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Abstract. Let w be an element of the Weyl group of sln+1. We prove that for a certain class of elementsw
(which includes the longest elementw0 of the Weyl group), there exist a lattice polytope1wi ⊂ R`(w), for each
fundamental weightωi of sln+1, such that for any dominant weightλ =∑n

i=1 aiωi , the number of lattice points in
the Minkowski sum1wλ =

∑n
i=1 ai1

w
i is equal to the dimension of the Demazure moduleEw(λ). We also define

a linear mapAw : R`(w) −→ P ⊗Z R whereP denotes the weight lattice, such that charEw(λ) = eλ
∑

e−Aw(x)

where the sum runs through the lattice pointsx of 1wλ .
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1. Introduction

In this paper, we present some results concerning the first of a two-part programme to
prove the existence of degenerations of Schubert varieties ofSL(n) into toric varieties (by
degeneration of a Schubert variety into a toric variety, we mean a flat deformation where
the generic fibre is a Schubert variety and the special fibre is a toric variety). This involves
the construction of the lattice polytope which in turn, in the second part of the programme,
will provide the toric variety into which the corresponding Schubert variety degenerates.
In this direction, Gonciulea and Lakshmibai [10] recently proved such degenerations for
Schubert varieties in an arbitrary minisculeG/P, as well as the class of Kempf varieties in
the flag varietySL(n)/B. For an arbitraryG of rank two, this has been proved by one of
the authors [4].

Let us describe our results more precisely. Fixn ∈ N∗ and K an algebraically closed
field of characteristic 0. Letb be a Borel subalgebra of sln+1(K ) andh ⊂ b a Cartan
subalgebra. Letαi , i = 1, . . . ,n, be the corresponding set of positive simple roots so
that 〈αi , α

∨
j 〉 = ai j where(ai j )i, j is the Cartan matrix, and letωi be the corresponding

fundamental weights. Denote byP, P+, W, `(−) and¹ respectively the weight lattice, the
set of dominant weights, the Weyl group which is just the symmetric group ofn+1 letters,
the length function and the Bruhat order onW. Let λ ∈ P+ andw ∈ W. SetVλ to be
the finite-dimensional irreducible representation of highest weightλ, vwλ to be a non-zero
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weight vector of weightwλ and Ew(λ) to be theb-moduleU (b)vwλ which is called the
Demazure module [5] associated tow. SetWi to be the stabilizer ofωi in W andWi the
quotientW/Wi . EndowWi with the induced Bruhat order that we shall denote equally
by ¹ and if σ ∈ Wi , then we shall denote bỳ(σ ) the induced length ofσ , which is the
minimum of the lengths of representatives ofσ .

The representation theory of a semisimple algebraic groupG is closely related to the
geometry of Schubert varieties (in particularG/B) since the Demazure modules can be
realized as the global sections of line bundles over Schubert varieties. Degenerations of
Schubert varieties into toric varieties will allow us to study the geometry of the former via
toric varieties which are combinatorial.

Let λ =∑i aiωi be a dominant weight, then the dimension ofEw(λ) is a polynomial in
the variablesai of degreè (w) because the dimension of its dualEw(λ)∗ can be described
as the Euler characteristic of the ample line bundle

⊗
i L⊗ai

ωi
over the Schubert variety

associated tow in G/Pλ ([7, 18.3.6] or [2, 2.3]). Whereas, given convex lattice polytopes
1i in R`(w), a theorem of Ehrhart [6] implies that under the condition that a lattice point
in the Minkowski sum1 := ∑i ai1i = {

∑
i ai vi wherevi ∈ 1i } is the sum overi of ai

lattice points of1i , the number of lattice points in1 is a polynomial of degreè(w) in
the variablesai . On the other hand, suppose that we have a degeneration of the Schubert
varietySw equipped with line bundlesLω1, . . . ,Lωn into the toric varietyX equipped with
line bundlesL1, . . . ,Ln. Then dimH0(Sw,

⊗
i L⊗ai

ωi
) = dim H0(X,

⊗
i L
⊗ai
i ). But to say

that X is equipped with line bundlesL1, . . . ,Ln is equivalent to havingn lattice polytopes
1w

1 , . . . , 1
w
n in R`(w) such that dimH0(X,

⊗
i L
⊗ai
i ) is the number of lattice points in the

Minkowski sum
∑n

i=1 ai1
w
i (for example, see properties B3, B4 of Section 2.3 in [19]).

These facts lead us to construct a polytope1w
i for each fundamental weightωi and then

we form the appropriate Minkowski sum.
We prove first in this paper the case wherew=w0, the longest element of the Weyl

groupW.

Theorem 1.1 There exist lattice polytopes1i ⊂ R`(w0), i = 1, . . . ,n, such that for any
λ =∑n

i=1 aiωi ∈ P+, the number of lattice points in the Minkowski sum1λ := ∑n
i=1 ai1i

is the dimension of the irreducible representation Vλ.

Polytopes satisfying Theorem 1.1 (although there was no mention of the Minkowski sum
decomposition, they do have a Minkowski sum decomposition) have been constructed using
Gelfand-Tsetlin patterns in [9, 12], by Berenstein and Zelevinsky [1] and by Littelmann
[16] via the combinatorics of Lakshmibai-Seshadri paths.

Our polytope1λ is different and it turns out that the toric variety associated to this
polytope is the same as the one constructed by Gonciulea and Lakshmibai in [10]. In
fact the Minkowski sum decomposition gives a direct link between lattice points and the
standard monomial basis (see [14, 17]) of the irreducible representation since we can prove
that a lattice point of1λ can be written as a sum overi of ai lattice points of1i .

Furthermore, since standard monomial theory exists also for Demazure modules (and for
other simple algebraic groups), we believe that our construction can be generalized to any
simple algebraic groupG as follows.
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Conjecture 1.2 Letw ∈ W. There exist lattice polytopes1w
i ⊂ R`(w), i = 1, . . . ,n,

such that for anyλ =∑n
i=1 aiωi ∈ P+, the number of lattice points in the Minkowski sum

1w
λ := ∑n

i=1 ai1
w
i is the dimension of the Demazure module Ew(λ).

As a matter of fact, the polytopes1i constructed in Theorem 1.1 are such that the vertices
{vτ }τ∈Wi are indexed byWi . We believe that1w

i of the conjecture can be chosen as the
convex hull of{vτ }τ¹w embedded (by a permutation of coordinates) inR`(w).

Indeed, we prove that this is true whenw can be written in a certain way (see Section 7
for details). Unfortunately, this does not cover all the elements of the Weyl group except in
the case whereG = SL(2) or SL(3). By weakening to a notion called polytopes with
integral structure, one of the authors proved in [3] that one can construct a polytope with
integral structure for anyw ∈ W such that the number of lattice points in the polytope is
the dimension of the associated Demazure module. However, there is no Minkowski sum
decomposition and these polytopes do not provide directly toric varieties.

This paper is organised as follows. In Section 2, we construct for each fundamental
weight ωi a lattice convex polytope1i whose vertices are indexed by the setWi . We
shall prove later in Section 5 that1i is triangulable by primitive simplices parametrized
by maximal chains. We then present an example in Section 3. In Sections 4–6, we show
how, in the case wherew = w0, a lattice point in the Minkowski sum

∑n
i=1 ai1i can

be written as a sum overi of ai lattice points of1i , and that these points exhaust the
dimension of the irreducible representationVλ whereλ = ∑n

i=1 aiωi . Sections 7 and 8
contain a discussion of the case of Demazure modules where we specify and prove the
cases where the conjecture is true. We give another example in Section 9 and finally, in
Section 10, we present applications of our results concerning combinatorial descriptions of
weight multiplicities as lattice points of a polytope with rational vertices.

We shall use the above notations throughout this paper. Furthermore, lets1, . . . , sn be
the reflections associated to the positive simple roots. For anyN ∈ N, we shall endowRN

with the following partial-ordering: letX, Y ∈ RN be such thatX 6= Y, then

X < Y if and only if Y − X ∈ RN
+

2. Construction of the polytope∆i for each fundamental weightwi

Let 1≤ i ≤ n be fixed in this section. Recall thatWi can be identified with the subset of
W consisting of elementsw such thatwsj º w for all j 6= i . It is also well known thatWi

is in bijection with the set ofi -tuples(r1, . . . , ri ) such that 0≤ r1 < r2 < · · · < ri ≤ n.
Namely, we can think ofW = Sn+1 as the group of permutations on the set{0, 1, . . . ,n}.
Then the bijectionw 7→ (r1, . . . , ri ) is given by{r1, . . . , ri } = w({0, 1, . . . , i − 1}).

The induced Bruhat order onWi is then given by:

(r1, . . . , ri ) ≺ (s1, . . . , si )⇔ (r1, . . . , ri ) < (s1, . . . , si )

where on the right hand side, thei -tuples are considered as elements ofRi .
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Note that in this notation, the smallest element is(0, 1, 2, . . . , i − 1) that we shall
denote sometimes simply by 1 when there is no confusion, and the biggest element is
(n− i + 1, n− i + 2, . . . ,n), and that the length of the latter is(n− i + 1)i . In fact, the
minimal representative of(r1, . . . , ri ) is

sr1sr1−1 · · · s1sr2sr2−1 · · · s2sr3 · · · sri sri−1 · · · si

wheresr j · · · sj = 1 if r j < j and its length is the sum overj of r j − j + 1.
We shall fix a particular reduced decomposition ofw0. Namely, we use the lexico-

graphic minimal expressionw0 = s1s2s1s3s2s1 · · · snsn−1 · · · s1. Notice that each minimal
representative ofWi can be written as a subexpression of this reduced decomposition.

Remark 2.1 We shall think of this asn blocks where block 1 iss1, block 2 iss2s1, . . . ,

blockn is snsn−1 · · · s1.

Let us write the standard basis vectors inR`(w0) as epq with 1 ≤ q ≤ p ≤ n. Let
1≤ i ≤ n, and(r1, . . . , ri ) be an element ofWi , we then define

ϕ(r1, . . . , ri ) =
n∑

p=n−i+1

r p+i−n∑
q=p+i−n

epq ∈ R`(w0)

Definition 2.2 Let c: τ1 Â · · · Â τm be a chain inWi . We defineSc to be the convex hull
of the points{ϕ(τ j )}mj=1 and we define1i to be the convex hull of the points{ϕ(τ)}τ∈Wi .

Lemma 2.3
(a) The vertices of1i are the only lattice points in1i and they are indexed by the elements

of Wi .
(b) The mapϕ is order-preserving.
(c) Letc: τ1 Â · · · Â τ(n−i+1)i Â 1 be a maximal chain in Wi . The polytope Sc is a simplex

of dimension(n− i + 1)i and its volume is1/((n− i + 1)i )!.

Proof: The first two assertions are direct consequences of the definition ofϕi . For part
(c), notice that the pointsϕ(τ1), . . . , ϕ(τ(n−i+1)i ) are linearly independent andϕ(1) is zero
in R`(w0). So Sc is a simplex. Sinceϕ(τ1), . . . , ϕ(τ(n−i+1)i ) can be obtained from the
canonical basis via a matrix (with integer entries) of determinant 1 or−1, the volume ofSc

is 1/((n− i + 1)i )!. 2

We deduce from our definition the following properties between the polytopes1i .

Proposition 2.4
(a) The intersection of1i and1 j is {0} whenever i6= j .
(b) Let x=∑p,q xpqepq ∈ 1i , then xpq = 0 if p < n− i + 1.
(c) If x = ∑

p,q xpqepq ∈ 1i is such that xst 6= 0, then xst′ 6= 0 for all t ′ = t, t +
1, . . . , rs+i−n.
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Proof: Assertions (b) and (c) are straightforward. So let us prove (a). We can assume
that i < j . Notice that the coefficient ofeni for any non-zero element of1i is non-zero
while it is zero for any element of1 j . Thus (a) follows. 2

Let λ = ∑n
i=1 aiωi be a dominant weight (thus eachai ∈ N) andVλ be the irreducible

sln+1-module of highest weightλ.

Definition 2.5 We define the polytope1λ to be the Minkowski sum
∑n

i=1 ai1i .

Since the1i ’s are lattice convex polytopes, the polytope1λ is also a lattice convex
polytope. We can now state our theorem in the case wherew = w0.

Theorem 2.6 The number of lattice points in1λ is equal to the dimension of Vλ.

3. Example

The first interesting example is sl4. We writew0 = s1s2s1s3s2s1 and we have, in terms of
minimal representatives,

W1 = {1, s1, s2s1, s3s2s1}, W2 = {1, s2, s3s2, s1s2, s1s3s2, s2s1s3s2}
W3 = {1, s3, s2s3, s1s2s3}

We then obtain viaϕ the following table where each row contains the coefficients of aϕ(τ):

s1 s2 s1 s3 s2 s1

e11 e22 e21 e33 e32 e31

s1 0 0 0 0 0 1 (1)

s2s1 0 0 0 0 1 1 (2)

s3s2s1 0 0 0 1 1 1 (3)

s2 0 0 0 0 1 0 (0, 2)

s3s2 0 0 0 1 1 0 (0, 3)

s1s2 0 0 1 0 1 0 (1, 2)

s1s3s2 0 0 1 1 1 0 (1, 3)

s2s1s3s2 0 1 1 1 1 0 (2, 3)

s3 0 0 0 1 0 0 (0, 1, 3)

s2s3 0 1 0 1 0 0 (0, 2, 3)

s1s2s3 1 1 0 1 0 0 (1, 2, 3)

The images of(0), (0, 1), (0, 1, 2) are all(0, 0, 0, 0, 0, 0).
Let us now consider the adjoint representation. The highest weight isω1+ω3. One then

verifies easily by hand that a lattice point of11+13 is the sum of a lattice point of11 and
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a lattice point of13. Hence a quick computation shows that the lattice points are the ones
in 11 and13 together with 8 other points:

e31+ e33, e31+ e33+ e22, e31+ e33+ e22+ e11

e32+ e31+ e33+ e22, e32+ e31+ e33+ e22+ e11

e31+ e32+ 2e33, e31+ e32+ 2e33+ e22, e31+ e32+ 2e33+ e22+ e11

Thus there are 15 lattice points in11+13 which is the dimension of sl4.
Remark thatϕ(2)+ ϕ(0, 1, 3) = ϕ(3) + ϕ(0, 1, 2) is the only sum repeated here. This

can be seen to correspond to the tensor product decomposition

Vω1 ⊗ Vω3
∼= Vω1 ⊗

(
Vω1

)∗ ∼= gl4 = sl4⊕ V0

4. Correspondence with semi-standard Young tableaux

Let λ = ∑n
i=1 aiωi be a dominant weight. SetW be the disjoint union of theWi and

W(λ) = ∏n
i=1

∏ai
j=1 Wi . We can associate to an element ofW(λ) via ϕ a lattice point of

1λ. Namely, an element(wi j )i, j ofW(λ) is sent to
∑

i, j ϕ(wi j ) in 1λ.
However this association is not necessarily injective (that is, a lattice point can be the

image of another element inW(λ)). We claim that with respect to a certain partial ordering
ofW, there is a unique such element which is decreasing. At the end of this section, we
shall show that the set of lattice points corresponding to the elements inW(λ) is in bijection
with the set of semi-standard Young tableaux of typeλ.

Let us first define our partial order inW, denoted by≺, which extends the induced Bruhat
ordering inWi . Let (r1, . . . , ri ) and(s1, . . . , sj ) be two elements ofW, then

(r1, . . . , ri ) ≺ (s1, . . . , sj )⇔ (−1, . . . ,−1︸ ︷︷ ︸
n−i

, r1, . . . , ri ) < (−1, . . . ,−1︸ ︷︷ ︸
n− j

, s1, . . . , sj )

where the elements on the right hand side are inRn.

Remark 4.1 Using the notations above, if we haver ≺ s theni ≤ j . Furthermore, there
is a unique maximal element(1, 2, . . . ,n) and a unique minimal element(0).

Lemma 4.2
(a) The setW is a lattice, that is, every pair of elements ofW have a well definedmaxand

min.

(b) If r ∈ Wi , s ∈ Wj and i ≤ j, then we havemin(r, s) ∈ Wi andmax(r, s) ∈ Wj .

(c) (MAX –MIN) Let r, s ∈W, thenϕ(r )+ ϕ(s) = ϕ(max(r, s))+ ϕ(min(r, s)).

Proof: Let r = (r1, . . . , ri ) be an element ofW. By adding−1’s on the left as above, we
can associate tor , an elementR= (R1, . . . , Rn) of Rn.
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Definition 4.3 Let r , s be elements ofW andR, S the corresponding associated elements
in Rn. We define min(R, S) = (T1, . . . , Tn) whereTi = min(Ri , Si ) and min(r, s) the
element ofW associated to min(R, S) by taking away all the−1’s.

We define max(r, s) similarly.

One verifies easily assertions (a) and (b) from this definition. It suffices therefore to
check max–min.

Let r = (r1, . . . , ri ) ands= (s1, . . . , sj ) wherei ≤ j . Then

ϕ(r )+ ϕ(s) =
n∑

p=n−i+1

r p+i−n∑
q=p+i−n

epq +
n∑

p=n− j+1

sp+ j−n∑
q=p+ j−n

epq

=
n∑

p=n−i+1

r p+i−n∑
q=p+i−n

epq +
n−i∑

p=n− j+1

sp+ j−n∑
q=p+ j−n

epq +
n∑

p=n−i+1

sp+ j−n∑
q=p+ j−n

epq

=
n∑

p=n−i+1

(
r p+i−n∑

q=p+i−n

epq +
sp+ j−n∑

q=p+ j−n

epq

)
+

n−i∑
p=n− j+1

sp+ j−n∑
q=p+ j−n

epq

=
n∑

p=n−i+1

min(r p+i−n,sp+ j−n)∑
q=p+i−n

epq +
n∑

p=n− j+1

max(r p+i−n,sp+ j−n)∑
q=p+ j−n

epq

= ϕ(min(r, s))+ ϕ(max(r, s)) 2

We shall now state and prove our claim.

Proposition 4.4 Let θ = {θi j }i=1,...,n; j=1,...,ai be an element ofW(λ). Then there exists a
unique elementψ = {ψi j } ofW(λ) such that
(i) ψi j ¹ ψk` if i < k or if i = k and j≤ `;
(ii)

∑
i, j ϕ(θi j ) =

∑
i, j ϕ(ψi j ).

Before proving this proposition, let us remark that condition (i) says that

ψ11 ¹ ψ12 ¹ · · · ¹ ψ1a1 ¹ ψ21 ¹ · · · ¹ ψ2a2 ¹ · · · ¹ ψ(n−1)an−1 ¹ ψn1 ¹ · · · ¹ ψnan

This is similar to the definition for a Young tableaux of Lakshmibai and Seshadri of typeλ

modulo liftings to the Weyl groupW, see [14]. As we shall see, our theorem says that this
is exactly the same definition.

Proof: We shall prove the existence by induction ona = ∑n
i=1 ai . It is clear that the

induction hypothesis holds fora = 1. (In fact, by max–min of Lemma 4.2, it holds equally
for a = 2).

Let us now suppose that the induction hypothesis holds fora−1. Letr be maximal such
thatar 6= 0. By the induction hypothesis, we can suppose thatθ ′ = θ \ {θrar } satisfies the
conditions (i) and (ii) of the proposition.
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We shall now divideθ ′ into three disjoint totally-ordered sets. Let

E≺ = {θi j | θi j ≺ θrar }, Eº = {θi j | θi j º θrar }
and

E0 = {θi j | θi j and θrar are not comparable}.
Note that the elements ofEº are all inWr .
If E0 is empty, then we can insertθrar in the sequence to obtain a totally-ordered sequence

and hence by rearranging the subscripts, we obtain an element ofW(λ) satisfying the
required conditions.

Suppose now thatE0 is not empty. Thenθrar is in neitherE≺, Eº nor E0. Let φ be the
maximal element inE0. By max–min of Lemma 4.2, replacingφ andθrar by max(φ, θrar )

and min(φ, θrar ) does not alter the sum viaϕ. Furthermore, if we letE′≺, E′º and E′0 be
the new partition as defined above relative toθ ′rar

= max(φ, θrar ), then the cardinal ofE′0
is strictly less thanE0 since min(φ, θrar ) will belong to E′≺.

Now repeat the same procedure untilE0 is empty and we have the existence sinceE0 is
a finite set.

Let us turn to the uniqueness which is a consequence of the following lemma.

Lemma 4.5 Let r and s be two distinct elements of Wi . Then there exist k, mk such that
one of the following conditions is satisfied:
(i) the ekmk-coordinate is1 for ϕ(r ) and the ek`-coordinate forϕ(s) is0 for all mk ≤ ` ≤ k.
(ii) the ekmk-coordinate is1 for ϕ(s) and the ek`-coordinate forϕ(r ) is0 for all mk ≤ ` ≤ k.

Furthermore let us suppose that(i) is satisfied(we have obviously the same statement
with the roles of r and s exchanged when(ii) is satisfied). Then we can choose k and
mk such that for all t∈ Wj satisfying t¹ s, the ekmk-coordinate is1 for ϕ(r ) and the
ek`-coordinate forϕ(t) is 0 for all mk ≤ ` ≤ k.

Proof: Let us denoter = (r1, . . . , ri ) ands = (s1, . . . , si ). Sincer ands are distinct,
there existsk such that eitherrk > sk or sk > rk. Suppose we haverk > sk (resp.sk > rk).
Sincerk > sk ≥ k − 1 (resp. sk > rk ≥ k − 1), r (resp. s) has non-zero entries in the
(n− i + k)th block. By the definition of our embedding, it is clear that if we putmk = rk

(resp.mk = sk), then the conditions of (i) (resp. (ii)) are satisfied.
To prove the last statement, let us suppose that (i) is satisfied. Then, there existsk such that

rk > sk. Now lett ∈ Wj be such thatt ¹ s. By Remark 4.1, we must havei ≥ j and hence
we can writet = (t1, . . . , ti ) by adding−1’s on the left. Sincet ¹ s, we havetk ≤ sk < rk.
It follows again from our embedding that we have our result by lettingmk = rk. 2

We can now finish our proof. Letθ andθ ′ = {θ ′i j } be two elements inW(λ) satisfying
the conditions of the proposition. Letr be maximal such thatar 6= 0. Thenθrar andθ ′rar

are
maximal inθ andθ ′ respectively. Ifθrar 6= θ ′rar

, then by applying the previous lemma, we
can suppose that there existsk, mk such that the entryekmk is 1 forϕ(θrar ) and the entriesek`

for ϕ(θ ′rar
) is 0 for all mk ≤ ` ≤ k. Hence by the same lemma, the same entries forϕ(θ ′i j )
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are 0 for alli , j sinceθ ′rar
is maximal inθ ′. It follows that

∑
i, j ϕ(θi j ) −

∑
i, j ϕ(θ

′
i j ) 6= 0

which contradicts the fact thatθ andθ ′ satisfy the second condition of the proposition.
Thusθrar = θ ′rar

. Now by induction ona, the sum of theai ’s, the elementsθ , θ ′ must be
the same (the casea = 1 is equivalent to the fact thatϕ is an embedding). 2

Thus we have proved what we claimed at the start of this section. Let us denote byW(λ)d
the set of elements inW(λ) satisfying property (i) of the proposition. Now given an element
θ in W(λ)d, using the notations(r1, . . . , ri ) for elements inWi , we can arrange eachθi j

as a row of numbers flushright, and stack them in order with the largest row on top, the
smallest row on the bottom, what we obtain then is a semi-standard Young tableau of type
λ. For example, the sequence(1), (0, 1), (0, 2), (0, 2, 3) corresponds to the semi-standard
Young tableau

0 2 3

0 2

0 1

1

By the uniqueness proved in the proposition, we obtain a well-defined map fromW(λ)d
to the set of semi-standard Young tableaux of typeλ, which is obviously injective. On the
other hand, given a semi-standard Young tableau of typeλ, we obtain an element ofW(λ)d
by reading off the rows. It is clear that this is the inverse of the former map. Now by
Lemma 2.3, lattice points in1i are in bijection with elements ofWi , thus Proposition 4.4
says thatW(λ)d is in bijection with the set of lattice points in1λ which can be written as
a sum overi of ai lattice points of1i , we can hence state

Theorem 4.6 The set of lattice points of1λ which can be written as a sum over i of ai

lattice points of1i is in bijection with the set of semi-standard Young tableaux of typeλ.

Remark 4.7 In fact, the existence part of Proposition 4.4 can be proved with semi-
standard Young tableaux since it involves only max–min of Lemma 4.2 and not the explicit
embedding. The idea is to put the maximal entry of each column at the top row and then
use induction which is roughly what we have done.

5. Characterization of lattice points in ∆λ

Let λ = ∑n
i=1 aiωi be a dominant weight. Recall from Definition 3.2 that1λ is the

Minkowski sum
∑n

i=1 ai1i , where11, . . . , 1n are the polytopes associated to the funda-
mental weightsω1, . . . , ωn which were defined in Section 2. In this section we shall prove
the following theorem:

Theorem 5.1 A lattice point in the Minkowski sum
∑n

i=1 ai1i can be written as the sum
of a1 lattice points in11, a2 lattice points of12 and so on.
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As in the previous section, denote byW the union over alli of Wi equipped with the
partial order defined in the same section, and for any dominant weightµ, denote byW(µ)d
the set of elements inW(µ) satisfying property (i) of Proposition 4.4. Letθ = {θi j }i, j be
an element ofW(µ)d, we shall denote byCµ(θ) the convex cone generated by{ϕ(θi j )}i, j .

Theorem 5.2 Let x ∈ 1λ, then there exist a dominant weightµ and aθ ∈ W(µ)d such
that x ∈ Cµ(θ).

This theorem is a direct consequence of the following technical lemma.

Lemma 5.3 Let {σi j }i=1,...,n; j=1,...,ai be a sequence of elements ofW such thatσi j ∈ Wi .
Let pi j ∈ R+. Then there exists{σ ′i j }i=1,...,n; j=1,...,a′i a sequence of elements ofW and
p′i j ∈ R+ such that
(i) σ ′i j ∈ Wi .

(ii) σ ′i j ≺ σ ′kl if i < k or if i = k and j< l.

(iii)
∑ai

j=1 pi j =
∑a′i

j=1 p′i j .

(iv)
∑n

i=1

∑ai
j=1 pi j ϕ(σi j ) =

∑n
i=1

∑a′i
j=1 p′i j ϕ(σ

′
i j ).

Proof: We shall prove the lemma by induction on the
∑n

i=1 ai .
The assertion is obvious when the sum is 1. So let us suppose that the sum is strictly

bigger than one. Letl be maximal such thatal > 0. By the induction hypothesis, we can
assume that{σi j }i=1,...,l ; j=1,...,ai \{σlal } satisfies (i) and (ii) of the lemma. For simplicity we
shall denoteσlal by σ andq = plal .

If σ º σi j for all i = 1, . . . , l , j = 1, . . . ,ai or if σ = σl j for some j ≤ al − 1, then we
are done.

So let us suppose the contrary. Then there existsτ = σcd minimal such thatσ 6Â τ . Let
κ = σrs be maximal such thatP := ∑τ¹σi j≺κ pi j ≤ q. Denote bymi j = min(σ, σi j ) ∈ Wi

and byMi j
l = max(σ, σi j ) ∈ Wl . Note that we have

Mi j
l º Mi, j−1

l º · · · º Mcd
l Â σ Â mi j º · · · º mcd

Now using repeatedly max–min of Lemma 4.2, we obtain:

l∑
i=1

ai∑
j=1

pi j ϕ(σi j ) =
∑
σi j≺τ

pi j ϕ(σi j )+
∑
σi jºκ

pi j ϕ(σi j )

+
∑

τ¹σi j≺κ
pi j (ϕ(σi j )+ ϕ(σ))+ (q − P)ϕ(σ )

=
∑
σi j≺τ

pi j ϕ(σi j )+
∑
σi jÂκ

pi j ϕ(σi j )

+
∑

τ¹σi j≺κ
pi j
(
ϕ(mi j )+ ϕ

(
Mi j

l

))+ prsϕ(κ)+ (q − P)ϕ(σ )
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Now if prs ≤ q − P, then we must haveκ = σl ,al−1. Consequently, we have

l∑
i=1

ai∑
j=1

pi j ϕ(σi j ) =
∑
σi j≺τ

pi j ϕ(σi j )+
∑

τ¹σi j¹κ
pi j
(
ϕ(mi j )+ ϕ

(
Mi j

l

))+ (q − P − prs)ϕ(σ )

Thus we obtain a chain

Mrs
l º · · · º Mcd

l Â σ Â mrs º mr,s−1 º · · · º mc,d Â σc,d−1 Â · · · Â σ11 Â 1

from which we can compress into a chain{σ ′i j } where i = 1, . . . , l and j = 1, . . . ,a′i
satisfying the required properties of the lemma.

If prs ≥ q − P, then:

l∑
i=1

ai∑
j=1

pi j ϕ(σi j ) =
∑
σi j≺τ

pi j ϕ(σi j )+
∑
σi jÂκ

pi j ϕ(σi j )

+
∑

τ¹σi j≺κ
pi j
(
ϕ(mi j )+ ϕ

(
Mi j

l

))
+ (q − P)(ϕ(κ)+ ϕ(σ))+ (prs − (q − P))ϕ(κ)

=
∑
σi j≺τ

pi j ϕ(σi j )+
∑
σi jÂκ

pi j ϕ(σi j )

+
∑

τ¹σi j≺κ
pi j
(
ϕ(mi j )+ ϕ

(
Mi j

l

))
+ (q − P)

(
ϕ(mrs)+ ϕ

(
Mrs

l

))+ (prs − (q − P))ϕ(κ)

Thus we obtain a chain

σl ,al−1 Â · · · Â κ Â mrs º mr,s−1 º · · · º mcd Â σc,d−1 · · · Â σ11 Â 1

from which we can compress into a chain{σ ′i j } where i = 1, . . . , l and j = 1, . . . ,a′i
satisfying (i), (ii) and (iii) of the lemma (look at the coefficents). Therefore we have

l∑
i=1

ai∑
j=1

pi j ϕ(σi j ) =
l∑

i=1

a′i∑
j=1

p′i j ϕ(σ
′
i j )+

∑
τ¹σi j≺κ

pi j ϕ
(
Mi j

l

)+ (q − P)ϕ
(
Mrs

i

)
We now observe that the length of the remaining elementsMcd

l , . . . ,Mrs
l are strictly greater

than that ofσ . Thus we can repeat the same reasoning and the lemma is proved because
there is a maximal element inWl . 2

Corollary 5.4 The polytope1i is triangulable by primitive simplices of dimension(n−
i + 1)i .
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Proof: Recall from [11] that a simplex is called primitive of dimensiond if its vertices
are lattice points and its volume is 1/d!.

It is clear from the proof of the preceding lemma applied to the sequence{σi j } j=1,...,ai

that1i is the union of all theSc wherec is a chain inWi (see Definition 2.2). Moreover, if
c′ is a (strict) subchain ofc, thenSc′ lies in the boundary ofSc. Since by Lemma 2.3,Sc is
a primitive simplex of dimension(n− i + 1)i whenc is a maximal chain, to show that1i

is triangulable by primitve simplices, it suffices to show that the interior of any two distinct
simplicesSc andSc′ do not meet.

Consider two chainsc: σ1 Â · · · Â σ` Â 1 andc′: τ1 Â · · · Â τm Â 1. Suppose that the
intersection of the interiors ofSc andSc′ is not empty and thatQ belongs to this intersection.
We can therefore writeQ as (recall thatϕ(1) = (0, . . . ,0) ∈ R`(w0))

∑̀
j=1

pjϕ(σ j ) = Q =
m∑

k=1

qkϕ(τk) (∗)

wherepj ,qk ∈]0, 1[ and p1+ · · · + p` ≤ 1, q1+ · · · + qm ≤ 1.
Assume thatσ1 6= τ1. Writing σ1 = (s1, . . . , si ) andτ1 = (t1, . . . , ti ). By Lemma 4.5,

there exists a coordinateepq which is non-zero on the left hand side of(∗), whereas it is zero
on the right hand side (becauseτ1 is maximal in the chainc′). So we have a contradiction
and thereforeσ1 = τ1.

Without loss of generality, we can supposep1 ≥ q1. We can then rewrite(∗) as follows:

(p1− q1)ϕ(σ1)+
∑̀
j=2

pjϕ(σ j ) = Q′ =
m∑

k=2

qkϕ(τk) (∗∗)

Consequently, we must havep1 = q1. Now by repeating the same argument (or use
induction on` + m) on (∗∗), we conclude that̀ = m, pj = qj andσ j = τ j for all
j = 1, . . . , `. That isc= c′. Thus the corollary is proved. 2

Proof of Theorem 5.1: Suppose thatx is a lattice point of
∑l

i=1 ai1i . Without loss of
generality we can assume thatal 6= 0. We can writex = x1+ · · · + xl where

xi = pi 1ϕ(σi 1)+ · · · + pir i ϕ
(
σir i

)
with pi j > 0 and

ri∑
j=1

pi j = ai

whereσi j ∈ Wi . By Theorem 5.2, we can assume thatσi j is a strictly increasing sequence
of elements ofW.

If rl = 1, thenplr l = al and soxl = alϕ(σlr l ) which implies thatx − xl is a lattice point
of
∑l−1

i=1 ai1i .
If rl > 1, then by Lemma 4.5, there exists a coordinateeαβ such that theeαβ coordinate

of x is equal toplr l . So plr l is a positive integer andx − plr lϕ(σlr l ) is a lattice point of∑l−1
i=1 ai1i + (al − plr l )1l .
Thus, in both cases the assertion follows by induction on

∑l
i=1 ai . 2
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6. End of proof of Theorem 2.6

By Theorem 5.1, an integral point in1λ is a sum overi of ai lattice points of1i . Hence
by Theorem 4.6, the set of lattice points of1λ is in bijection with the set of semi-standard
Young tableaux of typeλ. Now by a classical result from the theory of invariants (see for
example [8] or [18]) that the number of semi-standard Young tableaux of typeλ is exactly
the dimension of the sln+1-moduleVλ. Thus Theorem 2.6 is proved.

7. The case of Demazure modules

In the previous sections, we explained how to construct for each fundamental weight a
polytope1i whose vertices are indexed by the setWi . LetWw

i be the set{σ ∈ Wi | σ ¹ w̄}
wherew̄ is the class ofw in Wi . Then we can define the polytope1w

i to be the convex hull
of the set of vertices of1i corresponding to the setWw

i . It is clear that the vertices of1w
i

are indexed by the setWw
i .

We would like to embed1w
i in R`(w) in such a way that given a dominant weight

λ = ∑i ciωi , the number of lattice points in
∑

i ci1
w
i is the dimension of the Demazure

moduleEw(λ). For somew we can construct such an embedding. In this section we shall
describe this embedding and explain why it works.

Recall thatW is considered as the permutations of the set{0, 1, . . . ,n}, with simple
transpositionssi = (i − 1, i ). Consider the unique factorization of a permutationw ∈ W
in the form

w = s(1, c1)s(2, c2) · · · s(n, cn)

where we denotes(a, b) = sasa−1 · · · sb ands(a,a + 1) = 1. Thencj is the cardinal
of the set{d such thatd ≤ w−1( j ), w(d) ≤ j }. It follows that there existk ∈ N∗,
1≤ a1 < a2 < · · · < ak ≤ n and 1≤ bj ≤ aj for all j = 1, . . . , k such that

w = s(a1, b1)s(a2, b2) · · · s(ak, bk)

Note that we havew0 = s(1, 1)s(2, 1) · · · s(n, 1). We shall use this notation in this section.

Definition 7.1 Let d ≤ e be positive integers. We shall call the subexpressions(ad, bd)

· · · s(ae, be) of w, a part if the following conditions are satisfied:

(i) ae+ 1< bm for all m> e,
(ii) ad−1+ 1< bm for all d ≤ m≤ e.

A part ofw is connected if it is not the product of two distinct parts ofw.

It is clear thatw is the product of connected parts, sayw = P1 · · ·Pl , and that when
1≤ i 6= j ≤ l , thenPi commutes withP j .

Theorem 7.2 Suppose thatw ∈ W is either the identity or else each connected part
s(ad, bd) · · · s(ae, be) ofw satisfies one of the following conditions:



162 DEHY AND YU

(i) bd ≥ bd+1 ≥ · · · ≥ be.
(ii) ad = bd < ad+1 = bd+1 < · · · < ae = be,

Then for each i, there exists an embeddingϕwi of1w
i in Rl (w) such that for any dominant

weightλ =∑i ciωi ,we haveCard(1w
λ ∩Z`(w)) = dim Ew(λ)where1w

λ =
∑

i ciϕ
w
i (1

w
i ).

Remark 7.3

(1) As remarked by one of the referees, there is no obvious relation between the set of
Kempf elements (for the definition of Kempf elements, see [13]) and the set ofw

whose connected parts satisfy condition (i) or (ii) of the theorem. Note that in the case
of sl3, all the elements of the Weyl group satisfy the conditions of the theorem, while
s2s1 is not a Kempf element.

(2) In the case of sl4, there are exactly 7 elements inW which satisfy neither of the 2 condi-
tions. Namely they ares(1, 1)s(3, 2),s(2, 1)s(3, 3),s(2, 1)s(3, 2),s(1, 1)s(2, 2)s(3, 2),
s(1, 1)s(2, 1)s(3, 3), s(1, 1)s(2, 1)s(3, 2) ands(1, 1)s(2, 2)s(3, 1). However, a case
by case analysis shows that, by using the same construction, the theorem is true in these
cases.

(3) Letλ be a dominant weight. Ifw′ ≡ w moduloWλ, the stabiliser ofλ, thenEw′(λ) =
Ew(λ). Therefore, if we can find aw satisfying the conditions of Theorem 7.2, then the
number of lattice points inm1w

λ is equal to the dimension ofEw′(mλ) for anym ∈ N.
In particular, such elements can always be found in the case of fundamental weights
(that is, when the stabiliser isWi for somei ).

Let us fixw = s(a1, b1)s(a2, b2) · · · s(ak, bk).
Let us make the idea behind our embedding more precise. Since1w

i is the convex hull of
its vertices and that the vertices are in one-to-one correspondence with the elements ofWw

i ,
we simply need to specify the image of the vertex corresponding to an elementσ ∈ Ww

i ,
denoted byϕwi (σ ). We have

σ = (r1, . . . , ri ) = s(r1, n− i + 1)s(r2, n− i + 2) · · · s(ri , i ).

The following description ofϕwi (σ ) may seem vague, but with the example that follows
it will become more transparent. We shall index the standard basis ofR`(w) using the
expression ofw, that is, we write the standard basis asepq wherep = 1, . . . , k andq =
bp, . . . ,ap. Consider the rightmost subexpression ofw identical to the above expression
of σ . Then we define the coefficient ofepq of ϕwi (σ ) to be 1 if the index belongs to this
subexpression, and zero otherwise.

Let us clarify all this with an example. Letw = s2s1s3s2s1 = s(2, 1)s(3, 1) be an element
of the Weyl group of sl4. It satisfies condition (i) of Theorem 7.2. We have

Ww
1 = {1, s1, s2s1, s3s2s1}, Ww

2 = {1, s2, s3s2, s1s2, s1s3s2, s2s1s3s2},
Ww

3 = {1, s3, s2s3}

According to the discussion above,ϕwi (1) is the zero vector for anyi . To specifyϕw1 (s1),
we “embed”s1 as right as possible in the expressions2s1s3s2s1, so we getϕw1 (s1) =
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(0, 0, 0, 0, 1). Similarly, we “embed”s2s1 as right as possible ins2s1s3s2s1, and we get
ϕw1 (s2s1) = (0, 0, 0, 1, 1) and so forth. Hence, we obtain the following table.

s2 s1 s3 s2 s1

s1 0 0 0 0 1

s2s1 0 0 0 1 1

s3s2s1 0 0 1 1 1

s2 0 0 0 1 0

s3s2 0 0 1 1 0

s1s2 0 1 0 1 0

s1s3s2 0 1 1 1 0

s2s1s3s2 1 1 1 1 0

s3 0 0 1 0 0

s2s3 1 0 1 0 0

Although it is easy to describe the image ofσ in this way, this description needs to be
formalised so that we can prove that it works.

Definition 7.4 Let w = s(a1, b1) · · · s(ak, bk). Definepi = (pi
1, . . . , pi

i ) by reverse
induction (i.e., starting fromi and going down to 1). Setpi

i+1 = +∞, then

pi
j =

{
max

{
l | bl ≤ j ≤ al , l < pi

j+1

}
if it exists

−1 otherwise

In other words, if we writeu j = s(aj , bj ), then pi
i is the biggest integerl such thatsi

occurs inul (or in ul ul+1 · · ·uk). And pi
i−1 is the biggest integerl ′ such thatsi−1si appears

as a subexpression oful ′ul ′+1 · · ·uk. And so on.
For instance, let us look at the example above where we letw= s2s1s3s2s1 = s(2, 1)s(3, 1).

Here we havea1 = 2, b1 = 1, a2 = 3, b2 = 1. Thus according to the definitionp1 = (2),
p2 = (1, 2), p3 = (−1, 1, 2). Note that ifw = w0, thenpi = (n− i + 1, . . . ,n).

Remark 7.5 Note that the class ofw in Ww
i is w̄ = (0, 1, 2, . . . , l − 2,api

l
, . . . ,api

i
),

wherel is maximal such thatpi
1 = · · · = pi

l−1 = −1. Therefore an element(r1, . . . , ri ) of
Wi is in Ww

i if and only if rl−1 = l − 2 andr j ≤ api
j
for l ≤ j ≤ i .

Now we can formalise the description ofϕwi given above. Letw = s(a1, b1) · · · s(ak, bk)

and let us write the standard basis ofR`(w) asepq with p = 1, . . . , k andq = bp, bp +
1, . . . ,ap. We define the mapϕwi : Ww

i −→ R`(w) by sending

(r1, . . . , ri ) 7−→
∑
p=pi

l

∑
l≤q≤rl

epq
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Definition 7.6

(i) We define, by abuse of notation,1w
i to be the convex hull of the image ofWw

i via ϕwi .
(ii) Let λ =∑n

i=1 ciωi be a dominant weight, then we define1w
λ to be the Minkowski sum∑n

i=1 ci1
w
i .

8. Proof of Theorem 7.2

We shall first prove that the conditions (i) and (ii) of Theorem 7.2 give nice properties on
pi . Then we shall define a partial order on the union ofWw

i similar to the one given in
Section 4. Finally, we prove Theorem 7.2 by showing that there is a one-to-one corre-
spondence between lattice points in1λ and the standard monomial basis of the Demazure
moduleEw(λ).

In this section, we shall fix an elementw = s(a1, b1) · · · s(ak, bk) of W which satisfies
the conditions of Theorem 7.2. By definition, non-negative entries ofpi are distinct. We
shall denote byB(pi ) the set of non-negative entries ofpi .

Lemma 8.1 Let us suppose that B(pi ) is not empty and let ui (resp.vi ) be minimal(resp.
maximal) in B(pi ).
(i) The element s(aui , bui )s(aui+1, bui+1) · · · s(avi , bvi ) occurs(as a subexpression) in a

connected part ofw.
(ii) The set B(pi ) is a set of consecutive integers, that is, B(pi ) = {m ∈ N∗ | ui ≤ m≤ vi }

where ui andvi are as defined in(i).
(iii) If i < j and B(p j ) is non-empty, thenvi ≤ v j .

Proof: Assertion (i) is a direct consequence of the definition of a connected part.
By definition, B(pi ) ⊂ {1, . . . , k}. Let us suppose that there existsr > 1 such that

r ∈ B(pi ) andr − 1 6∈ B(pi ). To prove (ii), il suffices to show thatr is minimal in B(pi ).
There existsj such thatr = pi

j . Hence, by the definition ofpi , we havebr ≤ j ≤ ar ,
and that eitherj − 1< br−1 or ar−1 < j − 1.

If br − 1 ≤ j − 1 < br−1, thenbr−1 ≥ br . We are therefore in a connected part ofw

satisfying condition (i) of Theorem 7.2. It follows thatpi
j−1 = −1.

If ar−1 < j −1, thenj −1> al for all l = 1, . . . , r −1. It follows again thatpi
j−1 = −1.

Consequently,pi
j−1 = −1 in both cases and thereforer is minimal in B(pi ).

Finally, for (iii). Suppose thatv j < vi , thenav j < avi . Sincevi = pi
i andv j = pj

j , we
would have

bvi ≤ i ≤ j ≤ av j < avi

Thereforev j = pj
j ≥ vi , contradiction. 2

In view of the lemma, we defines(pi ) to bes(aui , bui )s(aui+1, bui+1) · · · s(avi , bvi ). By
part (i),s(pi ) occurs in a connected part ofw.
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Corollary 8.2 Let i ≤ j be such that B(pi ) and B(p j ) are not empty. Let ui , vi , u j , v j

be as defined in Lemma8.1. Then we have one of the following three possibilities:
(i) s(pi ) and s(p j ) both occur in a connected part ofw which satisfies condition(i) of

Theorem7.2. Furthermorevi = v j .
(ii) s(pi ) and s(p j ) both occur in a connected part ofw which satisfies condition(ii) of

Theorem7.2. Furthermore, vi + j − i = v j , ui = u j .
(iii) s(pi ) and s(p j ) occur in different connected parts ofw. Furthermore, this implies that

i < j and avi + 1< bl for all u j ≤ l ≤ v j .

Example 8.3 Let us look at some examples:

(1) Letw = w0, thenB(pi ) = {m ∈ Z | n − i + 1 ≤ m ≤ n} and soui = n − i + 1,
vi = n.

(2) Let n = 3 andw = s(1, 1)s(3, 1), thenB(p1) = {2}, u1 = v1 = 2, B(p2) = {1, 2},
u2 = 1, v2 = 2, andB(p3) = {2}, u2 = v2 = 2.

We shall now define a partial order onWw := ∐n
i=1 Ww

i .
Let r = (r1, . . . , ri ) ∈ Ww

i , r ′ = (r ′1, . . . , r ′j ) ∈ Ww
j with i ≤ j . And letui , vi , u j , v j be

as in Lemma 8.1.

Lemma 8.4 Suppose that s(pi ) and s(p j ) both occur in a connected part ofw which
satisfies condition(i) of Theorem7.2,we definemax(r , r ′),min(r , r ′) as in Section4. Then
max(r , r ′) ∈ Ww

j andmin(r , r ′) ∈ Ww
i .

Proof: From Section 4, we know that max(r , r ′) ∈ Wj and min(r , r ′) ∈ Wi . So we only
need to show that they are inWw

j andWw
i respectively.

Let d(i ) = vi − ui + 1. By Remark 7.5, we can write

r = (0, 1, . . . , i − d(i )− 1, ri−d(i )+1, . . . , ri )

and

r ′ = (0, 1, . . . , j − d( j )− 1, r ′j−d( j )+1, . . . , r
′
j ).

By Corollary 8.2,I := B(pi )∩B(p j ) is the set of integers between max(ui , u j ) andvi = v j .
Let l ∈ I , then sincepi

i = vi = v j = pj
j , there existsm such thatl = pi

i−m = pj
j−m. It

follows from Remark 7.5 thati−m−1≤ ri−m ≤ al andi−m−1≤ j−m−1≤ r ′j−m ≤ al .
To finish the proof, we shall show thatr ′m+ j−i ≥ rm for all m≤ max(i −d(i ), j −d( j )).
If j − d( j ) ≤ i − d(i ), thenI = B(pi ) ⊂ B(p j ). Since j ≥ i , we obtain by inspection

thatr ′m+ j−i ≥ m+ j − i − 1≥ m− 1= rm for all m≤ i − d(i ).
If i − d(i ) < j − d( j ), theni < j and I = B(p j ) is a strict subset ofB(pi ). Note that

pj
j−d( j ) = −1. We claim thatj − d( j ) > auj−1.
Let us prove our claim. If we havei − d(i ) < j − d( j ) < buj−1, thenpi

i−d(i )+1 = −1
since we are working in a connected part satisfying condition (i) of Theorem 7.2. But this
will imply that B(pi ) has at mostd(i )− 1 elements which is absurd.
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So we havej − d( j ) > auj−1. It follows from the above expressions forr , andr ′ that

r ′m = m− 1≥ auj−1− ( j − d( j )−m) ≥ am+vi− j ≥ rm+i− j

for all j − i + ui ≤ m≤ j − d( j ).
Lastly, if j − i < m< j − i + ui , thenrm+i− j = m+ i − j − 1< m− 1= r ′m. Hence

our proof is complete. 2

Lemma 8.5 Suppose that s(pi ) and s(p j ) both occur in a connected part ofw which sat-
isfies condition(ii) of Theorem7.2,we definemin(r , r ′) := (m1, . . . ,mj ) andmax(r , r ′) :=
(M1, . . . ,Mi ) as follows:
(i) ml := min(rl , r ′l ) and Ml := max(rl , r ′l ) si ui ≤ l ≤ vi ;

(ii) ml := r ′l and Ml := rl otherwise.
Thenmax(r , r ′) ∈ Ww

i andmin(r , r ′) ∈ Ww
j .

Proof: By Corollary 8.2,I := B(pi ) ∩ B(p j ) is the set of integers betweenui = u j and
vi = v j + i − j . Since we are working in a connected part satisfying condition (ii) of
Theorem 7.2, we can write as in the previous lemma:

r = (0, 1, . . . , i − d(i )− 1, ri−d(i )+1, . . . , ri )

and

r ′ = (0, 1, . . . , i − d(i )− 1, r ′i−d(i )+1, . . . , r
′
i , . . . , r

′
j )

wherem− 1 ≤ rm, r ′m ≤ m. It is now clear that max(r , r ′) ∈ Ww
i and min(r , r ′) ∈ Ww

j .
2

Definition 8.6 If B(pi ) ∩ B(p j ) is not empty, then we define max(r , r ′) and min(r , r ′)
according to the lemmas above. On the other hand, ifi < j andB(pi ) ∩ B(p j ) is empty,
then we define max(r , r ′) = r ′ and min(r , r ′) = r . Notice that ifB(pi ) is empty, thenWw

i
has only one element and therefore this definition is well-defined.

Moreover, we define a binary relation¹w onWw by:

r ¹w r ′ if and only if max(r , r ′) = r ′ and min(r , r ′) = r

where here, we do not assume thati ≤ j .

Remark 8.7 Wheni < j andB(pi )∩B(p j ) is empty, the binary relationr ¹w r ′ coincides
with the partial ordering defined in Section 4.

Example 8.8

(1) Letw = w0, then this definition is the same as the one defined in Section 4.
(2) Let n = 2 andw = s(1, 1)s(2, 2), thenWw

1 = {1 = (0), s1 = (1)} andWw
2 = {1 =

(0, 1), s2 = (0, 2), s1s2 = (1, 2)}. We have therefore,

(0, 1) ≺ (0, 2) ≺ (1, 2) ≺ (1), (0, 1) ≺ (0, 2) ≺ (0), (0) ≺ (1)
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and max((0), (1, 2))= (1), min((0), (1, 2))= (0, 2). Note that the maximal element
is (1).

Lemma 8.9 The binary relation¹w defines a partial ordering onWw. Furthermore,
together with the operationsmax and min, it defines a lattice structure onWw (see
Lemma4.2).

Proof: The only point which is unclear is transitivity. But by Corollary 8.2, if s(pi ), s(p j )

ands(pl ) are in the same connected part, then eithervi = v j = vk or ui = u j = uk. The
former is just an analogue of the partial ordering in Section 4. The latter can be verified
easily using Lemma 8.4. Finally, the fact that the operations max and min induces a lattice
structure onWw is clear from the definition. 2

Theorem 8.10 Letλ =∑n
i=1 ciωi be a dominant weight. Then a lattice point in1λ can

be written as the sum of c1 lattice points in1w
1 , c2 lattice points in1w

2 and so on.

Proof: This theorem is the analogue of Theorem 5.1, and it can be proved similarly.
The key point is that the proofs of Theorem 5.1 and Theorem 5.2 only require a partial
ordering equipped with a max–min operation satisfing Lemma 4.3 and 4.5. The analogues
of Lemma 4.3 and 4.5 can be easily shown. 2

Example 8.11 Let us first look at example 2 of 8.8. Considerw = s1s2 = s(1, 1)s(2, 2).
It satisfies condition (i) of Theorem 7.2.

We obtain immediately thatp1 = (1) andp2 = (1, 2). As above, we have in terms of
minimal representatives,

Ww
1 = {1, s1}

Ww
2 = {1, s2, s1s2}

We then obtain viaϕwi the following table:

s1 s2

e11 e22

s1 1 0 (1)

s2 0 1 (0, 2)

s1s2 1 1 (1, 2)

The right most column corresponds to the notations of the elements inWw. The images
of (0, 1) and(0) are both 0.

If we consider the adjoint representation, then the highest weight isω1 + ω2 and one
verifies easily by hand that the lattice points in1w

1 + 1w
2 are the ones in1w

1 and1w
2
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together with the point 2e11+ e22. Thus the number of lattice points is 5 which is exactly
the dimension of the Demazure moduleEw(ω1+ ω2).

Note thatϕw1 (1)+ ϕw2 (0, 2) = ϕw1 (0)+ ϕw2 (1, 2). Again this can be seen to correspond
to the tensor product decomposition ofb-modules.

We prove the following key lemmas. As before, we letr = (r1, . . . , ri ) ∈ Ww
i andr ′ =

(r ′1, . . . , r
′
j ) ∈ Ww

j with i ≤ j . Recall thatw = s(a1, b1) · · · s(ak, bk).

Lemma 8.12 Suppose that s(pi ) and s(p j ) both occur in a connected part ofw which
satisfies condition(i) of Theorem7.2. Thenr ¹w r ′ if and only if there exist r¹ r ′ ¹ w in
W such that the class of r(resp. r′) in Ww

i (resp. Ww
j ) is r (resp. r ′).

Proof: By Lemma 8.4, the partial ordering¹w coincides with the one defined in Section 4.
It follows that the “if” part has already been proved using semi-standard Young tableaux.

Now suppose thatr ¹w r ′, we define

r := s
(
ri−vi+ui , i − vi + ui

)
s
(
ri−vi+ui+1, i − vi + ui + 1

) · · · s(ri , i ) ∈ W

where we lets(a− 1,a) to be the identity inW, and

r ′ := s
(
r ′j−v j+u j

, j − v j + u j
)
s
(
r ′j−v j+u j+1, j − v j + u j + 1

) · · · s(r ′j , j ) ∈ W if ui ≥ u j

and ifui < u j , we set

r ′ : = s
(
ri−vi+ui , i − vi + ui

)
s
(
ri−vi+ui+1, i − vi + ui + 1

) · · · s(r ′j−v j+u j
,

j − v j + u j
) · · · s(r ′j , j )

Note thatvi = v j . In the first case, it is easy to see that the class ofr ′ in Wj is r ′. For the
second, we use the fact thatr i−v j+u j−1 < j − v j + u j − 1 (see the proof of Lemma 8.4).
Moreover, these are clearly reduced expressions. Sincer ¹w r ′, ri−m ≤ r ′i−m for all m and
we haver ¹ r ′ ¹ w in W as required. 2

Lemma 8.13 Suppose that s(pi ) and s(p j ) both occur in a connected part ofw which
satisfies condition(ii) of Theorem7.2. Thenr ′ ¹w r if and only if there exist r′ ¹ r ¹ w
in W such that the class of r(resp. r′) in Ww

i (resp. Ww
j ) is r (resp. r ′).

Proof: Suppose thatr ′ ¹w r . This implies thatl−1≤ r ′l ≤ rl ≤ l for l = i−vi+ui , . . . , i
(see the proof of Lemma 8.5). Note that here,r ′ = st ′st ′+1 · · · sj wheret ′ ≤ j is minimal
such thatr ′t ′ = t ′ and r = stst+1 · · · si where t ≤ i is minimal such thatrt = t . In
particulart ≤ t ′. We shall simply definer ′ := r ′ = st ′st ′+1 · · · sj , r := stst+1 · · · si si+1 · · · sj

andr ′ ¹ r ¹ w as required.
On the other hand suppose thatr ′ ¹ r ¹ w in W. As above, we haver ′ = st ′st ′+1 · · · sj

wheret ′ ≤ j is minimal such thatr ′t ′ = t ′. Recall that we are working in a connected part
satisfying condition (ii) of Theorem 7.2.

If i < t ′, thenl − 1= r ′l−1 for l ≤ i , and sor ′l ≤ rl . We then haver ′ ¹w r .
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If t ′ ≤ i , then sincer ′ ¹ r ′ ¹ r , we havest ′st ′+1 · · · sj , and consequentlyst ′st ′+1 · · · si

can be written as subexpressions of a reduced expression forr . It follows thatr ′ ¹ r . 2

Lemma 8.14 Suppose that s(pi ) and s(p j ) occur in different connected parts. Then
r ¹w r ′ if and only if there exist r¹ r ′ ¹ w in W such that the class of r(resp. r′) in Ww

i
(resp. Ww

j ) is r (resp. r ′).

Proof: By Remark 8.7, the partial ordering¹w coincides with with the one defined in
Section 4. It follows that the “if” part has already been proved using semi-standard Young
tableaux.

Since we are working in different connected parts, and distinct connect parts commute,
r andr ′ commute also. Therefore if we definer : = r andr ′ = rr ′ in W. By definition, we
always haver ¹ r ′ ¹ w. 2

Corollary 8.15 Letr1, . . . , rm be elements ofWw such thatr1 ¹w · · · ¹w rm. Then there
exist liftings r1, . . . , rm in Ww such that the class of rj is r j (in the appropriate Wwl ) and
r1 ¹ · · · ¹ rm.

Corollary 8.16 Let λ be a dominant weight. There exists a bijection between the set of
lattice points of1w

λ and the standard monomial basis of the Demazure module Ew(λ) (see
[14, 17]).

Proof: We can prove an analogue of Proposition 4.4. Using this and Theorem 8.10, we
can write a lattice point in1w

λ as the sum
∑m

i=1 r i such thatr i ∈ Ww andr1 ¹w r2 ¹w
· · · ¹w rm. Corollary 8.15 then implies that the set of lattice points of1w

λ is in bijection
with the standard monomial basis ofEw(λ). 2

Example 8.17 In the case of example 2 of 8.8, the reader can verify that the three chains
can be lifted as follows:

1¹ s2 ¹ s1s2 ¹ s1s2, 1¹ s2 ¹ s2, s2 ¹ s1s2

and there are no liftingsr of (0) andr ′ of (1, 2) such thatr ′ ¹ r .

9. An Example

Let us consider a slightly more complicated case. Letw = s1s3s2s1 = s(1, 1)s(3, 1) be an
element of the Weyl group of sl4. It satisfies condition (i) of Theorem 7.2. In this case, we
havep1 = (3), p2 = (1, 3) andp3 = (−1,−1, 3). Thus,

Ww
1 = {1, s1, s2s1, s3s2s1}

Ww
2 = {1, s2, s3s2, s1s2, s1s3s2}

Ww
3 = {1, s3}
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As before, we compute the following table:

s1 s3 s2 s1

e11 e33 e32 e31

s1 0 0 0 1 (1)

s2s1 0 0 1 1 (2)

s3s2s1 0 1 1 1 (3)

s2 0 0 1 0 (0, 2)

s3s2 0 1 1 0 (0, 3)

s1s2 1 0 1 0 (1, 2)

s1s3s2 1 1 1 0 (1, 3)

s3 0 1 0 0 (0, 1, 3)

The reader can verify for example for the adjoint representation as in Section 4 that the
number of lattice points in1w

1 +1w
3 is the dimension of the Demazure moduleEw(ω1+ω3)

which is 7.

10. Some applications

We shall apply our results in this section to obtain a combinatorial description of the weight
multiplicities of a Demazure module, and we also present a polytope which is closely
connected to the weight.

Let λ = ∑n
i=1 aiωi be a dominant weight,w = s(a1, b1) · · · s(ak, bk) be an element of

W satisfying the conditions of Theorem 7.2 and denote bymw
λ (µ) the multiplicity of the

weightµ in Ew(λ).
Let epq be the standard basis as in Section 7 andαi , i = 1, . . . ,n be the set of simple

roots as in the introduction.

Definition 10.1 We define a linear map

Aw :R`(w) −→ P ⊗Z R=: PR

by sendingepq to αq.
We shall denote byAwλ the affine mapλ− Aw fromR`(w) to PR.

Theorem 10.2 The character of the Demazure module Ew(λ) is given by

charEw(λ) = eλ
∑

x

e−Aw(x)

where the sum runs through the lattice points x of1w
λ .
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Proof: Letµ ∈ P. To prove the theorem, it suffices to prove that

mw
λ (µ) = Card

(
Z`(w) ∩1w

λ ∩
(
Awλ
)−1
(µ)

)
Recall that the weight of a standard monomial of typeλ is the weight of the corresponding
weight vector inEw(λ) (see [17, 14]). Therefore it suffices to show that for a lattice point
x of 1w

λ , Awλ (x) is the weight of the standard monomialT(x) corresponding tox as in the
proof of Theorem 7.2.

Let x be a lattice point of1w
λ . According to Proposition 6.2, we can find{σi j }, i =

1, . . . ,n and j = 1, . . . ,ai satisfying the conclusions of the proposition and such that
x =∑n

i=1

∑ai
j=1 ϕ

w
i (σi j ). It follows that the weight ofT(x) is the sum

∑
i, j σi j (ωi ). Since

Awλ (x) =
∑n

i=1

∑ai
j=1 Awωi

(ϕwi (σi j )), we are reduced to the case whereλ is a fundamental
weight.

According to Lemma 2.3 and Theorem 3.3, there is a bijection between the weights of
Vωi and the vertices of1i , which in turn are indexed by the elements ofWi . Explicitly, the
vertex(r1, . . . , ri ) corresponds to the weight

sr1 · · · s1sr2 · · · s2 · · · sri · · · si (ωi ) = ωi −
i∑

p=1

r p∑
q=p

αq = ωi −
∑

ap=pi
j

r j∑
q= j

αq

On the other hand,(r1, . . . , ri ) corresponds to the point
∑

ap=pi
j

∑r j

q= j epq (see Section 7).
Therefore

Awωi

∑
ap=pi

j

r j∑
q= j

epq

 = ωi −
∑

ap=pi
j

r j∑
q= j

αq

and we are done since the multiplicity of any weight ofVωi is 1. 2

Corollary 10.3 The image of1w
λ via Awλ is the convex hull of{σ(λ) | σ ∈ W withσ ¹ w}.

In particular it is the Minkowski sum
∑

i ai Awωi
(1w

i ).

Corollary 10.4 Letµ be a weight of Ew(λ), then1w
λ (µ) := (Awλ )−1(µ)∩1w

λ is a convex
polytope with rational vertices containing all the points which correspond to the weightµ.
Moreover k1w

λ (µ) = 1w
kλ(kµ).
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