ is a polynomial in the variables a_{i} of degree $\ell(w)$ because the dimension of its dual $E_{w}(\lambda)^{*}$ can be described as the Euler characteristic of the ample line bundle $\bigotimes_{i} \mathcal{L}_{\omega_{i}}^{\otimes a_{i}}$ over the Schubert variety associated to w in G / P_{λ} ([7, 18.3.6] or [2,2.3]). Whereas, given convex lattice polytopes Δ_{i} in $\mathbb{R}^{\ell(w)}$, a theorem of Ehrhart [6] implies that under the condition that a lattice point in the Minkowski sum $\Delta:=\sum_{i} a_{i} \Delta_{i}=\left\{\sum_{i} a_{i} v_{i}\right.$ where $\left.v_{i} \in \Delta_{i}\right\}$ is the sum over i of a_{i} lattice points of Δ_{i}, the number of lattice points in Δ is a polynomial of degree $\ell(w)$ in the variables a_{i}. On the other hand, suppose that we have a degeneration of the Schubert variety S_{w} equipped with line bundles $\mathcal{L}_{\omega_{1}}, \ldots, \mathcal{L}_{\omega_{n}}$ into the toric variety X equipped with line bundles $\mathcal{L}_{1}, \ldots, \mathcal{L}_{n}$. Then $\operatorname{dim} H^{0}\left(S_{w}, \otimes_{i} \mathcal{L}_{\omega_{i}}^{\otimes a_{i}}\right)=\operatorname{dim} H^{0}\left(X, \otimes_{i} \mathcal{L}_{i}^{\otimes a_{i}}\right)$. But to say that X is equipped with line bundles $\mathcal{L}_{1}, \ldots, \mathcal{L}_{n}$ is equivalent to having n lattice polytopes $\Delta_{1}^{w}, \ldots, \Delta_{n}^{w}$ in $\mathbb{R}^{\ell(w)}$ such that $\operatorname{dim} H^{0}\left(X, \bigotimes_{i} \mathcal{L}_{i}^{\otimes a_{i}}\right)$ is the number of lattice points in the Minkowski sum $\sum_{i=1}^{n} a_{i} \Delta_{i}^{w}$ (for example, see properties B3, B4 of Section 2.3 in [19]).

These facts lead us to construct a polytope Δ_{i}^{w} for each fundamental weight ω_{i} and then we form the appropriate Minkowski sum.

We prove first in this paper the case where $w=w_{0}$, the longest element of the Weyl group W.

Theorem 1.1 There exist lattice polytopes $\Delta_{i} \subset \mathbb{R}^{\ell\left(w_{0}\right)}, i=1, \ldots, n$, such that for any $\lambda=\sum_{i=1}^{n} a_{i} \omega_{i} \in P^{+}$, the number of lattice points in the Minkowski sum $\Delta_{\lambda}:=\sum_{i=1}^{n} a_{i} \Delta_{i}$ is the dimension of the irreducible representation V_{λ}.

Polytopes satisfying Theorem 1.1 (although there was no mention of the Minkowski sum decomposition, they do have a Minkowski sum decomposition) have been constructed using Gelfand-Tsetlin patterns in [9, 12], by Berenstein and Zelevinsky [1] and by Littelmann [16] via the combinatorics of Lakshmibai-Seshadri paths.

Our polytope Δ_{λ} is different and it turns out that the toric variety associated to this polytope is the same as the one constructed by Gonciulea and Lakshmibai in [10]. In fact the Minkowski sum decomposition gives a direct link between lattice points and the standard monomial basis (see [14, 17]) of the irreducible representation since we can prove that a lattice point of Δ_{λ} can be written as a sum over i of a_{i} lattice points of Δ_{i}.

Furthermore, since standard monomial theory exists also for Demazure modules (and for other simple algebraic groups), we believe that our construction can be generalized to any simple algebraic group G as follows.

Conjecture 1.2 Let $w \in W$. There exist lattice polytopes $\Delta_{i}^{w} \subset \mathbb{R}^{\ell(w)}, i=1, \ldots, n$, such that for any $\lambda=\sum_{i=1}^{n} a_{i} \omega_{i} \in P^{+}$, the number of lattice points in the Minkowski sum $\Delta_{\lambda}^{w}:=\sum_{i=1}^{n} a_{i} \Delta_{i}^{w}$ is the dimension of the Demazure module $E_{w}(\lambda)$.

As a matter of fact, the polytopes Δ_{i} constructed in Theorem 1.1 are such that the vertices $\left\{v_{\tau}\right\}_{\tau \in W_{i}}$ are indexed by W_{i}. We believe that Δ_{i}^{w} of the conjecture can be chosen as the convex hull of $\left\{v_{\tau}\right\}_{\tau \leq w}$ embedded (by a permutation of coordinates) in $\mathbb{R}^{\ell(w)}$.

Indeed, we prove that this is true when w can be written in a certain way (see Section 7 for details). Unfortunately, this does not cover all the elements of the Weyl group except in the case where $G=S L(2)$ or $S L(3)$. By weakening to a notion called polytopes with integral structure, one of the authors proved in [3] that one can construct a polytope with integral structure for any $w \in W$ such that the number of lattice points in the polytope is the dimension of the associated Demazure module. However, there is no Minkowski sum decomposition and these polytopes do not provide directly toric varieties.

This paper is organised as follows. In Section 2, we construct for each fundamental weight ω_{i} a lattice convex polytope Δ_{i} whose vertices are indexed by the set W_{i}. We shall prove later in Section 5 that Δ_{i} is triangulable by primitive simplices parametrized by maximal chains. We then present an example in Section 3. In Sections 4-6, we show how, in the case where $w=w_{0}$, a lattice point in the Minkowski sum $\sum_{i=1}^{n} a_{i} \Delta_{i}$ can be written as a sum over i of a_{i} lattice points of Δ_{i}, and that these points exhaust the dimension of the irreducible representation V_{λ} where $\lambda=\sum_{i=1}^{n} a_{i} \omega_{i}$. Sections 7 and 8 contain a discussion of the case of Demazure modules where we specify and prove the cases where the conjecture is true. We give another example in Section 9 and finally, in Section 10, we present applications of our results concerning combinatorial descriptions of weight multiplicities as lattice points of a polytope with rational vertices.

We shall use the above notations throughout this paper. Furthermore, let s_{1}, \ldots, s_{n} be the reflections associated to the positive simple roots. For any $N \in \mathbb{N}$, we shall endow \mathbb{R}^{N} with the following partial-ordering: let $X, Y \in \mathbb{R}^{N}$ be such that $X \neq Y$, then

$$
X<Y \text { if and only if } Y-X \in \mathbb{R}_{+}^{N}
$$

2. Construction of the polytope $\boldsymbol{\Delta}_{i}$ for each fundamental weight \boldsymbol{w}_{i}

Let $1 \leq i \leq n$ be fixed in this section. Recall that W_{i} can be identified with the subset of W consisting of elements w such that $w s_{j} \succeq w$ for all $j \neq i$. It is also well known that W_{i} is in bijection with the set of i-tuples $\left(r_{1}, \ldots, r_{i}\right)$ such that $0 \leq r_{1}<r_{2}<\cdots<r_{i} \leq n$. Namely, we can think of $W=S_{n+1}$ as the group of permutations on the set $\{0,1, \ldots, n\}$. Then the bijection $w \mapsto\left(r_{1}, \ldots, r_{i}\right)$ is given by $\left\{r_{1}, \ldots, r_{i}\right\}=w(\{0,1, \ldots, i-1\})$.

The induced Bruhat order on W_{i} is then given by:

$$
\left(r_{1}, \ldots, r_{i}\right) \prec\left(s_{1}, \ldots, s_{i}\right) \Leftrightarrow\left(r_{1}, \ldots, r_{i}\right)<\left(s_{1}, \ldots, s_{i}\right)
$$

where on the right hand side, the i-tuples are considered as elements of \mathbb{R}^{i}.

Note that in this notation, the smallest element is $(0,1,2, \ldots, i-1)$ that we shall denote sometimes simply by 1 when there is no confusion, and the biggest element is $(n-i+1, n-i+2, \ldots, n)$, and that the length of the latter is $(n-i+1) i$. In fact, the minimal representative of $\left(r_{1}, \ldots, r_{i}\right)$ is

$$
s_{r_{1}} s_{r_{1}-1} \cdots s_{1} s_{r_{2}} s_{r_{2}-1} \cdots s_{2} s_{r_{3}} \cdots s_{r_{i}} s_{r_{i}-1} \cdots s_{i}
$$

where $s_{r_{j}} \cdots s_{j}=1$ if $r_{j}<j$ and its length is the sum over j of $r_{j}-j+1$.
We shall fix a particular reduced decomposition of w_{0}. Namely, we use the lexicographic minimal expression $w_{0}=s_{1} s_{2} s_{1} s_{3} s_{2} s_{1} \cdots s_{n} s_{n-1} \cdots s_{1}$. Notice that each minimal representative of W_{i} can be written as a subexpression of this reduced decomposition.

Remark 2.1 We shall think of this as n blocks where block 1 is s_{1}, block 2 is $s_{2} s_{1}, \ldots$, block n is $s_{n} s_{n-1} \cdots s_{1}$.

Let us write the standard basis vectors in $\mathbb{R}^{\ell\left(w_{0}\right)}$ as $e_{p q}$ with $1 \leq q \leq p \leq n$. Let $1 \leq i \leq n$, and $\left(r_{1}, \ldots, r_{i}\right)$ be an element of W_{i}, we then define

$$
\varphi\left(r_{1}, \ldots, r_{i}\right)=\sum_{p=n-i+1}^{n} \sum_{q=p+i-n}^{r_{p+i-n}} e_{p q} \in \mathbb{R}^{\ell\left(w_{0}\right)}
$$

Definition 2.2 Let \mathbf{c} : $\tau_{1} \succ \cdots \succ \tau_{m}$ be a chain in W_{i}. We define $S_{\mathbf{c}}$ to be the convex hull of the points $\left\{\varphi\left(\tau_{j}\right)\right\}_{j=1}^{m}$ and we define Δ_{i} to be the convex hull of the points $\{\varphi(\tau)\}_{\tau \in W_{i}}$.

Lemma 2.3

(a) The vertices of Δ_{i} are the only lattice points in Δ_{i} and they are indexed by the elements of W_{i}.
(b) The map φ is order-preserving.
(c) Let \mathbf{c} : $\tau_{1} \succ \cdots \succ \tau_{(n-i+1) i} \succ 1$ be a maximal chain in W_{i}. The polytope S_{c} is a simplex of dimension $(n-i+1) i$ and its volume is $1 /((n-i+1) i)$!.

Proof: The first two assertions are direct consequences of the definition of φ_{i}. For part (c), notice that the points $\varphi\left(\tau_{1}\right), \ldots, \varphi\left(\tau_{(n-i+1) i}\right)$ are linearly independent and $\varphi(1)$ is zero in $\mathbb{R}^{\ell\left(w_{0}\right)}$. So $S_{\mathbf{c}}$ is a simplex. Since $\varphi\left(\tau_{1}\right), \ldots, \varphi\left(\tau_{(n-i+1) i}\right)$ can be obtained from the canonical basis via a matrix (with integer entries) of determinant 1 or -1 , the volume of $S_{\mathbf{c}}$ is $1 /((n-i+1) i)!$.

We deduce from our definition the following properties between the polytopes Δ_{i}.

Proposition 2.4

(a) The intersection of Δ_{i} and Δ_{j} is $\{0\}$ whenever $i \neq j$.
(b) Let $x=\sum_{p, q} x_{p q} e_{p q} \in \Delta_{i}$, then $x_{p q}=0$ if $p<n-i+1$.
(c) If $x=\sum_{p, q}^{p, q} x_{p q} e_{p q} \in \Delta_{i}$ is such that $x_{s t} \neq 0$, then $x_{s t^{\prime}} \neq 0$ for all $t^{\prime}=t, t+$ $1, \ldots, r_{s+i-n}$.

Proof: Assertions (b) and (c) are straightforward. So let us prove (a). We can assume that $i<j$. Notice that the coefficient of $e_{n i}$ for any non-zero element of Δ_{i} is non-zero while it is zero for any element of Δ_{j}. Thus (a) follows.

Let $\lambda=\sum_{i=1}^{n} a_{i} \omega_{i}$ be a dominant weight (thus each $a_{i} \in \mathbb{N}$) and V_{λ} be the irreducible sl_{n+1}-module of highest weight λ.

Definition 2.5 We define the polytope Δ_{λ} to be the Minkowski sum $\sum_{i=1}^{n} a_{i} \Delta_{i}$.
Since the Δ_{i} 's are lattice convex polytopes, the polytope Δ_{λ} is also a lattice convex polytope. We can now state our theorem in the case where $w=w_{0}$.

Theorem 2.6 The number of lattice points in Δ_{λ} is equal to the dimension of V_{λ}.

3. Example

The first interesting example is s_{4}. We write $w_{0}=s_{1} s_{2} s_{1} s_{3} s_{2} s_{1}$ and we have, in terms of minimal representatives,

$$
\begin{aligned}
& W_{1}=\left\{1, s_{1}, s_{2} s_{1}, s_{3} s_{2} s_{1}\right\}, \quad W_{2}=\left\{1, s_{2}, s_{3} s_{2}, s_{1} s_{2}, s_{1} s_{3} s_{2}, s_{2} s_{1} s_{3} s_{2}\right\} \\
& W_{3}=\left\{1, s_{3}, s_{2} s_{3}, s_{1} s_{2} s_{3}\right\}
\end{aligned}
$$

We then obtain via φ the following table where each row contains the coefficients of a $\varphi(\tau)$:

	s_{1}	s_{2}	s_{1}	s_{3}	s_{2}	s_{1}	
	e_{11}	e_{22}	e_{21}	e_{33}	e_{32}	e_{31}	
s_{1}	0	0	0	0	0	1	(1)
$s_{2} s_{1}$	0	0	0	0	1	1	(2)
$s_{3} s_{2} s_{1}$	0	0	0	1	1	1	(3)
s_{2}	0	0	0	0	1	0	$(0,2)$
$s_{3} s_{2}$	0	0	0	1	1	0	$(0,3)$
$s_{1} s_{2}$	0	0	1	0	1	0	$(1,2)$
$s_{1} s_{3} s_{2}$	0	0	1	1	1	0	$(1,3)$
$s_{2} s_{1} s_{3} s_{2}$	0	1	1	1	1	0	$(2,3)$
s_{3}	0	0	0	1	0	0	$(0,1,3)$
$s_{2} s_{3}$	0	1	0	1	0	0	$(0,2,3)$
$s_{1} s_{2} s_{3}$	1	1	0	1	0	0	$(1,2,3)$

The images of $(0),(0,1),(0,1,2)$ are all $(0,0,0,0,0,0)$.
Let us now consider the adjoint representation. The highest weight is $\omega_{1}+\omega_{3}$. One then verifies easily by hand that a lattice point of $\Delta_{1}+\Delta_{3}$ is the sum of a lattice point of Δ_{1} and
a lattice point of Δ_{3}. Hence a quick computation shows that the lattice points are the ones in Δ_{1} and Δ_{3} together with 8 other points:

$$
\begin{gathered}
e_{31}+e_{33}, \quad e_{31}+e_{33}+e_{22}, \quad e_{31}+e_{33}+e_{22}+e_{11} \\
e_{32}+e_{31}+e_{33}+e_{22}, \quad e_{32}+e_{31}+e_{33}+e_{22}+e_{11} \\
e_{31}+e_{32}+2 e_{33}, \quad e_{31}+e_{32}+2 e_{33}+e_{22}, \quad e_{31}+e_{32}+2 e_{33}+e_{22}+e_{11}
\end{gathered}
$$

Thus there are 15 lattice points in $\Delta_{1}+\Delta_{3}$ which is the dimension of sl_{4}.
Remark that $\varphi(2)+\varphi(0,1,3)=\varphi(3)+\varphi(0,1,2)$ is the only sum repeated here. This can be seen to correspond to the tensor product decomposition

$$
V_{\omega_{1}} \otimes V_{\omega_{3}} \cong V_{\omega_{1}} \otimes\left(V_{\omega_{1}}\right)^{*} \cong \mathrm{gl}_{4}=\mathrm{sl}_{4} \oplus V_{0}
$$

4. Correspondence with semi-standard Young tableaux

Let $\lambda=\sum_{i=1}^{n} a_{i} \omega_{i}$ be a dominant weight. Set \mathcal{W} be the disjoint union of the W_{i} and $\mathcal{W}(\lambda)=\prod_{i=1}^{n=1} \prod_{j=1}^{a_{i}} W_{i}$. We can associate to an element of $\mathcal{W}(\lambda)$ via φ a lattice point of Δ_{λ}. Namely, an element $\left(w_{i j}\right)_{i, j}$ of $\mathcal{W}(\lambda)$ is sent to $\sum_{i, j} \varphi\left(w_{i j}\right)$ in Δ_{λ}.

However this association is not necessarily injective (that is, a lattice point can be the image of another element in $\mathcal{W}(\lambda))$. We claim that with respect to a certain partial ordering of \mathcal{W}, there is a unique such element which is decreasing. At the end of this section, we shall show that the set of lattice points corresponding to the elements in $\mathcal{W}(\lambda)$ is in bijection with the set of semi-standard Young tableaux of type λ.

Let us first define our partial order in \mathcal{W}, denoted by \prec, which extends the induced Bruhat ordering in W_{i}. Let $\left(r_{1}, \ldots, r_{i}\right)$ and $\left(s_{1}, \ldots, s_{j}\right)$ be two elements of \mathcal{W}, then

$$
\left(r_{1}, \ldots, r_{i}\right) \prec\left(s_{1}, \ldots, s_{j}\right) \Leftrightarrow(\underbrace{-1, \ldots,-1}_{n-i}, r_{1}, \ldots, r_{i})<(\underbrace{-1, \ldots,-1}_{n-j}, s_{1}, \ldots, s_{j})
$$

where the elements on the right hand side are in \mathbb{R}^{n}.
Remark 4.1 Using the notations above, if we have $r \prec s$ then $i \leq j$. Furthermore, there is a unique maximal element $(1,2, \ldots, n)$ and a unique minimal element (0).

Lemma 4.2

(a) The set \mathcal{W} is a lattice, that is, every pair of elements of \mathcal{W} have a well defined \max and min .
(b) If $r \in W_{i}, s \in W_{j}$ and $i \leq j$, then we have $\min (r, s) \in W_{i}$ and $\max (r, s) \in W_{j}$.
(c) (MAX-MIN) Let $r, s \in \mathcal{W}$, then $\varphi(r)+\varphi(s)=\varphi(\max (r, s))+\varphi(\min (r, s))$.

Proof: Let $r=\left(r_{1}, \ldots, r_{i}\right)$ be an element of \mathcal{W}. By adding -1 's on the left as above, we can associate to r, an element $R=\left(R_{1}, \ldots, R_{n}\right)$ of \mathbb{R}^{n}.

Definition 4.3 Let r, s be elements of \mathcal{W} and R, S the corresponding associated elements in \mathbb{R}^{n}. We define $\min (R, S)=\left(T_{1}, \ldots, T_{n}\right)$ where $T_{i}=\min \left(R_{i}, S_{i}\right)$ and $\min (r, s)$ the element of \mathcal{W} associated to $\min (R, S)$ by taking away all the -1 's.

We define $\max (r, s)$ similarly.
One verifies easily assertions (a) and (b) from this definition. It suffices therefore to check max-min.

Let $r=\left(r_{1}, \ldots, r_{i}\right)$ and $s=\left(s_{1}, \ldots, s_{j}\right)$ where $i \leq j$. Then

$$
\begin{aligned}
\varphi(r)+\varphi(s) & =\sum_{p=n-i+1}^{n} \sum_{q=p+i-n}^{r_{p+i-n}} e_{p q}+\sum_{p=n-j+1}^{n} \sum_{q=p+j-n}^{s_{p+j-n}} e_{p q} \\
& =\sum_{p=n-i+1}^{n} \sum_{q=p+i-n}^{r_{p+i-n}} e_{p q}+\sum_{p=n-j+1}^{n-i} \sum_{q=p+j-n}^{s_{p+j-n}} e_{p q}+\sum_{p=n-i+1}^{n} \sum_{q=p+j-n}^{s_{p+j-n}} e_{p q} \\
& =\sum_{p=n-i+1}^{n}\left(\sum_{q=p+i-n}^{r_{p+i-n}} e_{p q}+\sum_{q=p+j-n}^{s_{p+j-n}} e_{p q}\right)+\sum_{p=n-j+1}^{n-i} \sum_{q=p+j-n}^{s_{p+j-n}} e_{p q} \\
& =\sum_{p=n-i+1}^{n} \sum_{q=p+i-n}^{\min \left(r_{p+i-n}, s_{p+j-n}\right)} e_{p q}+\sum_{p=n-j+1}^{n} \sum_{q=p+j-n}^{\max \left(r_{p+i-n}, s_{p+j-n}\right)} e_{p q} \\
& =\varphi(\min (r, s))+\varphi(\max (r, s))
\end{aligned}
$$

We shall now state and prove our claim.
Proposition 4.4 Let $\theta=\left\{\theta_{i j}\right\}_{i=1, \ldots, n ; j=1, \ldots, a_{i}}$ be an element of $\mathcal{W}(\lambda)$. Then there exists a unique element $\psi=\left\{\psi_{i j}\right\}$ of $\mathcal{W}(\lambda)$ such that
(i) $\psi_{i j} \preceq \psi_{k \ell}$ if $i<k$ or if $i=k$ and $j \leq \ell$;
(ii) $\sum_{i, j} \varphi\left(\theta_{i j}\right)=\sum_{i, j} \varphi\left(\psi_{i j}\right)$.

Before proving this proposition, let us remark that condition (i) says that

$$
\psi_{11} \preceq \psi_{12} \preceq \cdots \preceq \psi_{1 a_{1}} \preceq \psi_{21} \preceq \cdots \preceq \psi_{2 a_{2}} \preceq \cdots \preceq \psi_{(n-1) a_{n-1}} \preceq \psi_{n 1} \preceq \cdots \preceq \psi_{n a_{n}}
$$

This is similar to the definition for a Young tableaux of Lakshmibai and Seshadri of type λ modulo liftings to the Weyl group W, see [14]. As we shall see, our theorem says that this is exactly the same definition.

Proof: We shall prove the existence by induction on $a=\sum_{i=1}^{n} a_{i}$. It is clear that the induction hypothesis holds for $a=1$. (In fact, by max-min of Lemma 4.2, it holds equally for $a=2$).

Let us now suppose that the induction hypothesis holds for $a-1$. Let r be maximal such that $a_{r} \neq 0$. By the induction hypothesis, we can suppose that $\theta^{\prime}=\theta \backslash\left\{\theta_{r a_{r}}\right\}$ satisfies the conditions (i) and (ii) of the proposition.

We shall now divide θ^{\prime} into three disjoint totally-ordered sets. Let

$$
E_{\prec}=\left\{\theta_{i j} \mid \theta_{i j} \prec \theta_{r a_{r}}\right\}, \quad E_{\succeq}=\left\{\theta_{i j} \mid \theta_{i j} \succeq \theta_{r a_{r}}\right\}
$$

and
$E_{0}=\left\{\theta_{i j} \mid \theta_{i j}\right.$ and $\theta_{r a_{r}}$ are not comparable $\}$.
Note that the elements of E_{\succeq} are all in W_{r}.
If E_{0} is empty, then we can insert $\theta_{r a_{r}}$ in the sequence to obtain a totally-ordered sequence and hence by rearranging the subscripts, we obtain an element of $\mathcal{W}(\lambda)$ satisfying the required conditions.

Suppose now that E_{0} is not empty. Then $\theta_{r a_{r}}$ is in neither $E_{<}, E_{\succeq}$ nor E_{0}. Let ϕ be the maximal element in E_{0}. By max-min of Lemma 4.2, replacing ϕ and $\theta_{r a_{r}}$ by max $\left(\phi, \theta_{r a_{r}}\right)$ and $\min \left(\phi, \theta_{r a_{r}}\right)$ does not alter the sum via φ. Furthermore, if we let $E_{<}^{\prime}, E_{\succeq}^{\prime}$ and E_{0}^{\prime} be the new partition as defined above relative to $\theta_{r a_{r}}^{\prime}=\max \left(\phi, \theta_{r a_{r}}\right)$, then the cardinal of E_{0}^{\prime} is strictly less than $E_{0} \operatorname{since} \min \left(\phi, \theta_{r a_{r}}\right)$ will belong to $E_{<}^{\prime}$.

Now repeat the same procedure until E_{0} is empty and we have the existence since E_{0} is a finite set.

Let us turn to the uniqueness which is a consequence of the following lemma.
Lemma 4.5 Let r and s be two distinct elements of W_{i}. Then there exist k, m_{k} such that one of the following conditions is satisfied:
(i) the $e_{k m_{k}}$-coordinate is 1 for $\varphi(r)$ and the $e_{k \ell}$-coordinate for $\varphi(s)$ is 0 for all $m_{k} \leq \ell \leq k$.
(ii) the $e_{k m_{k}}$-coordinate is 1 for $\varphi(s)$ and the $e_{k \ell-c o o r d i n a t e ~ f o r ~} \varphi(r)$ is 0 for all $m_{k} \leq \ell \leq k$.

Furthermore let us suppose that (i) is satisfied (we have obviously the same statement with the roles of r and s exchanged when (ii) is satisfied). Then we can choose k and m_{k} such that for all $t \in W_{j}$ satisfying $t \preceq s$, the $e_{k m_{k}}$-coordinate is 1 for $\varphi(r)$ and the $e_{k \ell}$-coordinate for $\varphi(t)$ is 0 for all $m_{k} \leq \ell \leq k$.

Proof: Let us denote $r=\left(r_{1}, \ldots, r_{i}\right)$ and $s=\left(s_{1}, \ldots, s_{i}\right)$. Since r and s are distinct, there exists k such that either $r_{k}>s_{k}$ or $s_{k}>r_{k}$. Suppose we have $r_{k}>s_{k}$ (resp. $s_{k}>r_{k}$). Since $r_{k}>s_{k} \geq k-1$ (resp. $s_{k}>r_{k} \geq k-1$), r (resp. s) has non-zero entries in the $(n-i+k)^{\text {th }}$ block. By the definition of our embedding, it is clear that if we put $m_{k}=r_{k}$ (resp. $m_{k}=s_{k}$), then the conditions of (i) (resp. (ii)) are satisfied.

To prove the last statement, let us suppose that (i) is satisfied. Then, there exists k such that $r_{k}>s_{k}$. Now let $t \in W_{j}$ be such that $t \leq s$. By Remark 4.1, we must have $i \geq j$ and hence we can write $t=\left(t_{1}, \ldots, t_{i}\right)$ by adding -1 's on the left. Since $t \preceq s$, we have $t_{k} \leq s_{k}<r_{k}$. It follows again from our embedding that we have our result by letting $m_{k}=r_{k}$.

We can now finish our proof. Let θ and $\theta^{\prime}=\left\{\theta_{i j}^{\prime}\right\}$ be two elements in $\mathcal{W}(\lambda)$ satisfying the conditions of the proposition. Let r be maximal such that $a_{r} \neq 0$. Then $\theta_{r a_{r}}$ and $\theta_{r a_{r}}^{\prime}$ are maximal in θ and θ^{\prime} respectively. If $\theta_{r a_{r}} \neq \theta_{r a_{r}}^{\prime}$, then by applying the previous lemma, we can suppose that there exists k, m_{k} such that the entry $e_{k m_{k}}$ is 1 for $\varphi\left(\theta_{r a_{r}}\right)$ and the entries $e_{k \ell}$ for $\varphi\left(\theta_{r a_{r}}^{\prime}\right)$ is 0 for all $m_{k} \leq \ell \leq k$. Hence by the same lemma, the same entries for $\varphi\left(\theta_{i j}^{\prime}\right)$
are 0 for all i, j since $\theta_{r a_{r}}^{\prime}$ is maximal in θ^{\prime}. It follows that $\sum_{i, j} \varphi\left(\theta_{i j}\right)-\sum_{i, j} \varphi\left(\theta_{i j}^{\prime}\right) \neq 0$ which contradicts the fact that θ and θ^{\prime} satisfy the second condition of the proposition.

Thus $\theta_{r a_{r}}=\theta_{r a_{r}}^{\prime}$. Now by induction on a, the sum of the a_{i} 's, the elements θ, θ^{\prime} must be the same (the case $a=1$ is equivalent to the fact that φ is an embedding).

Thus we have proved what we claimed at the start of this section. Let us denote by $\mathcal{W}(\lambda)_{d}$ the set of elements in $\mathcal{W}(\lambda)$ satisfying property (i) of the proposition. Now given an element θ in $\mathcal{W}(\lambda)_{d}$, using the notations $\left(r_{1}, \ldots, r_{i}\right)$ for elements in W_{i}, we can arrange each $\theta_{i j}$ as a row of numbers flushright, and stack them in order with the largest row on top, the smallest row on the bottom, what we obtain then is a semi-standard Young tableau of type λ. For example, the sequence $(1),(0,1),(0,2),(0,2,3)$ corresponds to the semi-standard Young tableau

By the uniqueness proved in the proposition, we obtain a well-defined map from $\mathcal{W}(\lambda)_{d}$ to the set of semi-standard Young tableaux of type λ, which is obviously injective. On the other hand, given a semi-standard Young tableau of type λ, we obtain an element of $\mathcal{W}(\lambda)_{d}$ by reading off the rows. It is clear that this is the inverse of the former map. Now by Lemma 2.3, lattice points in Δ_{i} are in bijection with elements of W_{i}, thus Proposition 4.4 says that $\mathcal{W}(\lambda)_{d}$ is in bijection with the set of lattice points in Δ_{λ} which can be written as a sum over i of a_{i} lattice points of Δ_{i}, we can hence state

Theorem 4.6 The set of lattice points of Δ_{λ} which can be written as a sum over i of a_{i} lattice points of Δ_{i} is in bijection with the set of semi-standard Young tableaux of type λ.

Remark 4.7 In fact, the existence part of Proposition 4.4 can be proved with semistandard Young tableaux since it involves only max-min of Lemma 4.2 and not the explicit embedding. The idea is to put the maximal entry of each column at the top row and then use induction which is roughly what we have done.

5. Characterization of lattice points in Δ_{λ}

Let $\lambda=\sum_{i=1}^{n} a_{i} \omega_{i}$ be a dominant weight. Recall from Definition 3.2 that Δ_{λ} is the Minkowski sum $\sum_{i=1}^{n} a_{i} \Delta_{i}$, where $\Delta_{1}, \ldots, \Delta_{n}$ are the polytopes associated to the fundamental weights $\omega_{1}, \ldots, \omega_{n}$ which were defined in Section 2. In this section we shall prove the following theorem:

Theorem 5.1 A lattice point in the Minkowski sum $\sum_{i=1}^{n} a_{i} \Delta_{i}$ can be written as the sum of a_{1} lattice points in Δ_{1}, a_{2} lattice points of Δ_{2} and so on.

As in the previous section, denote by \mathcal{W} the union over all i of W_{i} equipped with the partial order defined in the same section, and for any dominant weight μ, denote by $\mathcal{W}(\mu)_{d}$ the set of elements in $\mathcal{W}(\mu)$ satisfying property (i) of Proposition 4.4. Let $\theta=\left\{\theta_{i j}\right\}_{i, j}$ be an element of $\mathcal{W}(\mu)_{d}$, we shall denote by $C_{\mu}(\theta)$ the convex cone generated by $\left\{\varphi\left(\theta_{i j}\right)\right\}_{i, j}$.

Theorem 5.2 Let $x \in \Delta_{\lambda}$, then there exist a dominant weight μ and $a \theta \in \mathcal{W}(\mu)_{d}$ such that $x \in C_{\mu}(\theta)$.

This theorem is a direct consequence of the following technical lemma.
Lemma 5.3 Let $\left\{\sigma_{i j}\right\}_{i=1, \ldots, n ; j=1, \ldots, a_{i}}$ be a sequence of elements of \mathcal{W} such that $\sigma_{i j} \in W_{i}$. Let $p_{i j} \in \mathbb{R}_{+}$. Then there exists $\left\{\sigma_{i j}^{\prime}\right\}_{i=1, \ldots, n ; j=1, \ldots, a_{i}^{\prime}}$ a sequence of elements of \mathcal{W} and $p_{i j}^{\prime} \in \mathbb{R}_{+}$such that
(i) $\sigma_{i j}^{\prime} \in W_{i}$.
(ii) $\sigma_{i j}^{\prime} \prec \sigma_{k l}^{\prime}$ if $i<k$ or if $i=k$ and $j<l$.
(iii) $\sum_{j=1}^{a_{i}} p_{i j}=\sum_{j=1}^{a_{i}^{\prime}} p_{i j}^{\prime}$.
(iv) $\sum_{i=1}^{n} \sum_{j=1}^{a_{i}} p_{i j} \varphi\left(\sigma_{i j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{a_{i}^{\prime}} p_{i j}^{\prime} \varphi\left(\sigma_{i j}^{\prime}\right)$.

Proof: We shall prove the lemma by induction on the $\sum_{i=1}^{n} a_{i}$.
The assertion is obvious when the sum is 1 . So let us suppose that the sum is strictly bigger than one. Let l be maximal such that $a_{l}>0$. By the induction hypothesis, we can
 shall denote $\sigma_{l a_{l}}$ by σ and $q=p_{l a_{l}}$.

If $\sigma \succeq \sigma_{i j}$ for all $i=1, \ldots, l, j=1, \ldots, a_{i}$ or if $\sigma=\sigma_{l j}$ for some $j \leq a_{l}-1$, then we are done.

So let us suppose the contrary. Then there exists $\tau=\sigma_{c d}$ minimal such that $\sigma \nsucc \tau$. Let $\kappa=\sigma_{r s}$ be maximal such that $P:=\sum_{\tau \leq \sigma_{i j}<\kappa} p_{i j} \leq q$. Denote by $m_{i j}=\min \left(\sigma, \sigma_{i j}\right) \in W_{i}$ and by $M_{l}^{i j}=\max \left(\sigma, \sigma_{i j}\right) \in W_{l}$. Note that we have

$$
M_{l}^{i j} \succeq M_{l}^{i, j-1} \succeq \cdots \succeq M_{l}^{c d} \succ \sigma \succ m_{i j} \succeq \cdots \succeq m_{c d}
$$

Now using repeatedly max-min of Lemma 4.2, we obtain:

$$
\begin{aligned}
\sum_{i=1}^{l} \sum_{j=1}^{a_{i}} p_{i j} \varphi\left(\sigma_{i j}\right)= & \sum_{\sigma_{i j}<\tau} p_{i j} \varphi\left(\sigma_{i j}\right)+\sum_{\sigma_{i j} \geq \kappa} p_{i j} \varphi\left(\sigma_{i j}\right) \\
& +\sum_{\tau \leq \sigma_{i j}<\kappa} p_{i j}\left(\varphi\left(\sigma_{i j}\right)+\varphi(\sigma)\right)+(q-P) \varphi(\sigma) \\
= & \sum_{\sigma_{i j}<\tau} p_{i j} \varphi\left(\sigma_{i j}\right)+\sum_{\sigma_{i j} \succ \kappa} p_{i j} \varphi\left(\sigma_{i j}\right) \\
& +\sum_{\tau \leq \sigma_{i j}<\kappa} p_{i j}\left(\varphi\left(m_{i j}\right)+\varphi\left(M_{l}^{i j}\right)\right)+p_{r s} \varphi(\kappa)+(q-P) \varphi(\sigma)
\end{aligned}
$$

Now if $p_{r s} \leq q-P$, then we must have $\kappa=\sigma_{l, a_{l}-1}$. Consequently, we have

$$
\sum_{i=1}^{l} \sum_{j=1}^{a_{i}} p_{i j} \varphi\left(\sigma_{i j}\right)=\sum_{\sigma_{i j}<\tau} p_{i j} \varphi\left(\sigma_{i j}\right)+\sum_{\tau \leq \sigma_{i j} \leq \kappa} p_{i j}\left(\varphi\left(m_{i j}\right)+\varphi\left(M_{l}^{i j}\right)\right)+\left(q-P-p_{r s}\right) \varphi(\sigma)
$$

Thus we obtain a chain

$$
M_{l}^{r s} \succeq \cdots \succeq M_{l}^{c d} \succ \sigma \succ m_{r s} \succeq m_{r, s-1} \succeq \cdots \succeq m_{c, d} \succ \sigma_{c, d-1} \succ \cdots \succ \sigma_{11} \succ 1
$$

from which we can compress into a chain $\left\{\sigma_{i j}^{\prime}\right\}$ where $i=1, \ldots, l$ and $j=1, \ldots, a_{i}^{\prime}$ satisfying the required properties of the lemma.

If $p_{r s} \geq q-P$, then:

$$
\begin{aligned}
\sum_{i=1}^{l} \sum_{j=1}^{a_{i}} p_{i j} \varphi\left(\sigma_{i j}\right)= & \sum_{\sigma_{i j}<\tau} p_{i j} \varphi\left(\sigma_{i j}\right)+\sum_{\sigma_{i j} \succ \kappa} p_{i j} \varphi\left(\sigma_{i j}\right) \\
& +\sum_{\tau \preceq \sigma_{i j} \prec \kappa} p_{i j}\left(\varphi\left(m_{i j}\right)+\varphi\left(M_{l}^{i j}\right)\right) \\
& +(q-P)(\varphi(\kappa)+\varphi(\sigma))+\left(p_{r s}-(q-P)\right) \varphi(\kappa) \\
= & \sum_{\sigma_{i j}<\tau} p_{i j} \varphi\left(\sigma_{i j}\right)+\sum_{\sigma_{i j} \succ \kappa} p_{i j} \varphi\left(\sigma_{i j}\right) \\
& +\sum_{\tau \preceq \sigma_{i j}<\kappa} p_{i j}\left(\varphi\left(m_{i j}\right)+\varphi\left(M_{l}^{i j}\right)\right) \\
& +(q-P)\left(\varphi\left(m_{r s}\right)+\varphi\left(M_{l}^{r s}\right)\right)+\left(p_{r s}-(q-P)\right) \varphi(\kappa)
\end{aligned}
$$

Thus we obtain a chain

$$
\sigma_{l, a_{l}-1} \succ \cdots \succ \kappa \succ m_{r s} \succeq m_{r, s-1} \succeq \cdots \succeq m_{c d} \succ \sigma_{c, d-1} \cdots \succ \sigma_{11} \succ 1
$$

from which we can compress into a chain $\left\{\sigma_{i j}^{\prime}\right\}$ where $i=1, \ldots, l$ and $j=1, \ldots, a_{i}^{\prime}$ satisfying (i), (ii) and (iii) of the lemma (look at the coefficents). Therefore we have

$$
\sum_{i=1}^{l} \sum_{j=1}^{a_{i}} p_{i j} \varphi\left(\sigma_{i j}\right)=\sum_{i=1}^{l} \sum_{j=1}^{a_{i}^{\prime}} p_{i j}^{\prime} \varphi\left(\sigma_{i j}^{\prime}\right)+\sum_{\tau \leq \sigma_{i j}<\kappa} p_{i j} \varphi\left(M_{l}^{i j}\right)+(q-P) \varphi\left(M_{i}^{r s}\right)
$$

We now observe that the length of the remaining elements $M_{l}^{c d}, \ldots, M_{l}^{r s}$ are strictly greater than that of σ. Thus we can repeat the same reasoning and the lemma is proved because there is a maximal element in W_{l}.

Corollary 5.4 The polytope Δ_{i} is triangulable by primitive simplices of dimension ($n-$ $i+1) i$.

Proof: Recall from [11] that a simplex is called primitive of dimension d if its vertices are lattice points and its volume is $1 / d!$.

It is clear from the proof of the preceding lemma applied to the sequence $\left\{\sigma_{i j}\right\}_{j=1, \ldots, a_{i}}$ that Δ_{i} is the union of all the $S_{\mathbf{c}}$ where \mathbf{c} is a chain in W_{i} (see Definition 2.2). Moreover, if \mathbf{c}^{\prime} is a (strict) subchain of \mathbf{c}, then $S_{\mathbf{c}^{\prime}}$ lies in the boundary of $S_{\mathbf{c}}$. Since by Lemma 2.3, $S_{\mathbf{c}}$ is a primitive simplex of dimension $(n-i+1) i$ when \mathbf{c} is a maximal chain, to show that Δ_{i} is triangulable by primitve simplices, it suffices to show that the interior of any two distinct simplices $S_{\mathbf{c}}$ and $S_{\mathbf{c}^{\prime}}$ do not meet.
Consider two chains \mathbf{c} : $\sigma_{1} \succ \cdots \succ \sigma_{\ell} \succ 1$ and $\mathbf{c}^{\prime}: \tau_{1} \succ \cdots \succ \tau_{m} \succ 1$. Suppose that the intersection of the interiors of $S_{\mathbf{c}}$ and $S_{\mathbf{c}^{\prime}}$ is not empty and that Q belongs to this intersection. We can therefore write Q as (recall that $\left.\varphi(1)=(0, \ldots, 0) \in \mathbb{R}^{\ell\left(w_{0}\right)}\right)$

$$
\begin{equation*}
\sum_{j=1}^{\ell} p_{j} \varphi\left(\sigma_{j}\right)=Q=\sum_{k=1}^{m} q_{k} \varphi\left(\tau_{k}\right) \tag{*}
\end{equation*}
$$

where $\left.p_{j}, q_{k} \in\right] 0,1\left[\right.$ and $p_{1}+\cdots+p_{\ell} \leq 1, q_{1}+\cdots+q_{m} \leq 1$.
Assume that $\sigma_{1} \neq \tau_{1}$. Writing $\sigma_{1}=\left(s_{1}, \ldots, s_{i}\right)$ and $\tau_{1}=\left(t_{1}, \ldots, t_{i}\right)$. By Lemma 4.5, there exists a coordinate $e_{p q}$ which is non-zero on the left hand side of $(*)$, whereas it is zero on the right hand side (because τ_{1} is maximal in the chain \mathbf{c}^{\prime}). So we have a contradiction and therefore $\sigma_{1}=\tau_{1}$.

Without loss of generality, we can suppose $p_{1} \geq q_{1}$. We can then rewrite $(*)$ as follows:

$$
\left(p_{1}-q_{1}\right) \varphi\left(\sigma_{1}\right)+\sum_{j=2}^{\ell} p_{j} \varphi\left(\sigma_{j}\right)=Q^{\prime}=\sum_{k=2}^{m} q_{k} \varphi\left(\tau_{k}\right) \quad(* *)
$$

Consequently, we must have $p_{1}=q_{1}$. Now by repeating the same argument (or use induction on $\ell+m)$ on $(* *)$, we conclude that $\ell=m, p_{j}=q_{j}$ and $\sigma_{j}=\tau_{j}$ for all $j=1, \ldots, \ell$. That is $\mathbf{c}=\mathbf{c}^{\prime}$. Thus the corollary is proved.

Proof of Theorem 5.1: Suppose that x is a lattice point of $\sum_{i=1}^{l} a_{i} \Delta_{i}$. Without loss of generality we can assume that $a_{l} \neq 0$. We can write $x=x_{1}+\cdots+x_{l}$ where

$$
x_{i}=p_{i 1} \varphi\left(\sigma_{i 1}\right)+\cdots+p_{i r_{i}} \varphi\left(\sigma_{i r_{i}}\right) \quad \text { with } p_{i j}>0 \text { and } \sum_{j=1}^{r_{i}} p_{i j}=a_{i}
$$

where $\sigma_{i j} \in W_{i}$. By Theorem 5.2, we can assume that $\sigma_{i j}$ is a strictly increasing sequence of elements of \mathcal{W}.

If $r_{l}=1$, then $p_{l r_{l}}=a_{l}$ and so $x_{l}=a_{l} \varphi\left(\sigma_{l r_{l}}\right)$ which implies that $x-x_{l}$ is a lattice point of $\sum_{i=1}^{l-1} a_{i} \Delta_{i}$.

If $r_{l}>1$, then by Lemma 4.5, there exists a coordinate $e_{\alpha \beta}$ such that the $e_{\alpha \beta}$ coordinate of x is equal to $p_{l r_{l}}$. So $p_{l r_{l}}$ is a positive integer and $x-p_{l r_{l}} \varphi\left(\sigma_{l r_{l}}\right)$ is a lattice point of $\sum_{i=1}^{l-1} a_{i} \Delta_{i}+\left(a_{l}-p_{l r_{l}}\right) \Delta_{l}$.

Thus, in both cases the assertion follows by induction on $\sum_{i=1}^{l} a_{i}$.

6. End of proof of Theorem 2.6

By Theorem 5.1, an integral point in Δ_{λ} is a sum over i of a_{i} lattice points of Δ_{i}. Hence by Theorem 4.6, the set of lattice points of Δ_{λ} is in bijection with the set of semi-standard Young tableaux of type λ. Now by a classical result from the theory of invariants (see for example [8] or [18]) that the number of semi-standard Young tableaux of type λ is exactly the dimension of the sl_{n+1}-module V_{λ}. Thus Theorem 2.6 is proved.

7. The case of Demazure modules

In the previous sections, we explained how to construct for each fundamental weight a polytope Δ_{i} whose vertices are indexed by the set W_{i}. Let W_{i}^{w} be the set $\left\{\sigma \in W_{i} \mid \sigma \preceq \bar{w}\right\}$ where \bar{w} is the class of w in W_{i}. Then we can define the polytope Δ_{i}^{w} to be the convex hull of the set of vertices of Δ_{i} corresponding to the set W_{i}^{w}. It is clear that the vertices of Δ_{i}^{w} are indexed by the set W_{i}^{w}.

We would like to embed Δ_{i}^{w} in $\mathbb{R}^{\ell(w)}$ in such a way that given a dominant weight $\lambda=\sum_{i} c_{i} \omega_{i}$, the number of lattice points in $\sum_{i} c_{i} \Delta_{i}^{w}$ is the dimension of the Demazure module $E_{w}(\lambda)$. For some w we can construct such an embedding. In this section we shall describe this embedding and explain why it works.

Recall that W is considered as the permutations of the set $\{0,1, \ldots, n\}$, with simple transpositions $s_{i}=(i-1, i)$. Consider the unique factorization of a permutation $w \in W$ in the form

$$
w=s\left(1, c_{1}\right) s\left(2, c_{2}\right) \cdots s\left(n, c_{n}\right)
$$

where we denote $s(a, b)=s_{a} s_{a-1} \cdots s_{b}$ and $s(a, a+1)=1$. Then c_{j} is the cardinal of the set $\left\{d\right.$ such that $\left.d \leq w^{-1}(j), w(d) \leq j\right\}$. It follows that there exist $k \in \mathbb{N}^{*}$, $1 \leq a_{1}<a_{2}<\cdots<a_{k} \leq n$ and $1 \leq b_{j} \leq a_{j}$ for all $j=1, \ldots, k$ such that

$$
w=s\left(a_{1}, b_{1}\right) s\left(a_{2}, b_{2}\right) \cdots s\left(a_{k}, b_{k}\right)
$$

Note that we have $w_{0}=s(1,1) s(2,1) \cdots s(n, 1)$. We shall use this notation in this section.
Definition 7.1 Let $d \leq e$ be positive integers. We shall call the subexpression $s\left(a_{d}, b_{d}\right)$ $\cdots s\left(a_{e}, b_{e}\right)$ of w, a part if the following conditions are satisfied:
(i) $a_{e}+1<b_{m}$ for all $m>e$,
(ii) $a_{d-1}+1<b_{m}$ for all $d \leq m \leq e$.

A part of w is connected if it is not the product of two distinct parts of w.
It is clear that w is the product of connected parts, say $w=\mathcal{P}_{1} \cdots \mathcal{P}_{l}$, and that when $1 \leq i \neq j \leq l$, then \mathcal{P}_{i} commutes with \mathcal{P}_{j}.

Theorem 7.2 Suppose that $w \in W$ is either the identity or else each connected part $s\left(a_{d}, b_{d}\right) \cdots s\left(a_{e}, b_{e}\right)$ of w satisfies one of the following conditions:
(i) $b_{d} \geq b_{d+1} \geq \cdots \geq b_{e}$.
(ii) $a_{d}=b_{d}<a_{d+1}=b_{d+1}<\cdots<a_{e}=b_{e}$,

Then for each i, there exists an embedding φ_{i}^{w} of Δ_{i}^{w} in $\mathbb{R}^{l(w)}$ such that for any dominant weight $\lambda=\sum_{i} c_{i} \omega_{i}$, we have $\operatorname{Card}\left(\Delta_{\lambda}^{w} \cap \mathbb{Z}^{\ell(w)}\right)=\operatorname{dim} E_{w}(\lambda)$ where $\Delta_{\lambda}^{w}=\sum_{i} c_{i} \varphi_{i}^{w}\left(\Delta_{i}^{w}\right)$.

Remark 7.3

(1) As remarked by one of the referees, there is no obvious relation between the set of Kempf elements (for the definition of Kempf elements, see [13]) and the set of w whose connected parts satisfy condition (i) or (ii) of the theorem. Note that in the case of sl_{3}, all the elements of the Weyl group satisfy the conditions of the theorem, while $s_{2} s_{1}$ is not a Kempf element.
(2) In the case of sl_{4}, there are exactly 7 elements in W which satisfy neither of the 2 conditions. Namely they are $s(1,1) s(3,2), s(2,1) s(3,3), s(2,1) s(3,2), s(1,1) s(2,2) s(3,2)$, $s(1,1) s(2,1) s(3,3), s(1,1) s(2,1) s(3,2)$ and $s(1,1) s(2,2) s(3,1)$. However, a case by case analysis shows that, by using the same construction, the theorem is true in these cases.
(3) Let λ be a dominant weight. If $w^{\prime} \equiv w$ modulo W_{λ}, the stabiliser of λ, then $E_{w^{\prime}}(\lambda)=$ $E_{w}(\lambda)$. Therefore, if we can find a w satisfying the conditions of Theorem 7.2, then the number of lattice points in $m \Delta_{\lambda}^{w}$ is equal to the dimension of $E_{w^{\prime}}(m \lambda)$ for any $m \in \mathbb{N}$. In particular, such elements can always be found in the case of fundamental weights (that is, when the stabiliser is W_{i} for some i).

Let us fix $w=s\left(a_{1}, b_{1}\right) s\left(a_{2}, b_{2}\right) \cdots s\left(a_{k}, b_{k}\right)$.
Let us make the idea behind our embedding more precise. Since Δ_{i}^{w} is the convex hull of its vertices and that the vertices are in one-to-one correspondence with the elements of W_{i}^{w}, we simply need to specify the image of the vertex corresponding to an element $\sigma \in W_{i}^{w}$, denoted by $\varphi_{i}^{w}(\sigma)$. We have

$$
\sigma=\left(r_{1}, \ldots, r_{i}\right)=s\left(r_{1}, n-i+1\right) s\left(r_{2}, n-i+2\right) \cdots s\left(r_{i}, i\right)
$$

The following description of $\varphi_{i}^{w}(\sigma)$ may seem vague, but with the example that follows it will become more transparent. We shall index the standard basis of $\mathbb{R}^{\ell(w)}$ using the expression of w, that is, we write the standard basis as $e_{p q}$ where $p=1, \ldots, k$ and $q=$ b_{p}, \ldots, a_{p}. Consider the rightmost subexpression of w identical to the above expression of σ. Then we define the coefficient of $e_{p q}$ of $\varphi_{i}^{w}(\sigma)$ to be 1 if the index belongs to this subexpression, and zero otherwise.

Let us clarify all this with an example. Let $w=s_{2} s_{1} s_{3} s_{2} s_{1}=s(2,1) s(3,1)$ be an element of the Weyl group of sl_{4}. It satisfies condition (i) of Theorem 7.2. We have

$$
\begin{aligned}
& W_{1}^{w}=\left\{1, s_{1}, s_{2} s_{1}, s_{3} s_{2} s_{1}\right\}, \quad W_{2}^{w}=\left\{1, s_{2}, s_{3} s_{2}, s_{1} s_{2}, s_{1} s_{3} s_{2}, s_{2} s_{1} s_{3} s_{2}\right\} \\
& W_{3}^{w}=\left\{1, s_{3}, s_{2} s_{3}\right\}
\end{aligned}
$$

According to the discussion above, $\varphi_{i}^{w}(1)$ is the zero vector for any i. To specify $\varphi_{1}^{w}\left(s_{1}\right)$, we "embed" s_{1} as right as possible in the expression $s_{2} s_{1} s_{3} s_{2} s_{1}$, so we get $\varphi_{1}^{w}\left(s_{1}\right)=$
$(0,0,0,0,1)$. Similarly, we "embed" $s_{2} s_{1}$ as right as possible in $s_{2} s_{1} s_{3} s_{2} s_{1}$, and we get $\varphi_{1}^{w}\left(s_{2} s_{1}\right)=(0,0,0,1,1)$ and so forth. Hence, we obtain the following table.

	s_{2}	s_{1}	s_{3}	s_{2}	s_{1}
s_{1}	0	0	0	0	1
$s_{2} s_{1}$	0	0	0	1	1
$s_{3} s_{2} s_{1}$	0	0	1	1	1
s_{2}	0	0	0	1	0
$s_{3} s_{2}$	0	0	1	1	0
$s_{1} s_{2}$	0	1	0	1	0
$s_{1} s_{3} s_{2}$	0	1	1	1	0
$s_{2} s_{1} s_{3} s_{2}$	1	1	1	1	0
s_{3}	0	0	1	0	0
$s_{2} s_{3}$	1	0	1	0	0

Although it is easy to describe the image of σ in this way, this description needs to be formalised so that we can prove that it works.

Definition 7.4 Let $w=s\left(a_{1}, b_{1}\right) \cdots s\left(a_{k}, b_{k}\right)$. Define $\mathbf{p}_{i}=\left(p_{1}^{i}, \ldots, p_{i}^{i}\right)$ by reverse induction (i.e., starting from i and going down to 1). Set $p_{i+1}^{i}=+\infty$, then

$$
p_{j}^{i}= \begin{cases}\max \left\{l \mid b_{l} \leq j \leq a_{l}, l<p_{j+1}^{i}\right\} & \text { if it exists } \\ -1 & \text { otherwise }\end{cases}
$$

In other words, if we write $u_{j}=s\left(a_{j}, b_{j}\right)$, then p_{i}^{i} is the biggest integer l such that s_{i} occurs in u_{l} (or in $u_{l} u_{l+1} \cdots u_{k}$). And p_{i-1}^{i} is the biggest integer l^{\prime} such that $s_{i-1} s_{i}$ appears as a subexpression of $u_{l^{\prime}} u_{l^{\prime}+1} \cdots u_{k}$. And so on.

For instance, let us look at the example above where we let $w=s_{2} s_{1} s_{3} s_{2} s_{1}=s(2,1) s(3,1)$. Here we have $a_{1}=2, b_{1}=1, a_{2}=3, b_{2}=1$. Thus according to the definition $\mathbf{p}_{1}=(2)$, $\mathbf{p}_{2}=(1,2), \mathbf{p}_{3}=(-1,1,2)$. Note that if $w=w_{0}$, then $\mathbf{p}_{i}=(n-i+1, \ldots, n)$.

Remark 7.5 Note that the class of w in W_{i}^{w} is $\bar{w}=\left(0,1,2, \ldots, l-2, a_{p_{l}^{i}}, \ldots, a_{p_{i}^{i}}\right)$, where l is maximal such that $p_{1}^{i}=\cdots=p_{l-1}^{i}=-1$. Therefore an element $\left(r_{1}, \ldots, r_{i}\right)$ of W_{i} is in W_{i}^{w} if and only if $r_{l-1}=l-2$ and $r_{j} \leq a_{p_{j}^{i}}$ for $l \leq j \leq i$.

Now we can formalise the description of φ_{i}^{w} given above. Let $w=s\left(a_{1}, b_{1}\right) \cdots s\left(a_{k}, b_{k}\right)$ and let us write the standard basis of $\mathbb{R}^{\ell(w)}$ as $e_{p q}$ with $p=1, \ldots, k$ and $q=b_{p}, b_{p}+$ $1, \ldots, a_{p}$. We define the map $\varphi_{i}^{w}: W_{i}^{w} \longrightarrow \mathbb{R}^{\ell(w)}$ by sending

$$
\left(r_{1}, \ldots, r_{i}\right) \longmapsto \sum_{p=p_{l}^{i} l} \sum_{l \leq q \leq r_{l}} e_{p q}
$$

Definition 7.6

(i) We define, by abuse of notation, Δ_{i}^{w} to be the convex hull of the image of W_{i}^{w} via φ_{i}^{w}.
(ii) Let $\lambda=\sum_{i=1}^{n} c_{i} \omega_{i}$ be a dominant weight, then we define Δ_{λ}^{w} to be the Minkowski sum $\sum_{i=1}^{n} c_{i} \Delta_{i}^{w}$.

8. Proof of Theorem 7.2

We shall first prove that the conditions (i) and (ii) of Theorem 7.2 give nice properties on \mathbf{p}_{i}. Then we shall define a partial order on the union of W_{i}^{w} similar to the one given in Section 4. Finally, we prove Theorem 7.2 by showing that there is a one-to-one correspondence between lattice points in Δ_{λ} and the standard monomial basis of the Demazure module $E_{w}(\lambda)$.

In this section, we shall fix an element $w=s\left(a_{1}, b_{1}\right) \cdots s\left(a_{k}, b_{k}\right)$ of W which satisfies the conditions of Theorem 7.2. By definition, non-negative entries of \mathbf{p}_{i} are distinct. We shall denote by $B\left(\mathbf{p}_{i}\right)$ the set of non-negative entries of \mathbf{p}_{i}.

Lemma 8.1 Let us suppose that $B\left(\mathbf{p}_{i}\right)$ is not empty and let $u_{i}\left(r e s p . v_{i}\right)$ be minimal (resp. maximal) in $B\left(\mathbf{p}_{i}\right)$.
(i) The element $s\left(a_{u_{i}}, b_{u_{i}}\right) s\left(a_{u_{i}+1}, b_{u_{i}+1}\right) \cdots s\left(a_{v_{i}}, b_{v_{i}}\right)$ occurs (as a subexpression) in a connected part of w.
(ii) The set $B\left(\mathbf{p}_{i}\right)$ is a set of consecutive integers, that is, $B\left(\mathbf{p}_{i}\right)=\left\{m \in \mathbb{N}^{*} \mid u_{i} \leq m \leq v_{i}\right\}$ where u_{i} and v_{i} are as defined in (i).
(iii) If $i<j$ and $B\left(\mathbf{p}_{j}\right)$ is non-empty, then $v_{i} \leq v_{j}$.

Proof: Assertion (i) is a direct consequence of the definition of a connected part.
By definition, $B\left(\mathbf{p}_{i}\right) \subset\{1, \ldots, k\}$. Let us suppose that there exists $r>1$ such that $r \in B\left(\mathbf{p}_{i}\right)$ and $r-1 \notin B\left(\mathbf{p}_{i}\right)$. To prove (ii), il suffices to show that r is minimal in $B\left(\mathbf{p}_{i}\right)$.

There exists j such that $r=p_{j}^{i}$. Hence, by the definition of \mathbf{p}_{i}, we have $b_{r} \leq j \leq a_{r}$, and that either $j-1<b_{r-1}$ or $a_{r-1}<j-1$.

If $b_{r}-1 \leq j-1<b_{r-1}$, then $b_{r-1} \geq b_{r}$. We are therefore in a connected part of w satisfying condition (i) of Theorem 7.2. It follows that $p_{j-1}^{i}=-1$.

If $a_{r-1}<j-1$, then $j-1>a_{l}$ for all $l=1, \ldots, r-1$. It follows again that $p_{j-1}^{i}=-1$.
Consequently, $p_{j-1}^{i}=-1$ in both cases and therefore r is minimal in $B\left(\mathbf{p}_{i}\right)$.
Finally, for (iii). Suppose that $v_{j}<v_{i}$, then $a_{v_{j}}<a_{v_{i}}$. Since $v_{i}=p_{i}^{i}$ and $v_{j}=p_{j}^{j}$, we would have

$$
b_{v_{i}} \leq i \leq j \leq a_{v_{j}}<a_{v_{i}}
$$

Therefore $v_{j}=p_{j}^{j} \geq v_{i}$, contradiction.
In view of the lemma, we define $s\left(\mathbf{p}_{i}\right)$ to be $s\left(a_{u_{i}}, b_{u_{i}}\right) s\left(a_{u_{i}+1}, b_{u_{i}+1}\right) \cdots s\left(a_{v_{i}}, b_{v_{i}}\right)$. By part (i), $s\left(\mathbf{p}_{i}\right)$ occurs in a connected part of w.

Corollary 8.2 Let $i \leq j$ be such that $B\left(\mathbf{p}_{i}\right)$ and $B\left(\mathbf{p}_{j}\right)$ are not empty. Let $u_{i}, v_{i}, u_{j}, v_{j}$ be as defined in Lemma 8.1. Then we have one of the following three possibilities:
(i) $s\left(\mathbf{p}_{i}\right)$ and $s\left(\mathbf{p}_{j}\right)$ both occur in a connected part of w which satisfies condition (i) of Theorem 7.2. Furthermore $v_{i}=v_{j}$.
(ii) $s\left(\mathbf{p}_{i}\right)$ and $s\left(\mathbf{p}_{j}\right)$ both occur in a connected part of w which satisfies condition (ii) of Theorem 7.2. Furthermore, $v_{i}+j-i=v_{j}, u_{i}=u_{j}$.
(iii) $s\left(\mathbf{p}_{i}\right)$ and $s\left(\mathbf{p}_{j}\right)$ occur in different connected parts of w. Furthermore, this implies that $i<j$ and $a_{v_{i}}+1<b_{l}$ for all $u_{j} \leq l \leq v_{j}$.

Example 8.3 Let us look at some examples:
(1) Let $w=w_{0}$, then $B\left(\mathbf{p}_{i}\right)=\{m \in \mathbb{Z} \mid n-i+1 \leq m \leq n\}$ and so $u_{i}=n-i+1$, $v_{i}=n$.
(2) Let $n=3$ and $w=s(1,1) s(3,1)$, then $B\left(\mathbf{p}_{1}\right)=\{2\}, u_{1}=v_{1}=2, B\left(\mathbf{p}_{2}\right)=\{1,2\}$, $u_{2}=1, v_{2}=2$, and $B\left(\mathbf{p}_{3}\right)=\{2\}, u_{2}=v_{2}=2$.

We shall now define a partial order on $\mathcal{W}^{w}:=\coprod_{i=1}^{n} W_{i}^{w}$.
Let $\mathbf{r}=\left(r_{1}, \ldots, r_{i}\right) \in W_{i}^{w}, \mathbf{r}^{\prime}=\left(r_{1}^{\prime}, \ldots, r_{j}^{\prime}\right) \in W_{j}^{w}$ with $i \leq j$. And let $u_{i}, v_{i}, u_{j}, v_{j}$ be as in Lemma 8.1.

Lemma 8.4 Suppose that $s\left(\mathbf{p}_{i}\right)$ and $s\left(\mathbf{p}_{j}\right)$ both occur in a connected part of w which satisfies condition (i) of Theorem 7.2, we define $\max \left(\mathbf{r}, \mathbf{r}^{\prime}\right), \min \left(\mathbf{r}, \mathbf{r}^{\prime}\right)$ as in Section 4. Then $\max \left(\mathbf{r}, \mathbf{r}^{\prime}\right) \in W_{j}^{w}$ and $\min \left(\mathbf{r}, \mathbf{r}^{\prime}\right) \in W_{i}^{w}$.

Proof: From Section 4, we know that $\max \left(\mathbf{r}, \mathbf{r}^{\prime}\right) \in W_{j}$ and $\min \left(\mathbf{r}, \mathbf{r}^{\prime}\right) \in W_{i}$. So we only need to show that they are in W_{j}^{w} and W_{i}^{w} respectively.

Let $d(i)=v_{i}-u_{i}+1$. By Remark 7.5, we can write

$$
\mathbf{r}=\left(0,1, \ldots, i-d(i)-1, r_{i-d(i)+1}, \ldots, r_{i}\right)
$$

and

$$
\mathbf{r}^{\prime}=\left(0,1, \ldots, j-d(j)-1, r_{j-d(j)+1}^{\prime}, \ldots, r_{j}^{\prime}\right)
$$

By Corollary 8.2, $I:=B\left(\mathbf{p}_{i}\right) \cap B\left(\mathbf{p}_{j}\right)$ is the set of integers between max $\left(u_{i}, u_{j}\right)$ and $v_{i_{j}}=v_{j}$.
Let $l \in I$, then since $p_{i}^{i}=v_{i}=v_{j}=p_{j}^{j}$, there exists m such that $l=p_{i-m}^{i}=p_{j-m}^{j}$. It follows from Remark 7.5 that $i-m-1 \leq r_{i-m} \leq a_{l}$ and $i-m-1 \leq j-m-1 \leq r_{j-m}^{\prime} \leq a_{l}$. To finish the proof, we shall show that $r_{m+j-i}^{\prime} \geq r_{m}$ for all $m \leq \max (i-d(i), j-d(j))$.
If $j-d(j) \leq i-d(i)$, then $I=B\left(\mathbf{p}_{i}\right) \subset B\left(\mathbf{p}_{j}\right)$. Since $j \geq i$, we obtain by inspection that $r_{m+j-i}^{\prime} \geq m+j-i-1 \geq m-1=r_{m}$ for all $m \leq i-d(i)$.
If $i-d(i)<j-d(j)$, then $i<j$ and $I=B\left(\mathbf{p}_{j}\right)$ is a strict subset of $B\left(\mathbf{p}_{i}\right)$. Note that $p_{j-d(j)}^{j}=-1$. We claim that $j-d(j)>a_{u_{j}-1}$.
Let us prove our claim. If we have $i-d(i)<j-d(j)<b_{u_{j}-1}$, then $p_{i-d(i)+1}^{i}=-1$ since we are working in a connected part satisfying condition (i) of Theorem 7.2. But this will imply that $B\left(\mathbf{p}_{i}\right)$ has at most $d(i)-1$ elements which is absurd.

So we have $j-d(j)>a_{u_{j}-1}$. It follows from the above expressions for \mathbf{r}, and \mathbf{r}^{\prime} that

$$
r_{m}^{\prime}=m-1 \geq a_{u_{j}-1}-(j-d(j)-m) \geq a_{m+v_{i}-j} \geq r_{m+i-j}
$$

for all $j-i+u_{i} \leq m \leq j-d(j)$.
Lastly, if $j-i<m<j-i+u_{i}$, then $r_{m+i-j}=m+i-j-1<m-1=r_{m}^{\prime}$. Hence our proof is complete.

Lemma 8.5 Suppose that $s\left(\mathbf{p}_{i}\right)$ and $s\left(\mathbf{p}_{j}\right)$ both occur in a connected part of w which satisfies condition (ii) of Theorem 7.2, we define $\min \left(\mathbf{r}, \mathbf{r}^{\prime}\right):=\left(m_{1}, \ldots, m_{j}\right)$ and $\max \left(\mathbf{r}, \mathbf{r}^{\prime}\right):=$ $\left(M_{1}, \ldots, M_{i}\right)$ as follows:
(i) $m_{l}:=\min \left(r_{l}, r_{l}^{\prime}\right)$ and $M_{l}:=\max \left(r_{l}, r_{l}^{\prime}\right)$ si $u_{i} \leq l \leq v_{i}$;
(ii) $m_{l}:=r_{l}^{\prime}$ and $M_{l}:=r_{l}$ otherwise.

Then $\max \left(\mathbf{r}, \mathbf{r}^{\prime}\right) \in W_{i}^{w}$ and $\min \left(\mathbf{r}, \mathbf{r}^{\prime}\right) \in W_{j}^{w}$.
Proof: By Corollary 8.2, $I:=B\left(\mathbf{p}_{i}\right) \cap B\left(\mathbf{p}_{j}\right)$ is the set of integers between $u_{i}=u_{j}$ and $v_{i}=v_{j}+i-j$. Since we are working in a connected part satisfying condition (ii) of Theorem 7.2, we can write as in the previous lemma:

$$
\mathbf{r}=\left(0,1, \ldots, i-d(i)-1, r_{i-d(i)+1}, \ldots, r_{i}\right)
$$

and

$$
\mathbf{r}^{\prime}=\left(0,1, \ldots, i-d(i)-1, r_{i-d(i)+1}^{\prime}, \ldots, r_{i}^{\prime}, \ldots, r_{j}^{\prime}\right)
$$

where $m-1 \leq r_{m}, r_{m}^{\prime} \leq m$. It is now clear that $\max \left(\mathbf{r}, \mathbf{r}^{\prime}\right) \in W_{i}^{w}$ and $\min \left(\mathbf{r}, \mathbf{r}^{\prime}\right) \in W_{j}^{w}$.

Definition 8.6 If $B\left(\mathbf{p}_{i}\right) \cap B\left(\mathbf{p}_{j}\right)$ is not empty, then we define $\max \left(\mathbf{r}, \mathbf{r}^{\prime}\right)$ and $\min \left(\mathbf{r}, \mathbf{r}^{\prime}\right)$ according to the lemmas above. On the other hand, if $i<j$ and $B\left(\mathbf{p}_{i}\right) \cap B\left(\mathbf{p}_{j}\right)$ is empty, then we define $\max \left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\mathbf{r}^{\prime}$ and $\min \left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\mathbf{r}$. Notice that if $B\left(\mathbf{p}_{i}\right)$ is empty, then W_{i}^{w} has only one element and therefore this definition is well-defined.

Moreover, we define a binary relation \preceq_{w} on \mathcal{W}^{w} by:
$\mathbf{r} \preceq_{w} \mathbf{r}^{\prime}$ if and only if $\max \left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\mathbf{r}^{\prime}$ and $\min \left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\mathbf{r}$
where here, we do not assume that $i \leq j$.
Remark 8.7 When $i<j$ and $B\left(\mathbf{p}_{i}\right) \cap B\left(\mathbf{p}_{j}\right)$ is empty, the binary relation $\mathbf{r} \preceq_{w} \mathbf{r}^{\prime}$ coincides with the partial ordering defined in Section 4.

Example 8.8

(1) Let $w=w_{0}$, then this definition is the same as the one defined in Section 4.
(2) Let $n=2$ and $w=s(1,1) s(2,2)$, then $W_{1}^{w}=\left\{1=(0), s_{1}=(1)\right\}$ and $W_{2}^{w}=\{1=$ $\left.(0,1), s_{2}=(0,2), s_{1} s_{2}=(1,2)\right\}$. We have therefore,

$$
(0,1) \prec(0,2) \prec(1,2) \prec(1),(0,1) \prec(0,2) \prec(0),(0) \prec(1)
$$

and $\max ((0),(1,2))=(1), \min ((0),(1,2))=(0,2)$. Note that the maximal element is (1).

Lemma 8.9 The binary relation \preceq_{w} defines a partial ordering on \mathcal{W}^{w}. Furthermore, together with the operations max and min, it defines a lattice structure on \mathcal{W}^{w} (see Lemma 4.2).

Proof: The only point which is unclear is transitivity. But by Corollary 8.2, if $s\left(\mathbf{p}_{i}\right), s\left(\mathbf{p}_{j}\right)$ and $s\left(\mathbf{p}_{l}\right)$ are in the same connected part, then either $v_{i}=v_{j}=v_{k}$ or $u_{i}=u_{j}=u_{k}$. The former is just an analogue of the partial ordering in Section 4. The latter can be verified easily using Lemma 8.4. Finally, the fact that the operations max and min induces a lattice structure on \mathcal{W}^{w} is clear from the definition.

Theorem 8.10 Let $\lambda=\sum_{i=1}^{n} c_{i} \omega_{i}$ be a dominant weight. Then a lattice point in Δ_{λ} can be written as the sum of c_{1} lattice points in Δ_{1}^{w}, c_{2} lattice points in Δ_{2}^{w} and so on.

Proof: This theorem is the analogue of Theorem 5.1, and it can be proved similarly. The key point is that the proofs of Theorem 5.1 and Theorem 5.2 only require a partial ordering equipped with a max-min operation satisfing Lemma 4.3 and 4.5. The analogues of Lemma 4.3 and 4.5 can be easily shown.

Example 8.11 Let us first look at example 2 of 8.8. Consider $w=s_{1} s_{2}=s(1,1) s(2,2)$. It satisfies condition (i) of Theorem 7.2.

We obtain immediately that $\mathbf{p}_{1}=(1)$ and $\mathbf{p}_{2}=(1,2)$. As above, we have in terms of minimal representatives,

$$
\begin{aligned}
W_{1}^{w} & =\left\{1, s_{1}\right\} \\
W_{2}^{w} & =\left\{1, s_{2}, s_{1} s_{2}\right\}
\end{aligned}
$$

We then obtain via φ_{i}^{w} the following table:

	s_{1}	s_{2}	
	e_{11}	e_{22}	
s_{1}	1	0	(1)
s_{2}	0	1	$(0,2)$
$s_{1} s_{2}$	1	1	$(1,2)$

The right most column corresponds to the notations of the elements in \mathcal{W}^{w}. The images of $(0,1)$ and (0) are both 0 .

If we consider the adjoint representation, then the highest weight is $\omega_{1}+\omega_{2}$ and one verifies easily by hand that the lattice points in $\Delta_{1}^{w}+\Delta_{2}^{w}$ are the ones in Δ_{1}^{w} and Δ_{2}^{w}
together with the point $2 e_{11}+e_{22}$. Thus the number of lattice points is 5 which is exactly the dimension of the Demazure module $E_{w}\left(\omega_{1}+\omega_{2}\right)$.
Note that $\varphi_{1}^{w}(1)+\varphi_{2}^{w}(0,2)=\varphi_{1}^{w}(0)+\varphi_{2}^{w}(1,2)$. Again this can be seen to correspond to the tensor product decomposition of \mathbf{b}-modules.
We prove the following key lemmas. As before, we let $\mathbf{r}=\left(r_{1}, \ldots, r_{i}\right) \in W_{i}^{w}$ and $\mathbf{r}^{\prime}=$ $\left(r_{1}^{\prime}, \ldots, r_{j}^{\prime}\right) \in W_{j}^{w}$ with $i \leq j$. Recall that $w=s\left(a_{1}, b_{1}\right) \cdots s\left(a_{k}, b_{k}\right)$.

Lemma 8.12 Suppose that $s\left(\mathbf{p}_{i}\right)$ and $s\left(\mathbf{p}_{j}\right)$ both occur in a connected part of w which satisfies condition (i) of Theorem 7.2. Then $\mathbf{r} \preceq_{w} \mathbf{r}^{\prime}$ if and only if there exist $r \preceq r^{\prime} \preceq w$ in W such that the class of $r\left(\right.$ resp. $\left.r^{\prime}\right)$ in $W_{i}^{w}\left(\right.$ resp. $\left.W_{j}^{w}\right)$ is \mathbf{r} (resp. $\left.\mathbf{r}^{\prime}\right)$.

Proof: By Lemma 8.4, the partial ordering \preceq_{w} coincides with the one defined in Section 4. It follows that the "if" part has already been proved using semi-standard Young tableaux.

Now suppose that $\mathbf{r} \preceq_{w} \mathbf{r}^{\prime}$, we define

$$
r:=s\left(r_{i-v_{i}+u_{i}}, i-v_{i}+u_{i}\right) s\left(r_{i-v_{i}+u_{i}+1}, i-v_{i}+u_{i}+1\right) \cdots s\left(r_{i}, i\right) \in W
$$

where we let $s(a-1, a)$ to be the identity in W, and
$r^{\prime}:=s\left(r_{j-v_{j}+u_{j}}^{\prime}, j-v_{j}+u_{j}\right) s\left(r_{j-v_{j}+u_{j}+1}^{\prime}, j-v_{j}+u_{j}+1\right) \cdots s\left(r_{j}^{\prime}, j\right) \in W$ if $u_{i} \geq u_{j}$
and if $u_{i}<u_{j}$, we set

$$
\begin{aligned}
r^{\prime}:= & s\left(r_{i-v_{i}+u_{i}}, i-v_{i}+u_{i}\right) s\left(r_{i-v_{i}+u_{i}+1}, i-v_{i}+u_{i}+1\right) \cdots s\left(r_{j-v_{j}+u_{j}}^{\prime}\right. \\
& \left.j-v_{j}+u_{j}\right) \cdots s\left(r_{j}^{\prime}, j\right)
\end{aligned}
$$

Note that $v_{i}=v_{j}$. In the first case, it is easy to see that the class of r^{\prime} in W_{j} is \mathbf{r}^{\prime}. For the second, we use the fact that $r_{i-v_{j}+u_{j}-1}<j-v_{j}+u_{j}-1$ (see the proof of Lemma 8.4). Moreover, these are clearly reduced expressions. Since $\mathbf{r} \preceq_{w} \mathbf{r}^{\prime}, r_{i-m} \leq r_{i-m}^{\prime}$ for all m and we have $r \preceq r^{\prime} \preceq w$ in W as required.

Lemma 8.13 Suppose that $s\left(\mathbf{p}_{i}\right)$ and $s\left(\mathbf{p}_{j}\right)$ both occur in a connected part of w which satisfies condition (ii) of Theorem 7.2. Then $\mathbf{r}^{\prime} \preceq_{w} \mathbf{r}$ if and only if there exist $r^{\prime} \preceq r \preceq w$ in W such that the class of r (resp. r^{\prime}) in $W_{i}^{w}\left(r e s p . W_{j}^{w}\right)$ is \mathbf{r} (resp. $\left.\mathbf{r}^{\prime}\right)$.

Proof: Suppose that $\mathbf{r}^{\prime} \preceq_{w} \mathbf{r}$. This implies that $l-1 \leq r_{l}^{\prime} \leq r_{l} \leq l$ for $l=i-v_{i}+u_{i}, \ldots, i$ (see the proof of Lemma 8.5). Note that here, $\mathbf{r}^{\prime}=s_{t^{\prime}} s_{t^{\prime}+1} \cdots s_{j}$ where $t^{\prime} \leq j$ is minimal such that $r_{t^{\prime}}^{\prime}=t^{\prime}$ and $\mathbf{r}=s_{t} s_{t+1} \cdots s_{i}$ where $t \leq i$ is minimal such that $r_{t}=t$. In particular $t \leq t^{\prime}$. We shall simply define $r^{\prime}:=\mathbf{r}^{\prime}=s_{t^{\prime}} s_{t^{\prime}+1} \cdots s_{j}, r:=s_{t} s_{t+1} \cdots s_{i} s_{i+1} \cdots s_{j}$ and $r^{\prime} \preceq r \preceq w$ as required.

On the other hand suppose that $r^{\prime} \preceq r \preceq w$ in W. As above, we have $\mathbf{r}^{\prime}=s_{t^{\prime}} s_{t^{\prime}+1} \cdots s_{j}$ where $t^{\prime} \leq j$ is minimal such that $r_{t^{\prime}}^{\prime}=t^{\prime}$. Recall that we are working in a connected part satisfying condition (ii) of Theorem 7.2.
If $i<t^{\prime}$, then $l-1=r_{l-1}^{\prime}$ for $l \leq i$, and so $r_{l}^{\prime} \leq r_{l}$. We then have $\mathbf{r}^{\prime} \preceq_{w} \mathbf{r}$.

If $t^{\prime} \leq i$, then since $\mathbf{r}^{\prime} \preceq r^{\prime} \preceq r$, we have $s_{t^{\prime}} s_{t^{\prime}+1} \cdots s_{j}$, and consequently $s_{t^{\prime}} s_{t^{\prime}+1} \cdots s_{i}$ can be written as subexpressions of a reduced expression for r. It follows that $\mathbf{r}^{\prime} \preceq \mathbf{r}$.

Lemma 8.14 Suppose that $s\left(\mathbf{p}_{i}\right)$ and $s\left(\mathbf{p}_{j}\right)$ occur in different connected parts. Then $\mathbf{r} \preceq_{w} \mathbf{r}^{\prime}$ if and only if there exist $r \preceq r^{\prime} \preceq w$ in W such that the class of r (resp. r^{\prime}) in W_{i}^{w} (resp. W_{j}^{w}) is \mathbf{r} (resp. \mathbf{r}^{\prime}).

Proof: By Remark 8.7, the partial ordering \preceq_{w} coincides with with the one defined in Section 4. It follows that the "if" part has already been proved using semi-standard Young tableaux.

Since we are working in different connected parts, and distinct connect parts commute, \mathbf{r} and \mathbf{r}^{\prime} commute also. Therefore if we define $r:=\mathbf{r}$ and $r^{\prime}=\mathbf{r r}^{\prime}$ in W. By definition, we always have $\mathbf{r} \preceq \mathbf{r}^{\prime} \preceq w$.

Corollary 8.15 Let $\mathbf{r}_{1}, \ldots, \mathbf{r}_{m}$ be elements of \mathcal{W}^{w} such that $\mathbf{r}_{1} \preceq_{w} \cdots \preceq_{w} \mathbf{r}_{m}$. Then there exist liftings r_{1}, \ldots, r_{m} in W^{w} such that the class of r_{j} is \mathbf{r}_{j} (in the appropriate W_{l}^{w}) and $r_{1} \preceq \cdots \preceq r_{m}$.

Corollary 8.16 Let λ be a dominant weight. There exists a bijection between the set of lattice points of Δ_{λ}^{w} and the standard monomial basis of the Demazure module $E_{w}(\lambda)$ (see $[14,17])$.

Proof: We can prove an analogue of Proposition 4.4. Using this and Theorem 8.10, we can write a lattice point in Δ_{λ}^{w} as the sum $\sum_{i=1}^{m} \mathbf{r}_{i}$ such that $\mathbf{r}_{i} \in W^{w}$ and $\mathbf{r}_{1} \preceq_{w} \mathbf{r}_{2} \preceq_{w}$ $\cdots \preceq_{w} \mathbf{r}_{m}$. Corollary 8.15 then implies that the set of lattice points of Δ_{λ}^{w} is in bijection with the standard monomial basis of $E_{w}(\lambda)$.

Example 8.17 In the case of example 2 of 8.8, the reader can verify that the three chains can be lifted as follows:

$$
1 \preceq s_{2} \preceq s_{1} s_{2} \preceq s_{1} s_{2}, 1 \preceq s_{2} \preceq s_{2}, s_{2} \preceq s_{1} s_{2}
$$

and there are no liftings r of (0) and r^{\prime} of $(1,2)$ such that $r^{\prime} \preceq r$.

9. An Example

Let us consider a slightly more complicated case. Let $w=s_{1} s_{3} s_{2} s_{1}=s(1,1) s(3,1)$ be an element of the Weyl group of sl_{4}. It satisfies condition (i) of Theorem 7.2. In this case, we have $\mathbf{p}_{1}=(3), \mathbf{p}_{2}=(1,3)$ and $\mathbf{p}_{3}=(-1,-1,3)$. Thus,

$$
\begin{aligned}
& W_{1}^{w}=\left\{1, s_{1}, s_{2} s_{1}, s_{3} s_{2} s_{1}\right\} \\
& W_{2}^{w}=\left\{1, s_{2}, s_{3} s_{2}, s_{1} s_{2}, s_{1} s_{3} s_{2}\right\} \\
& W_{3}^{w}=\left\{1, s_{3}\right\}
\end{aligned}
$$

As before, we compute the following table:

	s_{1}	s_{3}	s_{2}	s_{1}	
	e_{11}	e_{33}	e_{32}	e_{31}	
s_{1}	0	0	0	1	(1)
$s_{2} s_{1}$	0	0	1	1	(2)
$s_{3} s_{2} s_{1}$	0	1	1	1	(3)
s_{2}	0	0	1	0	$(0,2)$
$s_{3} s_{2}$	0	1	1	0	$(0,3)$
$s_{1} s_{2}$	1	0	1	0	$(1,2)$
$s_{1} s_{3} s_{2}$	1	1	1	0	$(1,3)$
s_{3}	0	1	0	0	$(0,1,3)$

The reader can verify for example for the adjoint representation as in Section 4 that the number of lattice points in $\Delta_{1}^{w}+\Delta_{3}^{w}$ is the dimension of the Demazure module $E_{w}\left(\omega_{1}+\omega_{3}\right)$ which is 7 .

10. Some applications

We shall apply our results in this section to obtain a combinatorial description of the weight multiplicities of a Demazure module, and we also present a polytope which is closely connected to the weight.

Let $\lambda=\sum_{i=1}^{n} a_{i} \omega_{i}$ be a dominant weight, $w=s\left(a_{1}, b_{1}\right) \cdots s\left(a_{k}, b_{k}\right)$ be an element of W satisfying the conditions of Theorem 7.2 and denote by $m_{\lambda}^{w}(\mu)$ the multiplicity of the weight μ in $E_{w}(\lambda)$.

Let $e_{p q}$ be the standard basis as in Section 7 and $\alpha_{i}, i=1, \ldots, n$ be the set of simple roots as in the introduction.

Definition 10.1 We define a linear map

$$
A^{w}: \mathbb{R}^{\ell(w)} \longrightarrow P \otimes_{\mathbb{Z}} \mathbb{R}=: P_{\mathbb{R}}
$$

by sending $e_{p q}$ to α_{q}.
We shall denote by A_{λ}^{w} the affine map $\lambda-A^{w}$ from $\mathbb{R}^{\ell(w)}$ to $P_{\mathbb{R}}$.

Theorem 10.2 The character of the Demazure module $E_{w}(\lambda)$ is given by

$$
\operatorname{char} E_{w}(\lambda)=e^{\lambda} \sum_{x} e^{-A^{w}(x)}
$$

where the sum runs through the lattice points x of Δ_{λ}^{w}.

Proof: Let $\mu \in P$. To prove the theorem, it suffices to prove that

$$
m_{\lambda}^{w}(\mu)=\operatorname{Card}\left(\mathbb{Z}^{\ell(w)} \cap \Delta_{\lambda}^{w} \cap\left(A_{\lambda}^{w}\right)^{-1}(\mu)\right)
$$

Recall that the weight of a standard monomial of type λ is the weight of the corresponding weight vector in $E_{w}(\lambda)$ (see $[17,14]$). Therefore it suffices to show that for a lattice point x of $\Delta_{\lambda}^{w}, A_{\lambda}^{w}(x)$ is the weight of the standard monomial $T(x)$ corresponding to x as in the proof of Theorem 7.2.

Let x be a lattice point of Δ_{λ}^{w}. According to Proposition 6.2, we can find $\left\{\sigma_{i j}\right\}, i=$ $1, \ldots, n$ and $j=1, \ldots, a_{i}$ satisfying the conclusions of the proposition and such that $x=\sum_{i=1}^{n} \sum_{j=1}^{a_{i}} \varphi_{i}^{w}\left(\sigma_{i j}\right)$. It follows that the weight of $T(x)$ is the sum $\sum_{i, j} \sigma_{i j}\left(\omega_{i}\right)$. Since $A_{\lambda}^{w}(x)=\sum_{i=1}^{n} \sum_{j=1}^{a_{i}} A_{\omega_{i}}^{w}\left(\varphi_{i}^{w}\left(\sigma_{i j}\right)\right)$, we are reduced to the case where λ is a fundamental weight.

According to Lemma 2.3 and Theorem 3.3, there is a bijection between the weights of $V_{\omega_{i}}$ and the vertices of Δ_{i}, which in turn are indexed by the elements of W_{i}. Explicitly, the vertex $\left(r_{1}, \ldots, r_{i}\right)$ corresponds to the weight

$$
s_{r_{1}} \cdots s_{1} s_{r_{2}} \cdots s_{2} \cdots s_{r_{i}} \cdots s_{i}\left(\omega_{i}\right)=\omega_{i}-\sum_{p=1}^{i} \sum_{q=p}^{r_{p}} \alpha_{q}=\omega_{i}-\sum_{a_{p}=p_{j}^{i}} \sum_{q=j}^{r_{j}} \alpha_{q}
$$

On the other hand, $\left(r_{1}, \ldots, r_{i}\right)$ corresponds to the point $\sum_{a_{p}=p_{j}^{i}} \sum_{q=j}^{r_{j}} e_{p q}$ (see Section 7). Therefore

$$
A_{\omega_{i}}^{w}\left(\sum_{a_{p}=p_{j}^{i}} \sum_{q=j}^{r_{j}} e_{p q}\right)=\omega_{i}-\sum_{a_{p}=p_{j}^{i}} \sum_{q=j}^{r_{j}} \alpha_{q}
$$

and we are done since the multiplicity of any weight of $V_{\omega_{i}}$ is 1 .
Corollary 10.3 The image of Δ_{λ}^{w} via A_{λ}^{w} is the convex hull of $\{\sigma(\lambda) \mid \sigma \in W$ with $\sigma \preceq w\}$. In particular it is the Minkowski sum $\sum_{i} a_{i} A_{\omega_{i}}^{w}\left(\Delta_{i}^{w}\right)$.

Corollary 10.4 Let μ be a weight of $E_{w}(\lambda)$, then $\Delta_{\lambda}^{w}(\mu):=\left(A_{\lambda}^{w}\right)^{-1}(\mu) \cap \Delta_{\lambda}^{w}$ is a convex polytope with rational vertices containing all the points which correspond to the weight μ. Moreover $k \Delta_{\lambda}^{w}(\mu)=\Delta_{k \lambda}^{w}(k \mu)$.

Acknowledgments

The authors would like to thank P. Littelmann for his continuous help, T. Delzant and F. du Cloux for fruitful discussions, O. Mathieu for many useful suggestions and A. Zelevinsky for his remarks on earlier versions of this paper. The authors wish also to thank the anonymous referees for their remarks and suggestions. This work is mainly done during R.W.T. Yu's one-year detachment at the I.R.M.A. in Strasbourg and he would like to thank the C.N.R.S. for giving him this opportunity.

References

1. A. Berenstein and A. Zelevinsky, "Tensor product multiplicities and convex polytopes in partition space," J. Geom. Phys. 5 (1988), 453-472.
2. M. Brion, "Points entiers dans les polytopes convexes," Séminaire Bourbaki, Vol. 1993/94, Exp. No. 780, Astérisque 227 (1995), 145-169.
3. R. Dehy, "Résultats combinatoires sur les modules de Demazure," preprint of the Université Louis Pasteur, Strasbourg, France, 1996.
4. R. Dehy, "Degenerations of Schubert varieties of algebraic groups of rank two," preprint (1997).
5. M. Demazure, "Une nouvelle formule des caractères," Bull. Sci. Math. 98 (1974), 163-172.
6. E. Ehrhart, "Sur les polyhèdres rationnels homothéthiques à n dimension," C.R. Acad. Sci. 254 (1962) 616618.
7. W. Fulton, Intersection Theory, Springer Verlag, Berlin-New York, 1984.
8. W. Fulton and J. Harris, Representation Theory, GTM 129 Springer Verlag, 1991.
9. I. Gelfand and A. Zelevinsky, Multiplicities and regular bases for $g l_{n}$, in "Group theoretical methods in Physics," Proc. of the third seminar, Yurmala, Vol. 2, pp. 22-31, 1995.
10. N. Gonciulea and V. Lakshmibai, "Degenerations of flag and Schubert varieties to toric varieties," Transformation Groups 1(3) (1996), 215-248.
11. J.-M. Kantor, "Triangulations of integral polytopes and Ehrhart polynomials," preprint (1996).
12. A.N. Kirillov and A.D. Berenstein, "Groups generated by involutions, Gelfand-Tsetlin patterns, and combinatorics of Young tableaux," St. Petersburg Math. Journal 7(1) (1996), 77-127.
13. V. Lakshmibai, "Kempf varieties," Journal of the Indian Mathematical Society 40 (1976), 299-349.
14. V. Lakshmibai and C. Seshadri, "Geometry of G/P - V," Journal of Algebra 100 (1986), 462-557.
15. P. Littelmann, "A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras," Invent. Math. 116 (1994), 329-346.
16. P. Littelmann, "Cones, Crystals and Patterns," Transformation Groups 3(2) (1998), 145-179.
17. P. Littelmann, "A plactic algebra for semisimple Lie algebras," Adv. in Math. 124 (1996), 312-331.
18. I.G. Macdonald, "Symmetric functions and Hall polynomials," Oxford Mathematical Monographs, 1979.
19. B. Teissier, Variétés toriques et polytopes, Séminaire Bourbaki Exposé 565, LNM 901, Springer Verlag.
