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Abstract. The ‘dollar game’ represents a kind of diffusion process on a graph. Under the rules of the game
some configurations are both stable and recurrent, and these are known as critical configurations. The set of
critical configurations can be given the structure of an abelian group, and it turns out that the order of the group
is the tree-number of the graph. Each critical configuration can be assigned a positive weight, and the generating
function that enumerates critical configurations according to weight is a partial evaluation of the Tutte polynomial
of the graph. It is shown that the weight enumerator can also be interpreted as a growth function, which leads to
the conclusion that the (partial) Tutte polynomial itself is a growth function.
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1. The main result

TheTutte polynomia]13] of a graphG can be defined as a sum taken over thex&) of
spanning trees db:

TGix,y)= Y xDy®,
TeX(G)
where (T) andj (T) are non-negative integers associated with the spanning tréke fun-
damental property df is that it satisfies a ‘deletion-contraction’ equation (see Section 7).
Partial evaluations of the Tutte polynomial occur in a wide variety of seemingly unrelated
situations: the graph-colouring polynomial and the Jones polynomial of a knot or link being
just two examples [2, 14].

Recently it has been observed [1] that theS€é6) is in bijective correspondence with
several other sets of objects associated v@dthin fact all these sets are instances of an
abelian grouK (G), which has a natural presentation in terms3f The main result of
this paper is that the reciprocal polynomial 5fG; 1, z) is the growth functionZ(z) of
K (G) with respect to its natural presentation:

TG 1,z Y=Lz = Z 29,
geK(G)

wherec is the cycle-rank o6 andL (g) is the length ofj in K(G). It should be noted [14]

that this partial evaluation of the Tutte polynomial is precisely the one which measures the
‘reliability’ of a graph with respect to edge-failures, when the probability of an individual
failure isq = z7L.
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The basis of the proof is the observation that manipulations involving the natural set of
generators and relations f&r(G) correspond to moves in the so-called ‘dollar gameGn
[4]. The details are explained in Sections 9 and 10.

The dollar game is a version of the chip-firing game discussed by mathematicians [5, 10],
and is closely related to a model developed by physicists which uses the terminology of
‘sandpiles’ and ‘avalanches’. Gabrielov [6, 7] showed that several quantities associated
with the avalanche model satisfy an equation related to the deletion-contraction equation
and, in particular, he observed [7, p. 267] that a certain polynomial has this property. His
arguments are based on geometrical ideas.

Using graph-theoretical methods, Merino Lopez [9] has shown that the generating func-
tion C(2) for critical configurations in the dollar game is equalZ@l, z) (Theorem A).

We shall establish a correspondence between critical configurations and minimal repre-
sentations of elements of the groaG), which leads to the result (Theorem B) that
L(2) = z°C(z~1). The main result follows from these two theorems.

2. The dollar game

We shall consider a finite grapB consisting of a vertex-séf, an edge-seE, and an
incidence relation such that each edge is incident with one or two vertices. Thus both loops
and multiple edges are allowed. We denotevby) the number of loops at a vertexand

by v(v, w) the number of edges joining the verticeandw. For the avoidance of doubt,
thedegreeof v is defined to be

degv) = 2v(v) + Z v(v, w).
wWH#V

We shall assume, without always mentioning it explicitly, t@ais connected

Suppose that each vertex &f has a number of dollars, except for one vertgxhe
‘government’, which is in debt by the total amount of dollars held by the rest. The operation
which we shall calfiring a vertexv consists of transferring dollars fromalong the edges
incident withv. Two dollars are transferred around each loop &ince we count a loop
as being twice-incident with its vertex), and one dollar is transferred along each other edge
incident withv. The former operation has no effect, since the two dollars retusntiat it
is necessary to include it for the sake of consistency. We insist that a wegtex can be
fired if and only ifv has at least as many dollars as incident edges. However, this restriction
does not apply tg, because firing) merely increases its debt. Thdsllar game[4] is a
variant of what is usually calledehip-firing gameon the graph [5].

We describe briefly a few basic results from [4], which are in turn derived from [5]. The
dollar game can be defined formally as followscénfigurationon (G, q) is an integer-
valued functiors defined onVv such that

SW) = 0@#0), S@=-) sw).
v

Let us say that vertex # q is readyin a configuratiors if s(v) > degqv). If v is ready
in s, then it can bdired, which results in a new configuratiehdefined by

S(X) = s(X) + v(X,v), if X#uv;
S'(v) = s(v) — degv) + 2v(v).
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In particular, if the graph is simple (no loops or multiple edges), vertices adjacegfzio
one dollar, vertices not adjacenttcare unaffected, and itself losesdegv) dollars. We
denote byF, the operator which takesto s', and wherv # g we say thaf, is legalfor s
if and only if s(v) > deqv).

The first result we need is Lemma 3.1 in [4].

Lemmal Anysequence of legal firings v # q which starts from a given configuration
on (G, g) has finite length.

If no vertexv # qis ready irs, then we say thatis astableconfiguration. Lemma 1 says
that, starting from any configuration and firing vertices other thhawe shall eventually
reach a stable configuration. In that situation, and in that situation only, we allow the firing
of g; in other words F is defined to béegalfor s if and only if s is stable.

3. Critical configurations

The fact that we are allowed to usg if there is no alternative, means that firing can
continue indefinitely. But Lemma 1 tells us that an infinite sequence of legal firings
must containFy infinitely often, and consequently it must produce an infinite number
of stable configurations. Since the number of distinct stable configurations is finite, there
must be at least one, saywhich is recurrent. In other words, there is a non-empty finite
sequence of legal firings which starts and ends with the same stable configuration

We say that a configuration @f®, q) iscritical if itis stable and recurrent. The preceding
remarks imply that, starting from any configuration and applying a sequence of legal firings
(including Fy if necessary), we shall eventually reach a critical configuration.

In general, not every stable configuration is critical. For example, in the complete bi-
partite graphKs 3 there are 5 vertices # g and each has degree 3, so there arst&ble
configurations. But onlyBof them are critical.

Suppose tha$ is a non-empty finite sequence of (not necessarily distinct) vertic&s of
such that starting frorg, the vertices can be fired legally in the ordeSoflf v occursx(v)
times, we shall refer ta as therepresentative vectdor S. The configuratiors’ after the
sequence of firing$ is given by

S'(v) = s(v) — x(v)[degv) — 20(W)] + Y _ X(W)v(v, w).
w#v

This is because each timeis fired it loses (effectivelyflegv) — 2v(v) dollars, and each
time a vertexw # v is firedv gainsv(v, w) dollars. The relationship betwesmands’ can
be written more concisely if we define thaplacian matrix Qas follows:

—v(v, w), if v=£w;

(Qww = {degv) —2v(v), fv=w.

In terms ofQ the relationship betweenands'’ is then

s =s— Qx
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The following lemma shows that there are severe restrictions on a sequence of firings under
which a configuration recurs.

Lemma 2 Any sequence of legal firings in which each vertex occurs the same number of
times produces a final configuration which is the same as the initial one. Conversely
any sequence of legal firings under which a configuration recurs, each vertex is fired the
same number of times. If such a sequence exists for a given configuthgorthere is a
sequence in which every vertex is fired just once.

Proof: See [4, Sections 2 and 3]. O

4. Critical sequences

Suppose thaG hasn vertices, and letr : {1, 2, ..., n} — V be a bijection. We shall say
thatr is acritical sequenc®n (G, q) if the sequence

(), 7(2),n7(3),...,7(n)
of vertices ofG has the following properties:

[C1]: #(1) =q;

[C2]: foreachj=2,3,...,nthereis an < j such thatz(i) is adjacent tor(j).

A critical sequence may also be thought of @stal orderon the vertex-se¥, satisfying
the conditions that] comes first [C1], and every other vertex is preceded by at least one
neighbour [C2]. There is at least one critical sequencé@my), because any total order
which is consistent with distance frognhas these properties.

The relationship between critical sequences and critical configurations is clarified in the
following lemma.

Lemma 3
(i) If the configuration c is criticalso that it recurs under a sequence of firings in which
every vertex occurs just oncten this sequence is a critical sequence.
(i) Forevery critical sequence there is a critical configuration,cwhich recurs undet: .

Proof:

(i) Sincec is stableq must be fired first, so [C1] holds. When a verteis fired, it must
be ready at that stage. But initiallyis not ready (becauseis stable), so at least one
neighbour ofv must be fired before. Thus [C2] holds.

(i) Suppose thatr is a critical sequence. Defir, (v) to be the set of edges which join
v to vertices which come befotein the order defined by, that is,

B.(v) = {e € E | ehas vertice®, w such thatr ~*(w) < 7 1(v)}.
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Since condition [C2] is satisfied, (v) is not empty. Thus if we define
Cz(v) = degv) — [B; (v)| (v #q),

we havec, (v) < degv) — 1, andc, is a stable configuration.

Suppose we try to fire the vertices in the oraerstarting from the configuratioq,.
Firing q = = (1) first is legal, sincec, is stable. Suppose all firings are legal until we
come to firer (i) = v. The total number of dollars held hyat that stage is the initial
numbergc, (v), plus the number of edges joinimgo vertices which have been fired before
v, |B;(v)|. By the definition ofc, (v) this number is equal to the degreewfand so it is
legal to firev. Hence we have a legal sequence of firings, containing each vertex just once,
and it follows thatc, is recurrent. O

The function from the se$ of critical sequences to the sitof critical configurations
defined byr — c, is neither a surjection nor an injection. If we are given a critical
configurationc then, according to Lemma 2, there is at least one critical sequenoceer
which ¢ recurs, butt may not be equal to,. This situation will be analysed in the next
section.

Furthermore, there may be distinct critical sequeneesdo such thatc, = ¢,. In
other words, if we partitioisinto equivalence classes by saying thatndo are equivalent
if and only ifc, = c,, then the classes may have more than one member. For exanaple, if
is obtained fromr by transposing two vertices which are consecutive lsut not adjacent
in G, thenos andr are in the same equivalence class. The following lemma is an important
step towards the characterisation of the equivalence classes.

Lemma4 Letr ando be critical sequences suchthate ¢,. Suppose there are vertices
x and y such that x comes before yrirand x comes after y ia. Then x and y are not
adjacent.

Proof: Suppose, for a contradiction, thaandy are the ends of an edge Theneis not
in B, (X) butitisin B, (x). Sincec, = c,, the two sets have the same size, and there must
be an edgd which is notinB, (x) butis in B, (x). In other words, there is a neighbaur
of X which comes beforg in 7, and aftex in o.

Now we can repeat the argument withy, ande replaced byw, X, and f; and so on,
indefinitely. This is clearly impossible, soandy cannot be adjacent. O

5. Theindex of a configuration

For any configuratios denote byM (s) the associated ‘money-supply’:

M(s) = > s(v) = —s(q).
v£Q
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If G hasn vertices andn edges, and is stable on(G, q), we have

M(s) = > s(v) < ) [degv) — 1] = 2m — degq) —n+ 1.
74 Vg

Whenc is critical, the following lemma provides a lower bound fdr(c). It is related to
Theorem 3.3 in [5].

Lemma5 Let G be a connected graph with m edgesf which are loopsand let q be
any vertex of G. Then for any critical configuration ¢ @3, q) we have

M(c) > m+1 — deqgq).

Proof: Consider a critical sequence for in the course of this sequence some dollars
are transferred. Think of the dollars as real dollar bills, and mark those that are transferred
according to the following rule.

e Each edge is incident with two vertices, sag andb, where ifeis a loop thera = b.
Supposa is the first of these vertices to be fired. Mark a dollar bill which is transferred
from a to b with the labele. If eis a loop af, two dollars return immediately t, both
labellede. If eis not a loop, the vertek is fired subsequently, at which stage the dollar
markede is returned ta.

Since every vertex is fired just once, at the end of the process theredaiés2 bills marked
with the labels of loops, anch — | dollar bills marked with the labels of the edges which
are not loops. That is, there are+ | marked dollar bills altogether. However, the dollars
marked wherg was fired (which was necessarily first) have returned,tand there are
dedgq) of these. The remainingm + ) — deg(q) marked dollars are still in circulation.
The final configuration is, and soM (c) > (m+ 1) — dedgq), as claimed. O

It is convenient to denote — degq) by Mg and to define thexdexof a configuratiors to
be the integer

i(S) = M(s) — Mo = M(s) — (m — deg)).

Lemma 5 shows that i€ is a critical configuration then(c) > |. Sincec is stable, the
calculation preceding the lemma shows th@) = M(c) — Mg is at mostm — n + 1. We
shall refer tofl, | + 1, ..., m — n+ 1} as thecritical rangefor the index.

Lemma 5 is a significant step towards identifying which stable configurations are critical.
It says that a stable configuration whose index lies outside the critical range is not critical. On
the other hand, itis not necessarily true that a stable configursisaritical if i (s) is in the
critical range. We can make further progress towards characterising critical configurations
by using the critical sequences defined in the previous Section. The following lemma is
equivalent to Lemma 5 in that context.
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Lemma 6 Suppose that is a critical sequence and,ds the associated critical confi-
guration defined in the proof of Lemm3aThen ic,) =1, where | is the number of loops
inG.

Proof: By definition,

M(Cr) = ) cr(v) = ) (degv) — By (v))).
v£Q v#Q

In other wordsg, (v) is the number of incidences betweeand edges which do not join

to vertices preceding it in. Suppose that is an edge with distinct vertices vy, labelled

so thatx comes beforgy in . If X # q, the edgee contributes 1 tavi(c,), by virtue of
the termc, (x). If x = g thene makes no contribution. So the non-loops contribute in all
(m—1) — dedgq). Every loop at a vertex contributes 2 taVi(c;) by virtue of the term

¢, (v), and so the contribution of the loops is Ihus the total isn + | — deg(q), and we
have

i(Cx) = M(C;) — Mo = (m+ | —degq)) — (m—degq)) =1. O
We can now throw some light on the structure of the set of all critical configurations.

Lemma 7 Letc be a critical configuration and let s be a stable configuration such that
forall v #£ q, s(v) > c(v). Then s is critical.

Proof. Sincec is critical, there is a critical sequence associated with it. The condition
s(v) > c(v) implies that the same sequence is legakfa@and scs is critical. O

Lemma 8 If x is a critical sequence for,cthen qv) > c,(v) for all v # q; and if
i(c) =1, thenc=c,.

Proof: If z is a critical sequence for the configurationsand c,, it is also a critical
sequence for the configuratiap defined by

Cm(v) = min{ci(v), C(v)} (v # Q).

In this result, take; = c andc, = c,. It follows that, sincer is a critical sequence far
andc,, 7 is also critical sequence fof,. If c(X) < ¢, (x) for some vertex, thenc,, would
be a critical configuration wittM (c,,) < M(c,) = Mg +1, contradicting Lemma 5. Hence
c(v) > c,(v) for all v # g. Finally, if i(c) = | we must haveM (c) = Mg + | = M(c;,)
and soc = c;. O

Corollary  Suppose that G has no loops and c is a critical configuration of iftdex
(G, ). Then there is a vertex z such thagzx= 0.
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Proof: By the lemmag = c, for some critical sequence. According to the definition
of ¢, the vertexz = m (n) has the required properties. O

Lemmas 7 and 8 provide a useful characterisation of thE sétll critical configurations.
We can think of the configurations as points of the integer lafite!, with the natural
partial order< defined byb < c if and only if b(v) < c(v) for all v # q. With respect to
this order there is a uniqgue maximal elemehof I, given by

c(v) =degv) —1 (v#Q).

The set of minimal elements &f is the sefl”, of critical configurations with indek The
lemmas assert that if we knos¥ andT, the entire sel is determined:

I={ceZ"!|b<c<c’forsomebeI}.

Thus we have a method of constructing all the critical configuration&=1). First, we
write down the critical sequences Lemma 8 implies that every critical configuration with
index| occurs as &, although (for the reasons given at the end of Section 4), there may
be repetitions. The critical configurations with index greater thare then obtained by
writing down the stable configurations which ‘cover’ the critical ones with indeXn
example follows.

Example Let K33 be the complete bipartite graph with two clasges- {v, w, x} and
B = {q,r, s}. Herel = 0, so the critical range is & i(c) < 4, corresponding to values
of M(c) between the minimunMy = m — degq) = 9 — 3 = 6 and the maximum,
Mo+ (m—-n+ 1) =10.

As usual we take to be the ‘government’. In any critical sequergenust come first.
Of the remaining 5 vertices, 3 are in cla&sand 2 in clas$B, so there are 3B!2! = 10
patterns (such a8AABB for a sequence of these 5 vertices; and each pattern gives rise to
12 vertex-sequences. Condition [C2] for a critical sequence is satisfied if and aply if
followed by a clasA vertex. So the number of allowable patterns is $08ABB AABAB
AABBA ABAAB ABABA ABBAA Transposing two vertices in the same class results in an
equivalent critical sequence, and in this graph evemertex is adjacent to evel-vertex,
S0 no other transpositions are allowed. Hence the number of equivalence classes of critical
sequences corresponding to the six patternsis 1, 6, 3, 6, 12, 3, respectively. Thus we get
146+ 3+ 6+ 12+ 3 = 31 critical configurations.

The following table contains one critical sequemcand the configuration,, for each
of the six allowable patterns. The remaining ones can be obtained by permuting
andr, s.
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v w X r S
AAABB QwXrs 2 2 2 0 0
AABAB Qpuwrxs 2 2 1 1 0
AABBA Qpuwrsx 2 2 0 1 1
ABAAB Qrwxs 2 1 1 2 0
ABABA Qprwsx 2 1 0 2 1
ABBAA Qprswx 2 0 0 2 2

Note that the complete list of 31 critical configurations with index 0 does not include every
stable configuration with index 0. For example, 21111 is stable but does not occur in the
list; the Corollary to Lemma 8 confirms that it is not critical (there is no 0).

Now we can construct recursively the critical configurations with index greater than 0,
by increasing the numbers at each vertex. For example, the critical configuration 20022 is
‘covered’ by the critical configurations 21022, 20122, 21122, 22022, 20222, 22122, 21222,
and 22222. Using this method it turns out that there are 29, 15, 5, 1 critical configurations
of index 1, 2, 3, 4 respectively, giving 81 altogether.

6. Allowable orientations

Let E~ be the set of edges & which are not loops. Awrrientationof G is a functionh
which assigns to eaahe E~ one of its incident vertice(e). We callh(e) theheadof e.
The other vertex oé is called thetail of e and is denoted by/(e). Usually we think ofe
as being marked with an arrow which points froge) to h(e); it is worth stressing that a
loop has no arrow. Given an orientatibrof G, thein-degreeof a vertexv is defined to be

inh(v) = [{e€ E™ [ h(e) = v}l

We say thath is acyclic if there is noh-oriented cycle, that is, no sequence of edges
€1, €&, €,..., & such thah(e) =t(e), h(e) =t(e), ..., h(e) =t(e).

The relationship between acyclic orientations and chip-firing was noted in [5]. In a
different context, the earlier paper of Greene and Zaslavsky [8] contains results equivalent
to those stated below as Lemmas 9 and 10, and the proofs of those lemmas are therefore
omitted.

Our motivation for considering orientations comes from the observation (Section 4) that
7 +— C, is not an injection. Following the lead provided by Lemmas 4 and 6, we shall
identify a set of orientations which is in bijective correspondence with the set of critical
configurations of minimal indek Specifically, we say that an orientatibris allowable
on (G, g) if it satisfies the two following conditions.

[O1]: his acyclic.
[02]: inp(q) = 0 andiny(v) #~ 0 for allv # .
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The condition [O1] thah is acyclic implies thah defines a partial ordet on the vertex-set
V, such that (e) < h(e) for all e € E~. We shall say that a total order on V is an
extensiorof h if and only if t (e) comes beforda(e) in z, foralle € E~. Itis a standard
result that any partial order has an extension.

Given an allowable orientatiom, define

Ch(v) = degv) —inp(v) (v # Q).

Lemma9 The total orderingr is an extension of an allowable orientation h if and only
if it is a critical sequence fory: Furthermore ¢, is a critical configuration with index |.

Lemma 10 The map h— ¢, is a bijection from the set of allowable orientations to the
set of critical configurations with index | o, q).

Let e be an edge o6 which is neither a loop nor eo-loop(its removal does not result

in a disconnected graph). Suppose the vertices incidentandtex andy. DefineG — e
to be the graph obtained logletionof e, that is, the graph with the same verticeszaand
all its edges except. DefineG/e to be the graph obtained lmpntractionof e, that is, the
graph whose vertex-set is obtained by replacirandy by a new vertex, and replacing
every edge irG incident withx or y by an edge incident with. Note that the edgedoes
not correspond to any edge Gf/e, but if there are other edges @ joining x andy (that
is, if v(x, y) > 2) then these edges become loops incident with the vertexG/e.

Lemma 11 Suppose that G- e and G/e are the graphs formed by the deletion and
contraction of an edge e of G. Le{(G, q) be the number of allowable orientations on
(G, q). Then

OI(G, Q) = OK(G - ev q) + O{(G/e, q)

Proof: Using Lemma 10, this follows from a more general result given in the following
section. |

7. Counting critical configurations

For each > 0 letT (G, q) denote the set of critical configurations @@, g) which have
indexi, and let

¥ (G, =G o), TG aq = TG 9.

i>0
We define the generating functiciiz) = C(G; z) as follows:
m—n+1

C(G;2) = Z 70 = Z % (G, q)Z.

cel'(G,q) i=l
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For example, the calculations fé; 3 given in Section 5 yield the result
C(Kz3;2) =31+ 292+ 1572 + 52° + Z*.

Merino Lopez [9] has established an alternative characterisatioii®f z) (Theorem A
below). In order to state it we need to recall the definition of the Tutte polynomial.

Let G be a connected graph afda spanning tree o&. For each edgg € T there is
a unique cut consisting of all the edges which have one in end in each of the components
obtained by deleting from T. We denote this by cdl, g); it containsg itself and edges
which are not inT. For each edgh which is not inT there is a unique cycle consisting
of h and edges which are if; we denote this by cy@, h).

Assume that the edges &f are given a fixed orderingy, e, ..., en. Supposes € T.
Then we say thag is internally activeif i is the least index of any edge in €Ut g).
Similarly, if & ¢ T, we say thag; is externally active ifj is the least index of any edge
in cyc(T, g)). Theinternal (externa) activity of T is defined to be the number of edges
which are internally (externally) active. Denoting these quantitiegnb§T) andext(T)
respectively, we define a polynomial in two variables

Z Xint(T)yext(T).
T

Itcan be shown that this polynomial is independent of the edge-ordering used in its definition,
and it is known as th&utte polynomiabf G, denoted byZ (G; X, y). In other words,

TG:x.y) =) tyxyl,

wheret;; is the number of spanning trees with internal activignd external activityj, in
any fixed ordering of the edges.
We can now state the theorem of Merino Lopez [9].

Theorem A Let G be a connected graph with Tutte polynon#ak, y). Then for any
vertex q of G the generating functi@iiz) for critical configurations onG, q) is given by

C(2=T7(@1,2.

It follows that ), tij, the total number of spanning trees with external actiyitis equal
to the number of critical configurations with ind@xSince the set of spanning trees which
contribute to) ; tj; depends on the chosen ordering of the edges, we cannot expect a
‘bijective’ proof of this fact.

In Tutte’s original paper [13] it is shown thd@tsatisfies the deletion-contraction equation:

TG X, Y)=TGC—-6eXx,y)+7T(G/eX,Y).

It follows from Theorem A that the polynomiél(z) and its coefficients; also satisfy this
equation. In fact, Merino Lopez [9] proves the following result.
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Lemmal2 Letebeanedgeincidentwithgnd letd be the vertex obtained by contract-
inge. Thenforalli> 0, the sef’; (G, q) has a natural decomposition into two partshich
are in bijective correspondence with(G — e, q) andT’; (G/e, g*) respectively. Thus

%G, =yG—-eq+rG/eq).

Note added in Proof: The author is grateful to a referee for pointing out that the character-
isation of the minimal elements df obtained in Section 5, together with Theorem A,
resolves a conjecture of Stanley [12, p. 59] in the case of graphs. Roughly speaking, the
coefficients of the Tutte polynomidl(1, z) can be represented by the cardinalities of certain
sets with nice properties.

8. The critical group

Let G be a connected graph and @2 = C%(G; Z) denote the abelian group of integer-
valued functions defined ovi. Associated with the matri® defined in Section 3 we have
the Laplacian homomorphism QC° — CO defined by

(QH () = (degv) — 2v()) f (V) = > v(v, X) f(X).

xeV

If o : C% — Z is the homomorphism defined by

a(f)y=Y f),

veV

then is it easily verified that Q = 0, so ImQ is a subgroup of Kes. The quotient group
K(G) =Kerg/Im Q

will be called thecritical group of G. It has also been referred to as theobiangroup
[1, 11].

Let q be a vertex ofs. Denoting bys, the function which takes the value 1watnd 0O
at every other vertex, we see that for eackt g the functiond, — &4 is in Kero. Let
Ou = [8u — 8], the coset of this function with respect to I

It can be shown [4, Theorem 8.1] th@d, |u # q} is a set of generators fdf (G).
Furthermore, these generators satisfy a canonical set of relations, which we shall call the
Picard presentation The reason for this name is the analogy with the Picard group in
Algebraic Geometry [1, 3]. Since the presentation of the group (but not the group itself)
depends on the choice qf we shall denote it bK (G, q) in this context.

Specifically, in the Picard presentati®h G, q) there is a relationR, for eachv # q:

R, :degv) - g, = 20(v) - Gy + ) _v(v.w) - Gu.
wq
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Adding all these relations we obtain an important consequence, which we sha&j;call

Ry : Zv(q,u)«gu =0.
uzq

Any configuratiors on (G, q) corresponds to eepresentatiorof an elemeng of K (G, q),
defined byg = > s(u)gy,. We say that this is aninimal representatiownf g if any other
representatior)  s'(u)g, of the same elemeng satisfies) " s'(u) > > s(u). Thelength
L(g) of g is defined to b&_ s(u), where>_ s(u)g, is a minimal representation.

We define theggrowth functionof K (G, q) to be the polynomial functiod given by the
formula

L(2) = Z radt

geK(G,q)

Example Let K33 be the complete bipartite graph with the notation as in Section 5.
The Picard presentation has 5 generators which (writingstead ofg, and so on) are
r,s, v, w, X. The relations are:

R:3r=v+w+xX
Rs:3s=v+w+ X

R,:3v=r+s
Ry:3w=r+s
R:3x=r +s.

The additional relation iR;: v + w + x = 0.

In Section 11 we shall describe a general method for listing minimal representations.
In a small case like this, elementary algebra and dogged persistence are sufficient. In the
following list, only one of each type of minimal representation is listed—that &ands
for any one ofv, w or x, and so on. Each type is followed by the number of minimal
representations of that type, in square brackets.

Length 0: 0 [1]

Length 1: r [2], v [3];

Length2: 2 [2],r +s[1],r + v [6],2v [3], v+ w [3];

Length3: 2 +4+s[2],2r +v[6],r +S+v[3],r +2v[6],r + v+ w[6], 2v 4+ w [6];

Length4: 2 +2s[1],2r +s+v [6], 2r + v + w [6],
r+v+42w[12],r +s+ 2v [3], 2v + 2w [3].

Observe that, for example, the typet+ w + r + s does not appear in the list, because it
reduces to 2. Counting the types we obtain:

L(z) = 1+ 5z + 157% 4+ 292° + 317,

In general, an elemeqgtof K (G, g) may have more than one representation of lehgt}).
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9. The dollar game and the Picard presentation

Arepresentatiog = ) s(u)g, of an element oK (G, q) is associated with a configuration
sfor the dollar game (where the definitionsig extended tq by definings(q) = — ) s(u),
so thatsis in Kero). The cosetg] € K(G, q) is justg, since

9= sWgy =) sW[ —8] = [ZS(U)&J - (Zam)%} = [s].

uq uzq uzq uzq

There is an obvious connection between applying a relaRprto the representation
> s(u)g, and firing the vertex in the configuratiors. In this context it is helpful to
think of R, as arewriting rule, rather than an identity:

R,: deqv) - g, —> 2v(v)g, + Z v(v, w)Qy.
wFq

If s(v) > degv) we can apply the rewriting rulR, and collect up the terms using the abelian
group laws. The result is a representat)oit (u)gy, and the associated configuratiois
the result of applying-, to s.

Similarly, we can express the additional relatiBg in the following way (chosen to
conform with our definition of the firindr):

Ry 0 — > (g, u)Qu.
U

Lemma 13 Eachelementof KG, q) has arepresentatioh s(u)g, for which s is stable
thatis 0 < s(u) < degu) —1forallu # q.

Proof: Letg = ) f(u)gy be any element oK (G, g), remembering that the values of
f may be negative, and defifgq) = —)_ f(u). Letl be the configuration defined on
verticesu = q by

L) — deqgu) — 1 if f(u) >0,
W= degu) —1— f(u) if f(u) <O.

Althoughl is not necessarily stable, it follows from Lemma 1 that there is a finite sequence of
legal firings which reducdsto a stable configuratiok If this sequence has representative
vectorx, we havek =1 — Qx. Letz= f +| —k, sothaz= f + Qx. Then ] = [f],

and

z(uw) = f(u) + 1) —k(u) >degu) —1—k(u) >0.

Hence)_ z(u)g, is a representation of the given elemgnt

If zis stable, we are finished. If not, it follows from Lemma 1 again that we can apply
the rulesR, (v # q) until we are forced to stop. At this stage we have a representation for
which the associated configuration is stable. O
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10. The unique critical representative

Recall that in Section 3 we established the following result. If we start from any configura-
tion of the dollar game, and carry out a sequence of legal firings, we must eventually arrive
at a critical configuration—that is, a stable configuration which recurs. A fundamental result
about the dollar game is the following.

Lemmal4 Lets beaconfiguration oft, q). Thenthereisaunique critical configuration
which can be reached by a legal sequence of firjsggrting from s.

Proof: [4, Theorem 3.8]. O

This result has a simple interpretation in terms of the grdf®, ). Any configuration
s satisfiess (s) = 0, and so defines a cosal [n K(G, q). If s’ is obtained frons by a
sequence of legal firings, it is of the forsh= s — Qx, and so it belongs to the same coset
[s]. Lemma 14 asserts that each cosghlas a unique critical representative.

This explains the name ‘critical group’ fé¢ (G, q). Indeed, we can think of the critical
configurations themselves as the elements of a group. In that case, we must define an abelian
group operation on the set of critical configurations so that the coseat;afc; is the sum
of the cosetsd;] and [c;] in K(G, ). This implies that we must take e ¢, to be the
unique critical representative afj[+ c;]—in other words, the unique critical configuration
which can be obtained by applying a sequence of legal firings 4oc,. More details can
be found in [4].

Our purpose here is to consider the index of the critical representadi/gs] whens is
stable. The configuratiommay itself be critical, in which case= s. If sis not critical,
then there is a sequence of legal firings, starting Wighwhich leads fronstoc. If i(s) <0
then, becausigc) > 0, it follows thati(s) < i(c). This may still be true even if(s) is
inthe critical range. For example, itwas pointed outin Section 5 that the stable configuration
s = 21111 onKg 3 is not critical, even though its index is 0, which is in the critical range.

In this case the critical representative- 02222 is obtained as follows:

21111-% 322115 02222

and we have (c) > i(s) again. However, it is possible for there to be a stable (but not
critical) elemens whose critical representatives such that (s) =i (c).

Example Let G consist of a 5-cyclg, x, t, u, z together with a vertey and two edges
joining y to g andx. SoMg = 7 — 3 = 4. Denote byabcdethe values of a configuration
at the verticex, v, z, t, u. Then we have a sequence of legal firings

s = 21100— 322005 03210—Y> 11210-%> 11011=c.

It is easy to check thatis recurrent, and clearlys) = i(c) = 0.

Lemma 15 Lets be a stable configuration and c the unique critical representative of the
coset[s]. Thenic) > i(s).
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Proof: The general theory asserts that there is a sequence of legal firings
sy 5 ... s

Suppose that the sKtof vertices other thag which are fired more than once in the complete
seguence is not empty, and ek X be the vertex whose second firing occurs first in the
sequence. If is the configuration immediately before this second firing, aagd) is the
number of firings ofw up to this point, we have

t(x) = s(x) — degx) + 2v(X) + =, wherex = Z n(w)v(w, X).
wWH#EX

Sinces(x) < degx), andt(x) > degx), we must have 2(x) + ¥ > degx). It follows
thatn(w) > 1 for at least onev # x and, by the definition o, we must haver = q. We
have shown that no vertex can be fired a second time gihidls been fired twice.

In the course of the sequence of firinlgkinitially increases bydegq) whenq is fired,
and decreases hyq, y) every time a neighbour of q is fired. However, as we have shown,
no neighbour ofy can be fired more than once unlegss fired again. Hence the index
cannot fall below its initial value unlegspis fired again. But then we can repeat the same
argument. Henc#1(c) > M(s), and consequentiyc) > i(s) as claimed. O

11. Counting minimal representations

In Section 5 we noted that the configuratigrdefined byc* (v) = degv) — 1 for allv # q
is the unigue maximal critical configuration; in fagt(c*) = Mg+ (M — n + 1), and so
the index ofc? ism —n + 1.

We define theonjugateof a stable configuratiosto bes* = ¢* — s. It follows from the
definition of stability thats* is also a stable configuration, and clearly the conjugas of
iss.

Lemma 16 Every element g of KG, g) has a unique representation t(u)g, such that
the conjugate configuratiort tis critical.

Proof: According to Lemma 13g has a representation’ s(u)g, such thats is stable.
Furthermore,§] = g.

The conjugate configuratiast is also stable and, by the theory outlined above, there is
a sequence of legal firings which leads frefrto a critical configuratiore. Lett = c*, so
that)_t(u)g, is a representation of some elementafG, q).

Sincec = t* is obtained frons* by a legal sequence of firings, we hav#] [= [s*]. It
follows from the definition of conjuacy that][= [s], and [s] = g, so that) t(u)g, is a
representation af, and by its definitiont* = cis critical.

Suppose we are given any representafidry(u)g, of g with y* = ¢’ critical. Then
we haveg = [t] = [y], so [t*] = [y*], and [c] = [t*] = [y*] = [¢/]. But each coset
has a unique critical representative, hence ¢/, and it follows thaty(u) = t(u) for all
verticesu. O
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Lemma 17 The unique representationsg Y t(u)g, for which t* is critical is a minimal
representation of g.

Proof: Suppose first that we have a representagien >~ z(u)g, in whichzis not stable.
Then applying the rewriting ruleR, (v # q) must eventually produce a representation
g =) s(u)g, in whichsis stable. The rules imply that s(u) < ) z(u) (sinceRy is not
used), so it is sufficient to assume that we have a representatios stible.

In that case, applying Lemma 15 wigh as the stable configuration atidas the critical
one leads to the conclusion thas*) < i(t*). This means thaM(s) > M(t), that is,
> s(u) > Y t(u), and hencé_ t(u)g, is a minimal representation. O

Lemmas 16 and 17 define a two-stage procedure for reducing a represehtatiajg, to
a minimal one.

e Stage 1 If necessary, reducg. z(u)g, to Y s(u)g,, wheres is stable. This may be
done by applying the rewriting rulg’, (v # q) only.

e Stage2 Apply the rewriting rules (includingg, if and only if itis needed) ty ~ s*(u)gy
until a representatioh t*(u)g, with t* critical is obtained. Thel_ t(u)g, is a minimal
representation.

Example Consider again the grapis s, with the notation as in Sections 5 and 8. A
minimal representation of the elemant 4v + w can be found as follows.

Stage1 Applying R, reducegtov + w +r + s, where the corresponding configuration
11011 is stable.

Stage 2 The conjugate configuration is 2222211011= 11211. Applying legal firings
(or the equivalent rewriting rules), we get

1121125 223115 22022

The last configuration is critical. Its conjugate is 00200, so a minimal representation of
g=4v+wis2x.

We now turn to the theoretical consequences of Lemmas 16 and 17. First we note that,
since)_t(u)g, is a representation af, the cosett] is g. If h denotes the cosetq], then

t]=[c"~tl=h—g.

So the lemmas tell us that an elemgrin K (G, q) has lengthM (t), wheret* is the unique
critical representative df — g. We have

L(g) = M(t) = M(c) — M(t)
=ichH) =it
=(M-n+1) —it".
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Theorem B Let G be a connected graph and g a vertex of G. The growth fungtioh
the critical group K(G, q) is related to the function as follows

L(z) = 2" " lez Y.

Proof: We must check first that the mappigg— t* is a bijection fromthe groui (G, q)
tothe sel’ (G, q) of critical configurations. Clearly, the mappifig g — h—gof K(G, q)
into itself is a bijection. But the fact that each coset has a unique critical representative
means that the mapping which takes- g = [t*] to t* is a bijection, and sg — t* is a
bijection.

The calculation given above shows thag) = (m—n+ 1) —i(t*). Hence the number
of elements oK (G, q) which have lengtl is equal to the number of critical configurations
with index(m — n + 1) —i. The result follows from the definitions d@f andC. O

12. The growth function and the Tutte polynomial
Combining Theorems A and B we have the main result.

Theorem C Let G be a connected graph with n vertices and m edged let g be any
vertex of G. Then the Tutte polynomi&lof G and the growth functiot of the Picard
presentation KG, q) are related as follows

T(1,2) =2""1ci Y.

Corollary  The maximum length of an element ifi®& q) ism—n + 1.
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