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Abstract. Combinatorial proof of an explicit formula for dimensions of spaces of semi-invariants of regular
representations of finite cyclic groups is obtained. Using bicolored necklaces, a certain reciprocity law following
from this formula is also derived combinatorially.
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Introduction

The classical Hermite Reciprocity Law asserts the isomorphism
"I (k?) = 'S"(k?)

of symmetric powers of representations of the Lie group(8Lacting standardly ok?,
for a characteristic zero fiekl(see [6], Remark 12 by Popov in Appendix 3 of the Russian
translation). In particular, the space of degre@olynomial invariants of the irreducible
(n+1)-dimensional representation is equidimensional with the space of degregiants
of the irreducible(m + 1)-dimensional representation.

Recently in [3] there was obtained an explicit formula for the dimensign, m) of
the space of degrem homogeneous polynomial invariants of the regular representation
of the nth order cyclic group. This formula implies thag(n, m) = ag(m, n). In the
present paper, we give a combinatorial explanation of a certain generalization of this fact
(see below), which we also call Hermite reciprocity.

Relationship with combinatorics stems from the observation that, as shown in [3], the
numberag(n, m) coincides with the number of solutions of the system

n-1

n-1
ijj =0 (modn); Zki =m. 1)
i=0

i=0
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Clearly this is the same as the total number of partitions of multiplesrtb no more than

m parts not exceeding — 1. Applying combinatorial arguments one can obtain a formula
for the numbery (n, m) of solutions of an even more general system

n-1 n—1
jrj =k (modn); > ai=m 2)
=0 i=0

J

wherek is any nonnegative integer.

As a kind of illustration let us reproduce the first few valuegh, m) (computed using
the MAPLE package):

(1) ag(n, m), for1<n, m < 10:

10 12 15 19 22
10 14 22 30 43 55 73
14 26 42 66 99 143 201
10 22 42 80 132 217 335 504
12 30 66 132 246 429 715 1144
15 43 99 217 429 810 1430 2438
19 55 143 335 715 1430 2704 4862
22 73 201 504 1144 2438 4862 9252
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(2) a;(n, m), for1 <n,m < 10:

15 18 22
14 20 30 40 55 70

14 25 42 66 99 143 200
20 42 75 132 212 333 497
12 30 66 132 245 429 715 1144
15 40 99 212 429 800 1430 2424
18 55 143 333 715 1430 2700 4862
22 70 200 497 1144 2424 4862 9225
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Derivation ofax(n, m), given below, is analogous to a proof for thgn, m) communi-
cated to us by G. Andrews. The expression obtained has all the advantages of an explicit
formula, in particular it immediately implies the equaldy(n, m) = a,(m, n), which too
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may be called “Hermite reciprocity”. But the proof does not explain in any way the reason
of this reciprocity. In the second part of the paper we give one of the possible explanations
for the equality. Namely: to any solution of (1) we assign a necklace, i.e., a circular ar-
rangement, consisting af+ m beadsn of them black anan white, together with a chosen
orientation and a basepoint somewhere between two adjacent beads. Thereafter, the equal-
ity ax(n, m) = ax(m, n) turns out to follow from the existence of an involution on the set
of such necklaces, acting by choosing opposite orientation and swapping black and white.
We must note that in a private conversation with the first author, N. Alon communicated
a proof involving necklaces, @(n, m) = ag(m, n), whenn andm are coprime. In the
present paper this idea has been extended to the more general setting. The authors would
like to express their gratitude to Alon, Andrews and Stanley for valuable information and
interest to the paper. They are grateful to the referee for careful reading of the paper and
finding of several misprints in important formulae.

Everywhere in the sequel, for any integarsn, k, . . . their greatest common divisor will
be denoted byn, m, k, . ..); for n > 0, we denote byk), the residue ok modulon, i.e.,
the number determined by9 (k), < n, (k), = k(modn).

1. Explicit formula

Let us start with a purely formal expression &(n, m). Therefore recall thab(N, M, s),
for any integerdN, M, s, denotes the number of partitionsinto no more tharM parts,
each not exceedinly. The generating function for these numbers,

G(N,M:t) =) p(N, M, s)t°
S

is the Gauss polynomial (see e.g., [1], 3.2).
Then, one obviously has

a(n,m) =Y pn—1.m, jn+k). €)
i

We shall also need the definition Bamanujan sum&ee e.g., [4], 17.6; for applications
in number theory see [5]). For amyandk, the Ramanujan sumy, (k) is the sum otkth
powers of all primitiventh roots of 1. In particularg,(0) = ¢(n) (the Euler function),
¢n(1) = u(n) (the Mdbius function). It is known (and easily seen usingiilis inversion)
that

()= > M(g)d.

d|(n,k)

Also note that this last equality obviously impliggk) = ¢, ((n, k)), in particularc,(—k) =
cn(k).
We then have the following:
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Theorem 1 For any integers kn, m,

d+myd
Mmm=—i—Z:MDCV+m/> @

n+m & n/d
in particular
ax(n, m) = a(m, n).

Proof: By (3),ak(n, m) equals the sum of coefficientsGin—1, m; t) at those powers of
t which are congruent tomodulon. Now in general, given any polynomiéft) = > f,t”,
one has

_ 1 &
n—n;;c f (o),

the sum on the right running over aith roots of 1. This fact easily follows from the
equality

v=k (modn)

Z , _n ifnjv
e} 0 otherwise
So in our case
1 k
nm=— “G(n—-1,m; 7).
a(n, m) nggg ( 7)

Values of Gauss polynomials at roots of 1 are known; see e.g., [7], Chapter 3, Exercise 45(b).
In particular, for any" = 1 which is a primitivedth root of 1, for somel | n, one has

m/d +n/d -1 itd|m
Gn—-1m;¢) = m/d
0 otherwise
Hence
1 o (m/d+n/d—-1
a(n,m) = = :k< )
n d2|n:ord(§=:d\m m/d

where ord¢) means order of the elementin the group of roots of 1. Now has orded
iff ¢ is a primitive root of orded. Hence

1 d+n/d—1
wmmn=—§:%hb<w " )

d|(n,m)
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m+n,

_ m+n d
== Z ca(k) TG
d|(nm) nd"d*

1 m/d +n/d
ﬁzcd()ern( n/d )

di(n,m)
m/d 4+ n/d
ch(Io( o/ )

d|(n,m)

m-+n
and the theorem follows. O

Remark Note that the formula obtained implies, due to the mentioned properties of
Ramanujan sums, that there are many equalities betagenm) for fixed n, m and
variousk. Namely, one has

a(n, M) = au,n,m (N, M).

For the sequel, let us fix two positive integersn and denotén, m) by d.

2. Combinatorial proof of reciprocity

In this section, we are going to give another, purely combinatorial proof of the equality
ax(n, m) = a(m, n).
Consider the set

n-1
Anm=1(o,.... kn-1) €N" | Vi 2 = 0and Y i = m}.
i=0

We define an action of the cyclic gro@ = Z/nZ of ordern on A, m by setting, for
r e Z/nZandx = (Ao, ..., An_1) € Anm,

rx = (An_r, An—r41s---2An=1, A0s - - - An—r—1).

For anyA € Anm, denote byt(d) the minimal positive integer withit(\)1)A = A,
i.e., the number of elements in the orbit)otinder the action o€, (1 is the element of
Z/nZ = {0,1,...,n —1}). Denoten/t(1), i.e., order of the stabilizer of under this
action, bys(2).

_ Let [\n,m be the quotient\, m/C, and denote byr, m, the quotient maprnm: Anm —
Anm.

Take anyw € Apmandi € 75 (e). Note that #r,, % (@) = t(A). Sinces() does not
depend on the choice of the inverse image:pfve may denote bg(x) the numbeis(i)
foranyi € 7, 1(a).
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Let Ky.m be the mapping fromh, n, to C, determined by
Kn,mO\O, ~-~,)Ln—1) = (0')\0+1')\1+"'+(n_ 1) ’)Ln—l)n‘
Then it is clear thady (n, m) equals #K,{#(k)), for anyk € C,.

Proposition 1 Foranyr € C,, A = (ho,...,An-1) € Anpm ONne has Km(rr) =
Kn,m()\) +r- (m)n-

Proof: The case = 0 is obvious.
Forr = 1, one has

Knm(@- (Ao, - .-, An—1)) = Knm(An—1, Aoy -+ .5 An—2)
=0 -Ap1+1- 2o+ + (M —DArp_2)n
=0-r+1-2+--+N—=—Dr2+ N —Dirny
+ o+ + A2 — (N —DAn_1))n
= Kam@®) + Qo+ -+ An2+ An-1— Nhn-1)n
= Knm() +1- (M)n.

Forl<r < n, one has

Kam(A) = Kn,m£1_' (1—1)\))) = Knm@A) + (M)p + -+ - 4+ (M)yy
r times r times

= Kn,m()h) +r- (m)n O

Denote bypy the natural projection fronC, to Cy; forr € Z/nZ = {0,...,n — 1},
pg(r) = (r)q. Sinced dividesn, this is clearly a group homomorphism.
Define now the mapping

Kn,m ]\n’m —> Cd

by assigning tax € [\n,m the elementp]j(Knm(2)) € Cq4, Wherea is any element of
nr;%q(a). Sinced dividesm, by Proposition 1 the elemepfj (K, (1)) does not depend on
the choice ofi.

So one obtains a commutative diagram

Kn.m
Anm — Gy

TTn,m l pQ l (5)
~ K

nm

An,m —_—> Cd.
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Proposition 2 Leta € ApmandKym(@) =r € Cq. Then for any f e (p])~%(r) there
are exactly ds(«) elements im,{rln(oz) C An.m Which are mapped to'tby Kp .

Proof: Consider any. € 7 («). By commutativity of (5), clearlypfKnm(2) =r.

By Proposition 1, one has, m((l - D) = Kym(X) + 1 - (M), for anyl.

Thosd for which Ky m(( - DA) = K, m(R), are precisely those for whi¢h (m), = 0in
Z/nZ. Since(n, m) = d, thosd must be divisible byr/d. So the minimal nonzerowith
Knm(( - DA) = K, m(2) isn/d. Hence for any distindt, |, from the interval [0 n/d[
one hasKp m((l1 - DA) # Knym((I2- DA).

This implies, firstly, that (1) is divisible byn/d, i.e.,t(A)d/n = d/s(}) is integer, and
secondly, since the inverse imagerofinder pf hasn/d elements, that whehruns over
the interval [Q n/d], thenK,, n((I - 1)A) will become each element of the inverse image of
r under pj} exactly once. This means that, for ea¢he (p})~1(r), the number of those
0 < I < nwith Ky m((l - 1)2) =r’ equalsd.

Hence the number of thosefrom nnf%](ot) with K, m(A) =r’ equalsd/s(«). O

Consider now the séd/], |, whose elements are circular arrangements (“necklaces”) of
n + m beadsn of them black anan white. There has to be fixed orientation of the circle,
as well as a “basepoint” located somewhere between two adjacent beads.

LetY}, , be the subset &V, , consisting of those arrangements for which the first bead
along the orientation after the basepoint is black.

Let us define an action @, on Y}, ,, as follows: forg € Y}, , andr € Cy, rp will be
the same arrangement Asbut with the basepoint shifted counterorientationwise exactly
by the amount needed for the number of passed black beads to become

DenoteY},.,/Cn by Y1, SOTT, . is the set of arrangements as above, without any
basepoint, and considered up to rotation.

The natural projection frorry, ., to T7, ., will be denoted byrT, ..

For 8 € Y7, .., we denote by (8) the minimal positive integer witkt (8) - 1) = B.

n+m?

Clearlyt(8) = t(rp) forany g € Y, , andr € C,. The numben/t(8) will be denoted

by s(B).

Foranyy e T,’]‘m, the numbes(B), for 8 € (nrﬁ‘m)*l(y) does not depend on the choice
of B; we will denote this number bs(y).

Letus constructa mag, ., Yy, — Cn. Takeg € Y|, , and suppose that numbers of
black beads i, counted orientationwise from the basepoint, am 1 . ., ry (by definition

the first bead is black). Then one defigls () to be the element
I+rz+--+rn—1Q+2+---+n)y

of C,,.
Now construct the magfl, ., : T\, ., — Cq. Givenanyy e T/, .., choose a basepoint on
it somewhere between two adjacent beads. Suppose the numbers of the black beads counted
orientationwise w. r. t. this basepoint arg. .., r,. Consider the numbe¥g + - -- + rp,.
If one would choose a different basepoint, each ofrtheould change to; in such a way
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that(r; —r{)ntm would be the same for all denote this residue . Then
1+ +rnem = 1+ + D +NA

and g™ (i 4 -+ 4+ Fdngm) = P§TT(CL + - -+ Tam) + PTTT(NA) = pit™(r +
“+Hnm)-
So we may define

Ohim= 1+ +T)a— (L4 +Ng.
Itis clear that the diagram

n
gﬂ+m

T — C,

n+m

Tngm l Pg l

,Yn gR+m C
n+m d

commutes.
Let us now construct a map

n

w:IAnm—> Toim

ForiA = (Mo, ..., An-1) € Anm Choose an orientation and a basepoint on a circle; start
moving from the basepoint orientationwise and put the first black bead. Then putnext
white beads and the next black one; againyput white beads and the next black one and
so on. On then — 1)-th step, when we will puty white beads there will be + m beads
arranged—the next one will be the black bead we started with. So one obtains an element
of T}, ,, which we define to bev(Ao, ..., An_1).

Itis easy to see that is a bijection compatible with the action Gf,. Moreover one has
the following proposition.

Proposition 3 The diagram

Anm —> Y

n+m
Kn,m Ny A/gﬂﬂn
Z/nZ
commutes.
Proof: Take(Xrg, ..., n-1) € Anm. Theninw(io, ..., An—1), Numbers of black beads

counted from the basepoint orientationwise will be

L Anc1+2, dno+ A1 +3, o, A+ -+ Ao+ 00
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Hencegy, ,(w(Xo, ..., An-1)) =

=@A+ *rn1+2)+ Onz2+ A1+ )+ + i+ +Ang + NM)n
— (1_|_ et n)n

=((M=Din1+ (N —=2Dhn2+---+ A

=(0-A+ -+ (N=Din_1)n

= Knm(Xo, ..., An_1). O

y Since the bijectionw commutes with the action &, it induces a bijection : ]\n,m —
Y, m @and moreover by Proposition 3 there is a commutative diagram

TTn,m
Anm Anm
A .
~ Tntm y ~
Tr?—ﬁ-m Tr?—ﬁ-m -
Kn,m Kn,m (*)
Onsm Onem
Pa
Cn Cq
Proposition4 Foranyr e Cy,
_ d
#K L) = > nt
ye@m 2ph)
Proof: This is obvious from Proposition 2 and commutativity of (*). O

Let us now construct the map

. A-n m
X'Tn+m_> Tn+m

as follows: fory e 1@, .., define the element(y) € T, by reversing the orientation

and changing black beads by white ones and vice versa.
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Proposition 5 The diagram

" S m

n+m n4+m
Fem N L
Z/dZ
commutes.

Proof: Take anyy € ?,Lm and choose in it a basepoint between some adjacent beads.
Choose the same basepointxiy). Suppose that i the numbers of black beads are
bi, ..., b, and those of white ones atg, . . ., . Since each bead is either white or black,

b1+ +bh+c+--F+Cn=1+---4+(N+m),

Ci+--+Cn=14+---4+M+m)—(by+---+bp). (6)

Numbers of black beads i(y) w.r.t. the new orientation willba+m+1—cg,...,n+
m+ 1—c,. Hence

Grr1n+m(x(7/))=(n+m+l—01+~-~~|—n+m—|—1_cm)d_(]__|_..._|_m)d
mn+m+1)—ci—---—Cm)g — (L+---+m)g

=—C1+-+Cmda— A+ + M)y (d | m
=M+ 4+b)g— A+ +MN+m)g—A+---+m)g (by(6))
nN+mmn+m+1) n m(m+1))

d

=(bl+"'+bn)d_<

2 2
=<b1+-~+bn>d—(m(n+m+1>+”(”2+1)>
d
=1+ - +bpg— (n(n;— 1)) (d|m)
d
= b1+ +bp)a— 1+ +nk
O

= Grq+m()/)~

We have reached the goal of this section.

Proof of ax(n, m) =a(m, n): Take anyn’ € C, andm’ € C, with (n)q = (M')q = k.
By Proposition 4,

#KomM) = > —.

= S
y T )

@R+m(y)=d/
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Hence using the isomorphiskt Y7, ,, — T/ ., one obtains
d d
#HKonm) = D> == )
YT S(y) YT S(X(¥))
anem=d’ anym()=d’
d d
- Z = Z — = #(K Lm)).
- S(x s(8 mn
e ) B O
ng+m(X(y))=d/ gn+m(8) =d’
It follows that
a(n, m) = #(K, L)) = #(K 1 (M) = a(m, n). ]

3. Another proof of the formula

Our next task will be to obtain another derivation of the formula 4,

n+m |

ac(n, m) = —ch ()77

d'|d a d

of a more combinatorial nature.

Consider the action d€,.m on the seW), ,, under whichr € Cp,r, acts by shifting the
basepoint by beads counterorientationwise. L&' (k), for k € Cq, be the subset of
W, ., consisting of those elements with

i=1
wherery, ..., r, are numbers of black beads counted orientationwise from the basepoint.

Proposition 6 The subset W (k) ¢ Wy, is invariant under the action of G, on
W
Proof: Taker € C,.m, and lety be an element ner(k) numbers of black beads of
beingry, ...,rn. Then the numbers of black beads ine Wy, willber —ei(n+m)+ry,
r—en+ m) +r2,...,r —en(n+m) +r,, where each; is 0 or 1 depending on whether
ri+r <n+mornot (in other words, numbers of those beads not passed by the basepoint
will grow by r, while of those passed—hy— (n + m)). Hence the sum of numbers of
black beads will become

n

Zr—ei(n+m)+ri =nr—(n+m)2n:ei+2n:ri.

i=1 i=1 i=1
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So since botlm andn +m are divisible byd, the sum of numbers of black beads will remain
the same moduld. O

DenoteW!, .(K)/Cnim by W, er(k) CIearIyWr?er(k) {y € Y0 | G () = Kb
The inverse image iV, (k) of eachy ¢ Wr?+m(k) hasn+m elements, since the pattern

of the arrangement is periodic with perlod;m and there arél;7 possibilities to choose
the basepoint. Hence

HWEa00)= Y SCT

S
YT, (¥)

ng+m(V)=k

Comparing this with the formula from Proposition 4,

d
#(K hmn)) = —,
K= T

€ Thim
gn+m(1’) =k
one concludes
1 d ~
#(K () = rHr—m#(W'Lm(k))' )

Let us calculate &N, (K)).

Proposition 7

n+m
#Wiim() = chdao( H )

d'[d

Proof: Consider the polynomial

PX,t) = X" 27Kt 4 X)(t 4+ X3) - - (t 4+ x™M),

After expandingP (x, t) and collecting the terms, the coefficient at the monomftal will
be the number of representationgBk' = x "%~ ktMx"ix' ... x"n where O<ry < --- <
rn < n+ muwith

nn+ 1)
T—k+2j:rj =1.

Rewrite the last equality as

1
Z =M k=1 -no+
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sinced dividesn(n + 1), it is clear that the sum of these coefficients"at' over alll with
d | I will equal the number of those sequences @, < --- < r, < n+ mwith

nin+1)
(Zl’j— 5 ) =k.
j d

Assigning to such a sequence an arrangement ¥, with ry, ..., r, as numbers of
black beadszj,f_shows that the sum of these coefficients eqQafs #(k)).
Let: = e (or any other primitivedth root of 1). Since for any integémone has

d {d ifd]l

2 4=
= 0 otherwise

it follows that AW}, ,,(k)) equals the coefficient af' of the polynomial
13 :
Pt) == P!, t).
) d; @t

Consider now the polynomiaB(¢1, t) separately.
Sinced | n, one has

josy 1 ifdisodd or botHd and%j are even,
~|-1 ifdisevenand! is odd

i nn+1) @d—Dnj

i.e.,fl72 =(=1) ¢ . Hence

@-1nj

Pl ty=(=1) @ ¢ Rt + et 48yt + MMy,

Denoting—t by s, one obtains

P = (—1) " e )5 — ¢y - (s — ¢ ))) E

—1)nj . (n+md. j)
_ (o ik (gl 1) "

Now collect together the terms &f(t) = % > P(¢},t) whosej’s have the same gcd with
d. One obtains

(=pmm l omet’ EET
PO = — > (st -1 DN VA

d’id (j,d)y=d'
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The sign term in the last sum is

( 1)@ 1 if d is even and botl} and] are odd,
| 1 otherwise,

B —1 ifdisevenand botrg andd’ = (j, d) are odd,
"] 1 otherwise,

= (-1 Vaw,

Hence
(- )"+m ¢ g ik
P(t) = DE)FIE - Y
d'|d (4.=%
- n+m d—1)n ’ n+m
- 1; YD - D) ey (k)
d’'|d
_1 n+m ’ n+m
¢ ; 5 e (R (DIt — 1)

d'[d

So the coefficient &t™ in P(t) will be

(—1) n+m (d=LHn d m n ng,m
#HWE, (k) = YD ey (k=¥ - (=D | G
d'd d
1n n+m
(d) Y -Dea(- k)( )
d’'|d d’

Since% | n, the sign term in that last sumdslﬁ = (=1". Hence
n+m
d/
#Wh(0) = 5 %%(k)( B )

(we have used the evident equality(—k) = cy (k)). O

Remark A similar argument for derivingo(n, m) has been communicated to us by Alon
and Stanley: for the role played by o@(x, t), they use the functiogl — tx)~1(1 —
tx3)~1... (1 —tx"H-1,
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We have reached the desired formula: indeed, from (7)aatd m) = #(Kr;rln(k)) one
immediately obtains

n+m
ac(n, m) = —ch(k)< )

did

4. Some Final Remarks

Generating functions foag(n, m) mentioned in [3] can be easily generalized: for any
integerk one has

n,,m Cd d d
_ 1— _
E a(n, mx"y dE: d og( X YY)

n,m=0
and

(n-|—m—1)!n_S

Sk(s+1) Z an,mn>mt=¢(s+t+1) Z nl mi

n,m=1 n,m=1

wheregk(X) = > g, d™ (in particulargo(x) = ¢ (x) is the Riemann zeta function).

Let us note also a relationship af(n, m) to free Lie algebras. Consider a free Lie
algebralie(x, y) on two generators, y over a characteristic zero field. Then Th. 2(b) in
[2], Ch. Il, Section 3, no. 3 immediately implies that for amym,

a;(n, m) = dim(Lie(X, Y)nm),

where( )n.m denotes the homogeneous component of bidegiee andmin y. We could

not find an explicit correspondence between generators of the above Lie algebra and our
“necklace” interpretation adi; (n, m). This connection looks even more interesting in view

of the fact that in a sense, all thg may be reduced ta;.

Proposition 8 Forany n m, and k

an,my= Y a(n/d,m/d).

d’|(n,m,k)
Proof: One calculates directly:

n+m
Z ay(n/d’, m/d’) = Z m Z M(d”)< )

d’|(n,m,k) d’|(n,m,k) d”|(n/d’,m/d")

_ 1 sy [T
=y +m2du(d/d)<g>

dimm N dldk

Q| _
)

+
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LS (%
= Ca (k)
n+m d|(n,m) g
= ac(n, m). O

We do not know a combinatorial explanation of this fact, either.
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