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Abstract. Combinatorial proof of an explicit formula for dimensions of spaces of semi-invariants of regular
representations of finite cyclic groups is obtained. Using bicolored necklaces, a certain reciprocity law following
from this formula is also derived combinatorially.
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Introduction

The classical Hermite Reciprocity Law asserts the isomorphism

SmSn(k2) ∼= SnSm(k2)

of symmetric powers of representations of the Lie group SL2(k) acting standardly onk2,
for a characteristic zero fieldk (see [6], Remark 12 by Popov in Appendix 3 of the Russian
translation). In particular, the space of degreem polynomial invariants of the irreducible
(n+1)-dimensional representation is equidimensional with the space of degreen invariants
of the irreducible(m+ 1)-dimensional representation.

Recently in [3] there was obtained an explicit formula for the dimensiona0(n,m) of
the space of degreem homogeneous polynomial invariants of the regular representation
of the nth order cyclic group. This formula implies thata0(n,m) = a0(m, n). In the
present paper, we give a combinatorial explanation of a certain generalization of this fact
(see below), which we also call Hermite reciprocity.

Relationship with combinatorics stems from the observation that, as shown in [3], the
numbera0(n,m) coincides with the number of solutions of the system

n−1∑
j=0

jλ j ≡ 0 (mod n);
n−1∑
i=0

λi = m. (1)
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Clearly this is the same as the total number of partitions of multiples ofn into no more than
m parts not exceedingn− 1. Applying combinatorial arguments one can obtain a formula
for the numberak(n,m) of solutions of an even more general system

n−1∑
j=0

jλ j ≡ k (mod n);
n−1∑
i=0

λi = m (2)

wherek is any nonnegative integer.
As a kind of illustration let us reproduce the first few values ofak(n,m) (computed using

theMAPLE package):

(1) a0(n,m), for 1≤ n,m≤ 10:

1 1 1 1 1 1 1 1 1 1

1 2 2 3 3 4 4 5 5 6

1 2 4 5 7 10 12 15 19 22

1 3 5 10 14 22 30 43 55 73

1 3 7 14 26 42 66 99 143 201

1 4 10 22 42 80 132 217 335 504

1 4 12 30 66 132 246 429 715 1144

1 5 15 43 99 217 429 810 1430 2438

1 5 19 55 143 335 715 1430 2704 4862

1 6 22 73 201 504 1144 2438 4862 9252

(2) a1(n,m), for 1≤ n,m≤ 10:

1 1 1 1 1 1 1 1 1 1

1 1 2 2 3 3 4 4 5 5

1 2 3 5 7 9 12 15 18 22

1 2 5 8 14 20 30 40 55 70

1 3 7 14 25 42 66 99 143 200

1 3 9 20 42 75 132 212 333 497

1 4 12 30 66 132 245 429 715 1144

1 4 15 40 99 212 429 800 1430 2424

1 5 18 55 143 333 715 1430 2700 4862

1 5 22 70 200 497 1144 2424 4862 9225

Derivation ofak(n,m), given below, is analogous to a proof for thea0(n,m) communi-
cated to us by G. Andrews. The expression obtained has all the advantages of an explicit
formula, in particular it immediately implies the equalityak(n,m) = ak(m, n), which too
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may be called “Hermite reciprocity”. But the proof does not explain in any way the reason
of this reciprocity. In the second part of the paper we give one of the possible explanations
for the equality. Namely: to any solution of (1) we assign a necklace, i.e., a circular ar-
rangement, consisting ofn+m beads,n of them black andm white, together with a chosen
orientation and a basepoint somewhere between two adjacent beads. Thereafter, the equal-
ity ak(n,m) = ak(m, n) turns out to follow from the existence of an involution on the set
of such necklaces, acting by choosing opposite orientation and swapping black and white.
We must note that in a private conversation with the first author, N. Alon communicated
a proof involving necklaces, ofa0(n,m) = a0(m, n), whenn andm are coprime. In the
present paper this idea has been extended to the more general setting. The authors would
like to express their gratitude to Alon, Andrews and Stanley for valuable information and
interest to the paper. They are grateful to the referee for careful reading of the paper and
finding of several misprints in important formulae.

Everywhere in the sequel, for any integersn,m, k, . . . their greatest common divisor will
be denoted by(n,m, k, . . .); for n > 0, we denote by(k)n the residue ofk modulon, i.e.,
the number determined by 0≤ (k)n < n, (k)n ≡ k(modn).

1. Explicit formula

Let us start with a purely formal expression forak(n,m). Therefore recall thatp(N,M, s),
for any integersN, M , s, denotes the number of partitions ofs into no more thanM parts,
each not exceedingN. The generating function for these numbers,

G(N,M; t) =
∑

s

p(N,M, s)ts

is the Gauss polynomial (see e.g., [1], 3.2).
Then, one obviously has

ak(n,m) =
∑

j

p(n− 1,m, jn + k). (3)

We shall also need the definition ofRamanujan sums(see e.g., [4], 17.6; for applications
in number theory see [5]). For anyn andk, the Ramanujan sumcn(k) is the sum ofkth
powers of all primitiventh roots of 1. In particular,cn(0) = ϕ(n) (the Euler function),
cn(1) = µ(n) (the Möbius function). It is known (and easily seen using M¨obius inversion)
that

cn(k) =
∑

d|(n,k)
µ

(
n

d

)
d.

Also note that this last equality obviously impliescn(k) = cn((n, k)), in particular,cn(−k) =
cn(k).

We then have the following:
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Theorem 1 For any integers k, n, m,

ak(n,m) = 1

n+m

∑
d|(n,m)

cd(k)

(
n/d +m/d

n/d

)
; (4)

in particular

ak(n,m) = ak(m, n).

Proof: By (3),ak(n,m) equals the sum of coefficients ofG(n−1,m; t) at those powers of
t which are congruent tok modulon. Now in general, given any polynomialf (t) =∑ fν tν ,
one has ∑

ν≡k (mod n)

fν = 1

n

∑
ζ n=1

ζ−k f (ζ ),

the sum on the right running over allnth roots of 1. This fact easily follows from the
equality

∑
ζ n=1

ζ ν =
{

n if n | ν
0 otherwise.

So in our case

ak(n,m) = 1

n

∑
ζ n=1

ζ−kG(n− 1,m; ζ ).

Values of Gauss polynomials at roots of 1 are known; see e.g., [7], Chapter 3, Exercise 45(b).
In particular, for anyζ n = 1 which is a primitivedth root of 1, for somed | n, one has

G(n− 1,m; ζ ) =


(

m/d + n/d − 1

m/d

)
if d | m

0 otherwise.

Hence

ak(n,m) = 1

n

∑
d|n

∑
ord(ζ )=d|m

ζ−k

(
m/d + n/d − 1

m/d

)
,

where ord(ζ ) means order of the elementζ in the group of roots of 1. Nowζ has orderd
iff ζ is a primitive root of orderd. Hence

ak(n,m) = 1

n

∑
d|(n,m)

cd(−k)

(
m/d + n/d − 1

m/d

)

= 1

n

∑
d|(n,m)

cd(k)

(
m+n

d − 1
)
!(

n
d − 1

)
! m

d !
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= 1

n

∑
d|(n,m)

cd(k)
d

m+n
m+n

d !
d
n

n
d ! m

d !

= 1

n

∑
d|(n,m)

cd(k)
n

m+ n

(
m/d + n/d

n/d

)

= 1

m+ n

∑
d|(n,m)

cd(k)

(
m/d + n/d

n/d

)
,

and the theorem follows. 2

Remark Note that the formula obtained implies, due to the mentioned properties of
Ramanujan sums, that there are many equalities betweenak(n,m) for fixed n, m and
variousk. Namely, one has

ak(n,m) = a(k,n,m)(n,m).

For the sequel, let us fix two positive integersn, m and denote(n,m) by d.

2. Combinatorial proof of reciprocity

In this section, we are going to give another, purely combinatorial proof of the equality
ak(n,m) = ak(m, n).

Consider the set

3n,m =
{
(λ0, . . . , λn−1) ∈ Nn | ∀i λi ≥ 0 and

n−1∑
i=0

λi = m

}
.

We define an action of the cyclic groupCn = Z/nZ of ordern on3n,m by setting, for
r ∈ Z/nZ andλ = (λ0, . . . , λn−1) ∈ 3n,m,

rλ = (λn−r , λn−r+1, . . . , λn−1, λ0, . . . , λn−r−1).

For anyλ ∈ 3n,m, denote byt (λ) the minimal positive integer with(t (λ)1)λ = λ,
i.e., the number of elements in the orbit ofλ under the action ofCn (1 is the element of
Z/nZ = {0, 1, . . . ,n − 1}). Denoten/t (λ), i.e., order of the stabilizer ofλ under this
action, bys(λ).

Let 3̃n,m be the quotient3n,m/Cn and denote byπn,m the quotient mapπn,m :3n,m →
3̃n,m.

Take anyα ∈ 3̃n,m andλ ∈ π−1
n,m(α). Note that #(π−1

n,m(α)) = t (λ). Sinces(λ) does not
depend on the choice of the inverse image ofα, we may denote bys(α) the numbers(λ)
for anyλ ∈ π−1

n,m(α).
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Let Kn,m be the mapping from3n,m to Cn determined by

Kn,m(λ0, . . . , λn−1) = (0 · λ0+ 1 · λ1+ · · · + (n− 1) · λn−1)n.

Then it is clear thatak(n,m) equals #(K−1
n,m(k)), for anyk ∈ Cn.

Proposition 1 For any r ∈ Cn, λ = (λ0, . . . , λn−1) ∈ 3n,m one has Kn,m(rλ) =
Kn,m(λ)+ r · (m)n.

Proof: The caser = 0 is obvious.
For r = 1, one has

Kn,m(1 · (λ0, . . . , λn−1)) = Kn,m(λn−1, λ0, . . . , λn−2)

= (0 · λn−1+ 1 · λ0+ · · · + (n− 1)λn−2)n

= (0 · λ0+ 1 · λ1+ · · · + (n− 2)λn−2+ (n− 1)λn−1

+ (λ0+ · · · + λn−2− (n− 1)λn−1))n

= Kn,m(λ)+ (λ0+ · · · + λn−2+ λn−1− nλn−1)n

= Kn,m(λ)+ 1 · (m)n.

For 1< r < n, one has

Kn,m(rλ) = Kn,m (1 · ...(1·︸ ︷︷ ︸
r times

λ)...)) = Kn,m(λ)+ (m)n + · · · + (m)n︸ ︷︷ ︸
r times

= Kn,m(λ)+ r · (m)n 2

Denote bypn
d the natural projection fromCn to Cd; for r ∈ Z/nZ = {0, . . . ,n − 1},

pn
d(r ) = (r )d. Sinced dividesn, this is clearly a group homomorphism.
Define now the mapping

K̃n,m : 3̃n,m→ Cd

by assigning toα ∈ 3̃n,m the elementpn
d(Kn,m(λ)) ∈ Cd, whereλ is any element of

π−1
n,m(α). Sinced dividesm, by Proposition 1 the elementpn

d(Kn,m(λ)) does not depend on
the choice ofλ.

So one obtains a commutative diagram

3n,m
Kn,m−→ Cn

πn,m↓ pn
d ↓

3̃n,m
K̃n,m−→ Cd.

(5)
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Proposition 2 Letα ∈ 3̃n,m and K̃n,m(α) = r ∈ Cd. Then for any r′ ∈ (pn
d)
−1(r ) there

are exactly d/s(α) elements inπ−1
n,m(α) ⊂ 3n,m which are mapped to r′ by Kn,m.

Proof: Consider anyλ ∈ π−1
n,m(α). By commutativity of (5), clearlypn

d Kn,m(λ) = r .
By Proposition 1, one hasKn,m((l · 1)λ) = Kn,m(λ)+ l · (m)n for anyl .
Thosel for which Kn,m((l ·1)λ) = Kn,m(λ), are precisely those for whichl · (m)n = 0 in

Z/nZ. Since(n,m) = d, thosel must be divisible byn/d. So the minimal nonzerol with
Kn,m((l · 1)λ) = Kn,m(λ) is n/d. Hence for any distinctl1, l2 from the interval [0; n/d[
one hasKn,m((l1 · 1)λ) 6= Kn,m((l2 · 1)λ).

This implies, firstly, thatt (λ) is divisible byn/d, i.e., t (λ)d/n = d/s(λ) is integer, and
secondly, since the inverse image ofr underpn

d hasn/d elements, that whenl runs over
the interval [0; n/d], thenKn,m((l · 1)λ) will become each element of the inverse image of
r under pn

d exactly once. This means that, for eachr ′ ∈ (pn
d)
−1(r ), the number of those

0≤ l < n with Kn,m((l · 1)λ) = r ′ equalsd.
Hence the number of thoseλ from π−1

n,m(α) with Kn,m(λ) = r ′ equalsd/s(α). 2

Consider now the setWn
n+m, whose elements are circular arrangements (“necklaces”) of

n+m beads,n of them black andm white. There has to be fixed orientation of the circle,
as well as a “basepoint” located somewhere between two adjacent beads.

Letϒn
n+m be the subset ofWn

n+m consisting of those arrangements for which the first bead
along the orientation after the basepoint is black.

Let us define an action ofCn onϒn
n+m as follows: forβ ∈ ϒn

n+m andr ∈ Cn, rβ will be
the same arrangement asβ but with the basepoint shifted counterorientationwise exactly
by the amount needed for the number of passed black beads to becomer .

Denoteϒn
n+m/Cn by ϒ̃n

n+m; so ϒ̃n
n+m is the set of arrangements as above, without any

basepoint, and considered up to rotation.
The natural projection fromϒn

n+m to ϒ̃n
n+m will be denoted byπn

n+m.
For β ∈ ϒn

n+m, we denote byt (β) the minimal positive integer with(t (β) · 1)β = β.
Clearly t (β) = t (rβ) for anyβ ∈ ϒn

n+m andr ∈ Cn. The numbern/t (β) will be denoted
by s(β).

For anyγ ∈ ϒ̃n
n+m, the numbers(β), forβ ∈ (πn

n+m)
−1(γ ) does not depend on the choice

of β; we will denote this number bys(γ ).
Let us construct a mapgn

n+m :ϒn
n+m→ Cn. Takeβ ∈ ϒn

n+m and suppose that numbers of
black beads inβ, counted orientationwise from the basepoint, are 1, r2, . . . , rn (by definition
the first bead is black). Then one definesgn

n+m(β) to be the element

(1+ r2+ · · · + rn)n − (1+ 2+ · · · + n)n

of Cn.
Now construct the map̃gn

n+m : ϒ̃n
n+m→ Cd. Given anyγ ∈ ϒ̃n

n+m, choose a basepoint on
it somewhere between two adjacent beads. Suppose the numbers of the black beads counted
orientationwise w. r. t. this basepoint arer1, . . . , rn. Consider the numberr1 + · · · + rn.
If one would choose a different basepoint, each of theri would change tor ′i in such a way
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that(ri − r ′i )n+m would be the same for alli ; denote this residue by1. Then

(r1+ · · · + rn)n+m = (r ′1+ · · · + r ′n)n+m + n1

and pn+m
d ((r1 + · · · + rn)n+m) = pn+m

d ((r ′1 + · · · + r ′n)n+m) + pn+m
d (n1) = pn+m

d ((r ′1 +
· · · + r ′n)n+m).

So we may define

g̃n
n+m = (r1+ · · · + rn)d − (1+ · · · + n)d.

It is clear that the diagram

ϒn
n+m

gn
n+m−→ Cn

πn
n+m↓ pn

d ↓
ϒ̃n

n+m

g̃n
n+m−→ Cd

commutes.
Let us now construct a map

w :3n,m→ ϒn
n+m.

For λ = (λ0, . . . , λn−1) ∈ 3n,m choose an orientation and a basepoint on a circle; start
moving from the basepoint orientationwise and put the first black bead. Then put nextλn−1

white beads and the next black one; again putλn−2 white beads and the next black one and
so on. On the(n− 1)-th step, when we will putλ0 white beads there will ben+m beads
arranged—the next one will be the black bead we started with. So one obtains an element
of ϒn

n+m which we define to bew(λ0, . . . , λn−1).
It is easy to see thatw is a bijection compatible with the action ofCn. Moreover one has

the following proposition.

Proposition 3 The diagram

3n,m
w−→ ϒn

n+m
Kn,m↘ ↙gn

n+m

Z/nZ

commutes.

Proof: Take(λ0, . . . , λn−1) ∈ 3n,m. Then inw(λ0, . . . , λn−1), numbers of black beads
counted from the basepoint orientationwise will be

1, λn−1+ 2, λn−2+ λn−1+ 3, . . . , λ1+ · · · + λn−1+ n.
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Hencegn
n+m(w(λ0, . . . , λn−1)) =

= (1+ (λn−1+ 2)+ (λn−2+ λn−1+ 3)+ · · · + (λ1+ · · · + λn−1+ n))n

− (1+ · · · + n)n

= ((n− 1)λn−1+ (n− 2)λn−2+ · · · + λ1)n

= (0 · λ0+ · · · + (n− 1)λn−1)n

= Kn,m(λ0, . . . , λn−1). 2

Since the bijectionw commutes with the action ofCn, it induces a bijectioñw : 3̃n,m→
ϒ̃n

n+m, and moreover by Proposition 3 there is a commutative diagram

Cn

3n,m 3̃n,m

Cd

? ?

-

-

Kn,m K̃n,m

πn,m

pn
d

A
AAU

�
�
�
���

�
���

C
C
C
CCW

ϒn
n+m ϒ̃n

n+m
-

πn
n+m

≈ ≈
w w̃

(*)

gn
n+m g̃n

n+m

Proposition 4 For any r ∈ Cn,

#
(
K−1

n,m(r )
) = ∑

γ∈(g̃n
n+m)

−1(pn
d(r ))

d

s(γ )
.

Proof: This is obvious from Proposition 2 and commutativity of (*). 2

Let us now construct the map

x : ϒ̃n
n+m→ ϒ̃m

n+m

as follows: forγ ∈ ϒ̃n
n+m, define the elementx(γ ) ∈ ϒ̃m

n+m by reversing the orientation
and changing black beads by white ones and vice versa.
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Proposition 5 The diagram

ϒ̃n
n+m

x→ ϒ̃m
n+m

g̃n
n+m
↘ ↙g̃m

n+m

Z/dZ

commutes.

Proof: Take anyγ ∈ ϒ̃n
n+m and choose in it a basepoint between some adjacent beads.

Choose the same basepoint inx(γ ). Suppose that inγ the numbers of black beads are
b1, . . . ,bn and those of white ones arec1, . . . , cm. Since each bead is either white or black,

b1+ · · · + bn + c1+ · · · + cm = 1+ · · · + (n+m),

i.e.,

c1+ · · · + cm = 1+ · · · + (n+m)− (b1+ · · · + bn). (6)

Numbers of black beads inx(γ ) w.r.t. the new orientation will ben+m+ 1− c1, . . . ,n+
m+ 1− cm. Hence

g̃m
n+m(x(γ )) = (n+m+ 1− c1+ · · · + n+m+ 1− cm)d − (1+ · · · +m)d

= (m(n+m+ 1)− c1− · · · − cm)d − (1+ · · · +m)d

= −(c1+ · · · + cm)d − (1+ · · · +m)d (d | m)
= (b1+ · · · + bn)d − (1+ · · · + (n+m))d − (1+ · · · +m)d (by (6))

= (b1+ · · · + bn)d −
(
(n+m)(n+m+ 1)

2
+ m(m+ 1)

2

)
d

= (b1+ · · · + bn)d −
(

m(n+m+ 1)+ n(n+ 1)

2

)
d

= (b1+ · · · + bn)d −
(

n(n+ 1)

2

)
d

(d | m)

= (b1+ · · · + bn)d − (1+ · · · + n)d

= g̃n
n+m(γ ). 2

We have reached the goal of this section.

Proof of ak(n,m)= ak(m, n): Take anyn′ ∈ Cn andm′ ∈ Cm with (n′)d = (m′)d = k.
By Proposition 4,

#
(
K−1

n,m(n
′)
) = ∑

γ ∈ ϒ̃n
n+m

g̃n
n+m(γ )=d′

d

s(γ )
.
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Hence using the isomorphismx : ϒ̃n
n+m→ ϒ̃m

n+m one obtains

#
(
K−1

n,m(n
′)
) = ∑

γ ∈ ϒ̃n
n+m

g̃n
n+m(γ )=d′

d

s(γ )
=

∑
γ ∈ ϒ̃n

n+m
g̃n

n+m(γ )=d′

d

s(x(γ ))

=
∑

γ ∈ ϒ̃n
n+m

g̃m
n+m(x(γ ))=d′

d

s(x(γ ))
=

∑
δ ∈ ϒ̃m

n+m
g̃m

n+m(δ)=d′

d

s(δ)
= #

(
K−1

m,n(m
′)
)
.

It follows that

ak(n,m) = #
(
K−1

n,m(n
′)
) = #

(
K−1

m,n(m
′)
) = ak(m, n). 2

3. Another proof of the formula

Our next task will be to obtain another derivation of the formula 4,

ak(n,m) = 1

n+m

∑
d′|d

cd′(k)
n+m

d′ !
n
d′ !

m
d′ !
,

of a more combinatorial nature.
Consider the action ofCn+m on the setWn

n+m, under whichr ∈ Cn+m acts by shifting the
basepoint byr beads counterorientationwise. LetWn

n+m(k), for k ∈ Cd, be the subset of
Wn

n+m consisting of those elements with(
n∑

i=1

ri −
n∑

i=1

i

)
d

= k,

wherer1, . . . , rn are numbers of black beads counted orientationwise from the basepoint.

Proposition 6 The subset Wnn+m(k) ⊂ Wn
n+m is invariant under the action of Cn+m on

Wn
n+m.

Proof: Taker ∈ Cn+m, and letγ be an element ofWn
n+m(k), numbers of black beads ofγ

beingr1, . . . , rn. Then the numbers of black beads inr γ ∈ Wn
n+m will be r −ε1(n+m)+r1,

r − ε2(n+m)+ r2, . . . , r − εn(n+m)+ rn, where eachεi is 0 or 1 depending on whether
ri + r < n+m or not (in other words, numbers of those beads not passed by the basepoint
will grow by r , while of those passed—byr − (n + m)). Hence the sum of numbers of
black beads will become

n∑
i=1

r − εi (n+m)+ ri = nr − (n+m)
n∑

i=1

εi +
n∑

i=1

ri .
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So since bothn andn+m are divisible byd, the sum of numbers of black beads will remain
the same modulod. 2

DenoteWn
n+m(k)/Cn+m by W̃n

n+m(k). ClearlyW̃n
n+m(k) = {γ ∈ ϒ̃n

n+m | g̃n
n+m(γ ) = k}.

The inverse image inWn
n+m(k) of eachγ ∈ W̃n

n+m(k) has n+m
s(γ ) elements, since the pattern

of the arrangementγ is periodic with periodn+m
s(γ ) and there aren+m

s(γ ) possibilities to choose
the basepoint. Hence

#
(
W̃n

n+m(k)
) = ∑

γ ∈ ϒ̃n
n+m

g̃m
n+m(γ )=k

n+m

s(γ )
.

Comparing this with the formula from Proposition 4,

#
(
K−1

n,m(n
′)
) = ∑

γ ∈ ϒ̃n
n+m

g̃n
n+m(γ )=k

d

s(γ )
,

one concludes

#
(
K−1

n,m(n
′)
) = d

n+m
#
(
W̃n

n+m(k)
)
. (7)

Let us calculate #(Wn
n+m(k)).

Proposition 7

#
(
Wn

n+m(k)
) = 1

d

∑
d′|d

cd′(k)

(
n+m

d′
n
d′

)
.

Proof: Consider the polynomial

P(x, t) = x
n(n+1)

2 −k(t + x)(t + x2) · · · (t + xn+m).

After expandingP(x, t) and collecting the terms, the coefficient at the monomialtmxl will
be the number of representations oftmxl = x

n(n+1)
2 −ktmxr1xr2 · · · xrn , where 0< r1 < · · · <

rn ≤ n+m with

n(n+ 1)

2
− k+

∑
j

r j = l .

Rewrite the last equality as∑
j

r j − n(n+ 1)

2
− k = l − n(n+ 1);



COMBINATORICS OF NECKLACES AND “HERMITE RECIPROCITY” 185

sinced dividesn(n+ 1), it is clear that the sum of these coefficients attmxl over alll with
d | l will equal the number of those sequences 0< r1 < · · · < rn ≤ n+m with

(∑
j

r j − n(n+ 1)

2

)
d

= k.

Assigning to such a sequence an arrangement fromWn
n+m with r1, . . . , rn as numbers of

black beads, shows that the sum of these coefficients equals #(Wn
n+m(k)).

Let ζ = e
2π i
d (or any other primitivedth root of 1). Since for any integerl one has

d∑
j=1

ζ lj =
{

d if d | l
0 otherwise,

it follows that #(Wn
n+m(k)) equals the coefficient attm of the polynomial

P(t) = 1

d

d∑
j=1

P(ζ j , t).

Consider now the polynomialsP(ζ j , t) separately.
Sinced | n, one has

ζ j n(n+1)
2 =

{
1 if d is odd or bothd and nj

d are even,

−1 if d is even andnj
d is odd,

i.e.,ζ j n(n+1)
2 = (−1)

(d−1)nj
d . Hence

P(ζ j , t) = (−1)
(d−1)nj

d ζ− jk(t + ζ j )(t + ζ 2 j ) · · · (t + ζ (n+m) j ).

Denoting−t by s, one obtains

P(ζ j , t) = (−1)
(d−1)nj

d ζ− jk(−1)n+m
(
(s− ζ j ) · · · (s− ζ d

(d, j ) j )) (n+m)(d, j )
d

= (−1)
(d−1)nj

d +n+mζ− jk
(
s

d
(d, j ) − 1

) (n+m)(d, j )
d .

Now collect together the terms ofP(t) = 1
d

∑
P(ζ j , t) whose j ’s have the same gcd with

d. One obtains

P(t) = (−1)n+m

d

∑
d′|d

(
s

d
d′ − 1

) (n+m)d′
d ·

∑
( j,d)=d′

(−1)
(d−1)nj

d ζ−jk.
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The sign term in the last sum is

(−1)
(d−1)nj

d =
{
−1 if d is even and bothnd and j are odd,

1 otherwise,

=
{
−1 if d is even and bothnd andd′ = ( j, d) are odd,

1 otherwise,

= (−1)(d−1) n
d/d′ .

Hence

P(t) = (−1)n+m

d

∑
d′|d
(−1)

(d−1)n
d′ (sd′ − 1)

(n+m)
d′ ·

∑
( j,d)= d

d′

ζ− jk

= (−1)n+m

d

∑
d′|d
(−1)

(d−1)n
d′ (sd′ − 1)

(n+m)
d′ cd′(−k)

= (−1)n+m

d

∑
d′|d
(−1)

(d−1)n
d′ cd′(−k)((−1)d

′
td′ − 1)

(n+m)
d′ .

So the coefficient attm in P(t) will be

#
(
Wn

n+m(k)
) = (−1)n+m

d

∑
d′|d
(−1)

(d−1)n
d′ cd′(−k)(−1)d

′ m
d′ · (−1)

n
d′

(
n+m

d′
n
d′

)

= (−1)n

d

∑
d′|d
(−1)

dn
d′ cd′(−k)

(
n+m

d′
n
d′

)
.

Since d
d′ | n, the sign term in that last sum is(−1)

dn
d′ = (−1)n. Hence

#
(
Wn

n+m(k)
) = 1

d

∑
d′|d

cd′(k)

(
n+m

d′
n
d′

)

(we have used the evident equalitycd′(−k) = cd′(k)). 2

Remark A similar argument for derivinga0(n,m) has been communicated to us by Alon
and Stanley: for the role played by ourP(x, t), they use the function(1 − t x)−1(1 −
t x2)−1 · · · (1− t xn−1)−1.
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We have reached the desired formula: indeed, from (7) andak(n,m) = #(K−1
n,m(k)) one

immediately obtains

ak(n,m) = 1

n+m

∑
d′|d

cd′(k)

(
n+m

d′
n
d′

)
.

4. Some Final Remarks

Generating functions fora0(n,m) mentioned in [3] can be easily generalized: for any
integerk one has

∞∑
n,m=0

ak(n,m)x
nym = 1−

∞∑
d=1

cd(k)

d
log(1− xd − yd)

and

ζk(s+ t)
∞∑

n,m=1

ak(n,m)n
−sm−t = ζ(s+ t + 1)

∞∑
n,m=1

(n+m− 1)!

n! m!
n−sm−t ,

whereζk(x) =
∑

d|k d−x (in particularζ0(x) = ζ(x) is the Riemann zeta function).
Let us note also a relationship ofak(n,m) to free Lie algebras. Consider a free Lie

algebraLie(x, y) on two generatorsx, y over a characteristic zero field. Then Th. 2(b) in
[2], Ch. II, Section 3, no. 3 immediately implies that for anyn, m,

a1(n,m) = dim(Lie(x, y)n,m),

where( )n,m denotes the homogeneous component of bidegreen in x andm in y. We could
not find an explicit correspondence between generators of the above Lie algebra and our
“necklace” interpretation ofa1(n,m). This connection looks even more interesting in view
of the fact that in a sense, all theak may be reduced toa1.

Proposition 8 For any n, m, and k,

ak(n,m) =
∑

d′|(n,m,k)
a1(n/d

′,m/d′).

Proof: One calculates directly:

∑
d′|(n,m,k)

a1(n/d
′,m/d′) =

∑
d′|(n,m,k)

1

n/d′ +m/d′
∑

d′′|(n/d′,m/d′)
µ(d′′)

(
n+m
d′d′′

n
d′d′′

)

=
∑

d|(n,m)

1

n+m

∑
d′|(d,k)

d′µ(d/d′)

(
n+m

d
n
d

)
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= 1

n+m

∑
d|(n,m)

cd(k)

(
n+m

d
n
d

)
= ak(n,m). 2

We do not know a combinatorial explanation of this fact, either.
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