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Abstract. Given a symmetric polynomiab (X, y) over a perfect fieldk of characteristic zero, the Galois graph
G(®) is defined by taking the algebraic closikras the vertex set and adjacencies corresponding to the zeroes of
®(x, y). Some graph properties 6f(®), such as lengths of walks, distances and cycles are described in terms of
®. Symmetry is also considered, relating the Galois groupkz) to the automorphism group of certain classes

of Galois graphs. Finally, an application concerning modular curves classifying pairs of isogeny elliptic curves is
revisited.
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1. Introduction

Let k be a perfect field of characteristic zero andketenote the algebraic closure kof
To a given polynomiad (X, y) with two indeterminates and coefficientskiywe attach the
following directed graptG(®):

e vertices:| €Kk,
e arcs:(ji1, j2) is an arc with multiplicityn if ®(j1, y) hasj, as a root with multiplicityn.

To make the definition consistent, the multiplicity of evésye k is taken to be 1 whenever
®(jq1, y) is the zero polynomial.
We will refer to G(®) as theGalois graphof ®. Note that if ®(x, y) is a constant
polynomial, therG (®) is the complete or the null graph depending on whether the constant
is zero or not. From now on, we will put to one side these degenerate cases and assume that
d (X, y) is a non-constant polynomial. As we will be mainly interested in properties of non
directed graphs, itis natural to assume (and we do from now ondthaty) is a symmetric
polynomial. Nevertheless, Sections 2 and 3 can easily be adapted to the nonsymmetric case.
Our aim is to explore some properties®{®) in terms of the polynomiad (X, y). In
the next section, we classify what we call singular vertice&¢ob). These are vertices
destroying the regularity db(®) and form a finite set easily described fram In Section 3
we will discuss walks, distances and cycles, providing detection and counting results from
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recursive sequences of polynomials. The notion &fgraphis introduced in Section 4. A
k-graph is a graph with vertices ksuch that the Galois automorphisms of &ak) are

graph automorphisms. For instance, Galois graph®) arek-graphs. Then, for a finite
k-treeT, we show that the vertices in the cen#(T) are algebraic numbers of degree 1

or 2 overk, and thatZ(T) is contained in thé&ernelof T, the subgraph induced by the
vertices of minimum degree. Moreover, we show that the kernel is a connected subgraph. In
Section 5, we deal with the action of GlaJ k) onk-trees providing criteria to decide whether

the Galois automorphisms embed surjectively on the graph automorphism group. Finally,
in the last section we present an application concerning the Galois graphs resulting from
the modular curve¥y(N). These curves classify pairs of isomorphism classes of cyclic
isogenies of degre8&l between elliptic curves and are defined by the classical modular
polynomials®y (X, y). For an introduction to modular curves and modular polynomials
we refer to [5, 6]. For algebraic and graph-theoretical notions we refer to [2] and [1, 4],
respectively.

2. Singular vertices

In this section we show that Galois grapBsd) are almost regular. Let be the degree of
@ (X, y) in one of the indeterminates. A vertex is said tosbrggularif:

e its out-valency is not, or
e itis the origin of a multiple arc, or
e itis aloop vertex.

We shall characterize the singular vertices as the roots of a certain polynomial and so only
a finite number exists.
The symmetric polynomiab (x, y) can be written as

(X, ) =Y 0y =) fr(yx,
r=0 r=0

for some polynomiald; (x) in k[x]. The out-valency of a vertekin G(®) is the degree of
the polynomiakb (j, y) and it coincides with the maximum subscripguch thatf, (j) # 0
provided thatd(j, y) is a non-zero polynomial. Whed(j, y) = 0, the out-valency of
is co which means that is a root of the polynomial

F(xX) = ged fo(x), ..., f,(X)).

Note that the out-valency of a vertex is infinite if and only if the in-valency is infinite,
although if both are finite they can be distinct (see Example 1 below). Ledfifig =
frx)/F(x)forO<r < v, we have

(X, y) =F (X)) G0y =Fy) Y aX,
r=0 r=0

S0P (X, y) = Po(X, Y)P1(X, y), Wheredg(x, y) = F(X)F(y), and®1(X, y) is a symmet-
ric polynomial such thatb1(j,y) # O for all j in k. Then, the graplc(®) admits the



GALOIS GRAPHS: WALKS, TREES AND AUTOMORPHISMS 137

decomposition
G(®) = G(Po) & G(P1),

whereG(®g) andG(®;) are arc-disjoint an& (®,) is locally finite (i.e., each vertex has
finite valency). The arcs oB(®o) are all the pairgjy, j2), (j2, ja) with F(j1) = 0 and
j2 € k. According to the above, the structure ®f ®) is completely determined by the
structure ofG(®1), so we can (and do) restrict ourselves to studying locally finite Galois
graphs.

Now, the degree of ® (X, y) in one of the indeterminates is an upper bound of the out-
valencies and the vertices with out-valency are those which are roots of the polynomial
f,(x). In particular, the isolated vertices are the roots of the polynomial fg¢xl), . . .,
f, (x)).

Let j be the origin of a multiple arc. In this case, the polynondidl, y) has a multiple
root which is a root of the discriminant

D(x) = Resultant®(x, y), ®y(X, ), ¥),

where @{(x, y) means the partial derivative @ (x, y) with respect toy. The leading
coefficients ofd (x, y) anddbg,(x, y) as polynomials in the indeterminageare f,(x) and
vf,(X) respectively, sof,(x) Is a factor ofD(x). Thus, the vertices with out-valeneyv
are also roots oD (x). Conversely, ifD(j) = 0, then eitherf, (j) = 0 or the polynomials
(], y) and®{ (], y) have a common root, i.e., eith¢rhas out-valencyv or it is the
origin of a multiple arc.

Finally, the verticeg with a loop are the roots df (x) = ® (X, X).

Putting all this together, the singular vertices are characterized as the roots of the poly-
nomial S(x) = F(xX)D(x)L(x), so they are in number less than or equal to Seq.

If a subgraph ofG(®) does not have singular vertices, then every pair of éjgsj2),
(j2, j1) is considered as adgeand the subgraph as an (undirected simple) graph.

To end this section, we provide a first example of a Galois graph. For future reference,
the connected component@y®) of a vertexj will be denoted byG(®, j).

Example 1 Take®(x,y) = x3 + y3 — 1 overQ. We havef,(x) = 1, so every vertex

has out-valency 3. The discriminantixx) = 27(1 — x3), and the loops are the roots of
L(x) = 2x3 — 1. Figure 1 gives some connected component @b), where the absence

of arrows represents edges. Note that all connected components apa fdard) and

G(®, ¥/1/2) do not have singular vertices, and therefore can be considered as undirected
graphs.

3. Walks, distances and cycles
A walk of lengthn (or an-walk) in G(®) is a sequence

jO, e17 jla e27 j27 I jn—l, eﬂ—j.’ jnv

whereg = (ji_1, ji) are arcs of5(®). A pathis a walk with no vertex repetition. A vertex
j2is said to ban-reachabldrom a vertex|; if there is an-walk with j; andj, as, respectively,
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w = e2mi/3
0 1 31/2w
Y1722 Y/1/2
w2
—2w? Y
—92 5
~2w Vw2

Figure 1L Some connected componentsGxfd) whered (x, y) = x3 + y3 — 1.

the starting and end point vertices. Tdistancebetween distinct verticeig andjs, is defined
as the minimum length of a path fropp to j,, or oo when there is none, and it is denoted
by d(ji1, j2). Since® is assumed to be symmetric, note thé};, j2) = d(j2, j1)-

We now introduce a recursive sequence of polynomials associated with the@t@ph
which allows us to have control over reachability and the number of waliég@) joining
two vertices. Letj € k and define

vy =y-i;
viy) = @,
I(y) = Resultanty]_,(t), ®(t. y).1), ifn=2.

Proposition 1 The vertex 4 is n-reachable fromjif and only ifl/f,{l(jz) = 0. Moreover
the number of n-walks from jo j, coincides with the multiplicity of the roog jn y4* (y).

Proof: The proof is by induction om, the claim being easily checked far= 0, 1.

Forn > 2, letty, ..., t, be the verticegn — 1)-reachable fromj; andn; the number of
(n — 1)-walks fromj; tot;. By the induction hypothesiﬂ;r{il(t) =a ]_[ir:1 (t —t)" for

some constardg % 0. Now, il (y) is [Ti_; @&, y)™ up to some power ddp. Therefore,

2*(j2) = Oifand only if j» is adjacent from somig, that is to say, ifj, is n-reachable from
j1. The multiplicity, saymy, of j, as a root ofb (t;, y) is the number of 1-walks fror to
j2. Thus,nim; is the number oh-walks from j; to j, throught;. Thereforezir:l n; m; is
the number of-walks from j; to j, and it is also the multiplicity of, as a root o3 (y).
O



GALOIS GRAPHS: WALKS, TREES AND AUTOMORPHISMS 139

A slight modification of the above permits the characterization of the vertices whose
distance to a fixed vertex is constant. Recall thatréttical of a polynomial f (x) e K[X]
is defined by radi(x) = f(x)/gcd(f (x), f’(x)). This is a separable polynomial with the
same roots ag (x). Now, fix a vertexj of G(®) and define the sequence of univariate
polynomials

W =y-i
n—-1 _ )
Xa (y) = radyi) (y)/rad] Jged(vi (1), v (v)),  ifn=1,
k=0
We have:

Proposition 2 The roots oani (y) are the vertices at distance n from j. Moreoyére
number of paths from j to such a vertex coincides with its multiplicityjty).

Proof: The casen = 0 is obvious, so leh > 1. The vertices at distancefrom j are the
verticesn-reachable fromy which are nok-reachable for 0< k < n — 1. The roots of
rady, (y) are the verticea-reachable fronj and have multiplicity one. On the other hand,
the roots of gcdiy, (y), ¥4 (y)) are the vertices which are simultaneousigeachable and
n-reachable fronj. Then, the roots of the denominator are the verticesachable fromj
which arek-reachable for some 8 k < n — 1, and they have multiplicity one. Therefore,
we conclude that the roots gfi (y) are the vertices at distanodrom j.

If j; is at distancen from j, an-walk from j to j; is an-path. Hence the second claim
follows from Proposition 1. O

Note that a connected componddit®, j) is finite if and only if x4 (y) is a non-zero
constant polynomial for some > 0. In this case the diameter &f(®, j) is <n.

It is possible to give an alternative construction for the above distance polynomials as
follows. Define

o =y

) = xi ()

¥ (y) = rad Resultanfz,)_,(t), ®(y.t), t), ifn>1;

) =iy /(ged ¥, 1) ged @i (), 1) (), ifn=2

The roots ofy) (y) are the vertices adjacent to vertices at distamee1 from j, so are
vertices at distance — 2,n — 1 orn from j, including all the vertices at distance By
dividing by the product of the gcd’s, only the vertices at distamcemain. Thus, we have
aresult analogous to Proposition 2 for the polynomjglsIn fact, x1 (y) = anxa (y) for a
constangy,.

Example 2 Consider the Galois graph attached to the polynodi@, y) = x3 + y° +
xy — 1 over the field of rational numbei®. Figure 2 displays part of the connected
componentG(®, 0), and the polynomialg’(y) for 0 < n < 4 can be read from Table 1.
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Table 1  Polynomialsy(y) for the graphG(®) whered(x, y) = x5 4+ y3 + xy — 1.

Type (a) vertices Type (b) vertices
xJy) = y
xy) = Y +y+1 -1
X2y = V' -y+1D 2+
x3y) = (' —2y3+2y2 -4y + 4 (Y +2y+2)
X9 = (B +3Y0 4y +ayt+ 6y 419y — 10y +25)  (y*-3y*+2y+5)

4a 3a 2a la 0 1b 2b 3b 4b

Figure 2 Part of the connected compon@®, 0) whered (x, y) = x3 + y3 + xy — 1.

) J2
7 J
) J
(a) (b)
-1
jo—~__—) e« ws
N1 =J2 J1=172

Figure 3 lllustrations of Lemma 3.1 (a) and Lemma 3.2 (b).

In order to detect non-obvious (i.e. of lengiB) cycles inG(®) and characterize
finite subtrees o6 (®), we need the following two Lemmas. They provide necessary and
sufficient conditions for the existence of a certain types of adjacencies, as illustrated in
figure 3.
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Given a fixed] € k, forr > 0 set

a (j) = ResultanfResultanfx/ (x), ®(x, y), x), x} (¥), y).

Lemmal Theequalitya(j) = 0holdsifand only if there are either two distinct adjacent
vertices at distance r from, jor a loop vertex at distance r from j.

Proof: The conditiona; (j) = 0 is equivalent to the existence of somgesuch that
Resultanty’ (x), ®(x, j2), X) = 0 andy/ (j) = 0. The first condition is equivalent to the
existence of somg such thaty, (j1) = 0and®(js, j2) = 0. Thusa (j) = Oifand only if
there exist two adjacent verticgs j, at distance from j, the casg; = j, corresponding
to the existence of a loop vertex. O

Analogously, forj € k andr > 0 define

W)
ged(y (v), x' ()

br(j) = Resultan( X Y), y)-

Lemma 2 Suppose thatr> 2and h_1(j) # 0. Then, b(j) = 0if and only if either
there are two distinct vertices at distance-rl from j simultaneously adjacent to a vertex
at distance r from jor there is a vertex at distance+ 1 which is the origin of a multi-arc
with end-vertex at distance r from j.

Proof: ForO<s <r,letgs(y) = ¥4 (y)/gcdvd (y), x4 (y)). Suppose first tha, (j) =
0. Theng: (j3) = x/ (ja) = Ofor somejz € k. Sincejs is also a root of godi (y), x/ (¥)),
it follows that the multiplicity ofjz as a root ofj (y) is >2. Hence, by Proposition 1, there
are two distinct paths fronp to js. Now, conditionb;_;(j) # 0 impliesqg,_1(j") # O for
all verticesj’ at distance — 1 from j, and the multiplicity of eaclj’ as a root ofy;,)_,(y)
is one. Hence, there is only one path frgrto j’. Thus, there exist two verticgs, j, at
distance — 1 from j both of them adjacent t¢;, and the casg¢; = j, corresponds to a
multiple arc. _

Conversely, ifj1, jo, j3 exist as in figure 3(b), we havg' (jz) = 0 and the multiplicity
of j3 as a root ofy/ (y) is >2. Henceg; (j3) = 0 andjsz is a common root of;, (y) and
xr (). (Note that, in this part, the hypothesis ;(j) # 0 is not needed.) O

Forn > 0, letG(®, j, n) be the subgraph d&(®) induced by the vertices @b () at

distance<n from j, and suppose that it does not have singular vertices, so it is considered
as an undirected simple graph. To decide whe@p, j, n) is a tree, we define

An(i) =] Ja (i)
r=0

Ba(j) = [ Jbr (D).
r=0
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Then, we have:

Proposition 3 Suppose that @b, j, n) does not have singular vertices. Theds j, n)
is a tree if and only if A(j)Bn(j) # 0.

Proof. First, let us suppose th#,(j)Bn(j) = 0. Itis sufficient to show that there are
two distinct paths between two vertices. Af(j) = 0, then some; (j) = 0 and, since
G(®, j, n) has no singular vertices, Lemma 1 implies that there are two distinct adjacent
verticesj,, j» at distance from j. Therefore, we find two distinct paths fropto j;, one
of lengthr and the other of length + 1, the last edge beingy, j1).

If Bn(j) = 0, then take as the first index such thbt(j) = 0. Note thatr > 1 due to
the fact thabg(j) # 0. By Lemma 2, there are two distinct verticgs j» at distance — 1
from j, both adjacent to a verteps with d(j, js) = r. Therefore, we also find in this case
two paths from;j to j3, one throughj; and another throughp.

Conversely, suppose th&t(®, j, n) has a cycle. Choosp to be a vertex belonging to
a cycle inG(®, j, n) and at a maximum distance, sayfrom j. If bs(j) = 0 for some
s < r, we are done. So, suppose thatj) # 0 foralls < r. Let j; and j, be distinct
vertices adjacent tgs of the cycle. Ifd(j, j1) = d(j, j2) =r — 1, then Lemma 2 implies
b (j) = 0andB,(j) = 0. Otherwise,j; or j; is at distance from j, and, by applying
Lemma 1 we ge& (j) = 0 andA,(j) = 0. O

4. k-graphs andk-trees

Let H = (V, E) be a graph with/ ¢ k. We say thaH is ak-graphif the map
p:Galk/k) — Aut(H), o oy

is well-defined and a group homomorphism. In other woktiss ak-graph if the automor-
phisms ofG, = Gal(k/k) act as automorphisms of the graph The automorphisms of
H in the image ofo will be calledGalois automorphismef H.

The class ok-graphs is larger than that of Galois graphs. Indeed, & G and j is
aroot of®(j, y), thenjJ is a root of®(j7, y) with the same multiplicity, se acts on
G(®) as a graph automorphism. The study of the symmetry of Galois graphs fits well in
the more general setting kfgraphs.

The algebraidegreeof a j € k is defined as the degree of its minimum polynomial
overk. Thekernelof a graphH, denoted in the sequel by Kdr, is the graph induced by
the set of vertices it with minimum degree. The degree of the vertices inHewill be
denoted by deg Ket.

Lemma3 If H is a k-graph thenKerH is a k-graph.

Proof: If j € KerH ando € Gy, thenj® € H sinceH is ak-graph, and the degrees of
j? andj coincide. Hencej? € KerH. Therefore the Galois automorphismstéfapply
the induced subgraph Kiron itself and they act on Két as graph automorphisms. O
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As for the connected componentskefraphs, the property of being alsk-@raph admits
the following characterization:

Proposition 4 Let H be a k-graphj a vertex of H and H(j) its connected component.
Then the following statements are equivalent
(i) J% c H();
(i) KerH(j) is ak-graph
(i) H(j) is a k-graph.

Proof:  (i)=(iii) By hypothesis,j and j° are in the same connected componernitidor
allo in G¢. Moreoverg applies the connected componenj @in the connected component
of j9. HenceH(j)? = H(j?) = H(j) andH (]) is ak-graph.

(i) = (ii) by Lemma 3.

(i)=() Let j1 € KerH(j). Since KeH (j) is ak-graph,j* c KerH(j) c H(j) =
H (j1). By applying (i}=(iii), we have thatH (j) = H(j1) is ak-graph. O

By applying the above proposition to a rationah k, we obtain the following corollary.
Corollary 1 If j € k is a vertex of a k-graph Hhen H(j) is a k-graph.

Note that this provides us with an easy way to constiigraphs, just by taking
connected components of rational vertices in Galois graphs.

We now focus ork-trees. First, we consider finitetrees. As we shall see, in this case
the center determines the degree of the kernel. Recall thadtentricityof a vertexj
in a finite connected graph is the maximum of the distances fraonany vertex, and the
centerof the graph is the set of vertices with minimum eccentricity. It is known that the
centerZ(T) of a finite treeT consists of a unique vertex or two adjacent vertices (see
[1]). Moreover,Z(T)? = Z(T) for all automorphisms of , in particular if T is ak-tree,
Z(T)? = Z(T) for all ¢ € Gal(k/k).

Proposition 5 If T is a finite k-tree then the following assertions hold

(i) if Z(T) = {c}, then ce k anddeg KerT = 1;

(i) if Z(T) = {c1, ¢} ¢ k, then g and ¢ are quadratic conjugates amieg KerT = 2;
(i) Z(T) C KerT.

Proof:

(i) ThecenteZ(T) is fixed for all automorphism, st¥ = cforallo € Gal(k/k). Hence,
¢ € kand degKefT = 1.

(i) Suppose that; ¢ k. For somer € Gal(k/k), we havec # c¢;. Now, Z(T)? = Z(T)
impliesc] = c,. Analogouslyc = c; andc, ¢ k. Hence, the polynomigb(x) =
(X — 1) (X — ¢) € K[x] is irreducible and, therefore;, ¢, are quadratic ovek. We
claim thatT does not have a vertex ka Indeed, letj € k be a vertex off . Because
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c; andc; are adjacent and is a tree, the distancekc;, j) andd(c,, j) differ by 1,
sayd(cp, j) =r,andd(cy, j) =r + 1. We have

r=dc j)=d(cf, %) =dc =r+1,

which is a contradiction.
(i) If Z(T) c k, then the vertices iZ(T) are of minimum degree and(T) c KerT;
otherwise, by applying (ii)Z(T) c KerT. O

In the case ok-trees which are not necessarily finite, we have the following Proposition:

Proposition 6 If T is a k-tree then the following assertions hold
(i) degKerT € {1, 2};
(i) if degKerT = 2, then there is a vertex iKer T adjacent to its conjugate
(iii) k(j1) = k(jo) forall ji, j» € KerT;
(iv) KerT is ak-tree

Proof: Takej e Ker T and letM be the minimal subtree Gf which contains the sgt®
of all the conjugates of. The treeM is finite and, for alle € Gy, we have(j )7 = j&,
soM? = M andM is a finitek-tree. Therefore, Proposition 5 can be applieditoSince
degKerT = degKeM € {1, 2}, it follows (i).

If degKerT = 2, thenZ(M) consists of two conjugate and adjacent vertices, which are
in Ker T and (i) holds.

The proof of (iii) and (iv) depends oAi(M). First, assum&(M) C kand letc € Z(M).
Thenk(j1) = k(c) = k for all j; € Ker T and (iii) holds. To show (iv), takéy, j» €
Ker T and the pathP from j; to j,. Sincejs, j» € k, the pathP is fixed for all Galois
automorphismg. Hence,j° = j forall j € P. It follows thatj € Ker T and KerT is a
subtree ofT . From Lemma 3 it is also k-graph.

Second, supposg(M) = {c;, ¢} ¢ k. Observe that, since; andc, are quadratic
conjugatek(c;) = k(cp). Letnowj e Ker T and fix a Galois automorphisen € Gal(k/k)
as before. Interchanging andc; if necessary, we can assume thgj, cJ) = d(j, ¢;) =
d(j,c1) + 1. Thereisapath, sdy,in T from j to j?. If t € Gal(k(cy)/k), the pathP? is
eitherP or the reverse oP. Thent acts onP either as the identity or as, sok(j) = k(cy).
Thus, (iii) is satisfied.

To show (iv), letj; be a vertex of the path, sd&j, from j € Ker T to c; and consider
the pathP from j to j°. Itis clear thatP containsP;. Now, everyr € Gal(k/k) acts on
P either as the identity or as. Hencej, has exactly one conjugatg;, which tells us that
j1 is quadratic ovek. Moreover,P; is a path in KefT and KerT is ak-tree. O

5. Automorphisms

For a giverk-graphH, the representation

p: Gal(k/k) — Aut(H), o oy
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is in general far from being surjective and it appears natural to ask how to determine the
image ofp. As for the kernel, it is clear that factors through Gak(H)/k), wherek(H)
denotes the extension obtained by adjoining the verticés wf the fieldk.

In order to determine the image pf we will make some restrictions on thie-graphs
under consideration. Indeed, we will analyze the situation for fiaitees with some extra
conditions.

For a finitek-tree, sayT, we need to consider the filtration

KerT=ToCcTiC---CTho1 CTh =T,

whereTs is the subtree of induced by the vertices at distance at mofbm Ker T, and
s runs the integers 0 through the eccentricity of the kernelmaxd(j,KerT) | j € T}.
Since KerT is ak-tree, and the Galois action preserves distances, it follows thaflgash
also ak-tree.

Our assumption o will be null if the eccentricity of KeiT is 0, otherwise the following
hypothesis (H) will apply:

H1: all the leaves oT are at distance from KerT;
H2: Gakk(Ts)/k(Ts—1) = {f € Aut(Ts) : f1,, =id}, forl<s<r.

Note that under hypothesis (H1), the trég; is obtained fromTs by deleting all its
leaves and, therefore, the restriction of evérg Aut Ts to Ts_; yields to an automorphism
of Ts_1.

The following result shows that in this particular setting, the property of being a Galois
automorphism can be decided just by checking it over the kernel.

Proposition 7 Let T be a finite k-tree which satisfi¢id), and denote its representation
by p: Gal(k/k) — Aut(T). Then we have

Imp = {f € Aut(T) : there iso € Gal(k/k) such that ferr = p(0)kerT}-
Proof: Letr be the eccentricity of KeF. The case = 0 is immediate, so we assume
r>1 Forl<s<r,let

HS == {f € Aut(Ts) . f|T5_1 = |d},

I's = {f € Aut(T) : there iso € Gal(k/k) such thatferr = p(0)Kert }-

Our claim is Imp = I'y. The inclusion Imp C I’y holds in general due to the fact that
Ker T is ak-tree. We shall show thaf¥ : Im p] = 1 by induction orr > 1.

The treeT,_; satisfies the induction hypothesis, so we haveplm = I'1_;, where
pr—1. Galk(T,_1)/k) —> Aut(T,;_,) is the corresponding natural representation. Since
we have the inclusion

Hy >~ Gal(k(Tr)/k(Tr-1)) C Galk(Ty)/K) =~ Im pr,
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we can write the equality

[Ty @ H]

Calculating the above denominator, we obtain

Impl  |Galtk(T,)/k)|
= =G|kTr7 k =| r — =Fr7,
Fl ~ 1Gakk(T) k(T,_py | CakTr)/RE=m oral = (el
and
[Tr @ H]
Fr .I - .
[Frsimpl==E

It is easy to check that the map
Iy /H — g

defined by sending each coséH; to the restriction off to T,_; is well-defined and
injective. Thus, we havd} : Imp] = 1. O

Corollary 2 Let T be as above and assume tat T = Z(T). Then p is surjective.

Proof: By Proposition 5, the cent&t(T) contains either only one or two rational vertices
in k, or two conjugate quadratic vertices okerin both cases, all automorphismsmofact
on KerT as Galois automorphisms. Hence, the above proposition shows thalAut(T)
andp is surjective. O

Example 3 Take the modular polynomial
DX, y) = X+ Y3 — x2y? + 23 31(x%y + xy?) — 2*3*53(x? + y?)
+ 3524027y + 283755(x + y) — 2123959,

After computing the first distance polynomials as in Section 3, we consider the induced
subgraphr of the connected componeB@t®, —1/15) shown in figure 4, where

A ~1/15 E 27222378264164025

B 13997521225 F 473316983B515625

C 11128464150625 G —147281603041215233605
D 5666735232115 H 111454480497024405
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A1 Ap Hy Ho

Figure 4 The graphT from the Example 3.

and the pairg A1, Ay), (D1, Dy), (F1, F2), (G, Gy), and(Hy, Hy) are respectively the
roots of the polynomials

x? — 2*3.2081x + 3361£/15

x2 — 24326203. 61471 259925329 — 23513088%/15

x? + 2*3.17489. 26387 21313¥/5'%x + 193°769°2593 /(3°5%°)

x2 + 2*101- 1811- 2129521 33240773%x + 233433009/ (3*%5)

x2 — 2%3.17.97583- 951087979677427X1— 134688%12768%/(35).

The graphT is ak-tree, and its kernel is the subtree induced by the rational verfic&s
C, D, E, F, andG. Observe that the eccentricity of K&ris 1 and that the hyphotesis (H)
of Proposition 7 is satisfied. In this case, we find that the Galois automorphismfooh

a group isomorphic t€3, which is a subgroup of AuT) ~ C, + C,[C5[C,]] of order 2,
where the brackets stand for the wreath product (see [4]).

6. Application

Let G = (V, E) be ak-graph and denote by: Gal(k/k) — Aut(G) the representation
p(o) = orv. Amappingf from G to a graphH is a morphism of graphs if, ~ j, implies
f(j1) ~ f(jo) forall ji, jo € G, where~ means adjacency. A surjective morphism of
graphsf: G — H will be calledGy-equivariantif for all j1, j» € G ando € Gal(k/k),

f(j) = f2 = £(if) = f(i5):
f(jn ~ f(j2) = f(i7) ~ F(i7).
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The morphismf induces an action oHl as follows:
p® f:Galk/k) > Aut(H), o+ fop(o)o f7L

Indeed, itis easy to check that® f is well-defined and a group homomorphism. We call
this action orH the twisted action byf, or simply the quotient action. Note that in general
this new action orH does not make it k-graph.

Proposition 8 Assume that @b, ®», j) is a k-graph such that

(i) G(Py, ]), G(Dy, j) are trees

(i) there are G-equivariant projectorsri: G(®1®», j) — G(dj, j), i =1, 2

Then G®;®,, j) has a vertex over a compositum of at most two quadratic fields.

Proof: From the hypothesis we know that the Galois orbifj 6§ a subset of vertices in
G(P1P», j). Notethatforeach in G, = Gal(k/k) we can view the connected components
G(®;, j?) as subgraphs d&(®1®,, j). Considerry(j) c G(®4, j) and letT; denote
the minimal subtree dB(®4, j) that connects the verticesof(j ). Analogously, define
T, making use of the projectar,. Since eaclhp ® 7;j restricts to an automorphism f,
the center< (T;) satisfy

(p @mi)(Z(T)) C Z(Ty), fori =1, 2.

As a consequence, and by using the fact that the projecto@&aequivariantGy permutes
the set of vertice® = 77 (Z(T1)) N 7, 2(Z(T,)). Indeed, as fov € £ ando € Gy,
we haver; (v) € Z(Ti) so(p ® 7i)(o)(mi(v)) = 7 (v?) € Z(T;) which yields tov’ €
. Moreover, the Galois action on the centers determines the Galois actin each
automorphisnex, being of order 1 or 2. O

Proposition 8 admits an obvious generalization for any finite product of symmetric poly-
nomials. As a particular case, we reobtain Elkies’ result on the field of definitidrdbiptic
curves without complex multiplication [3]. A-elliptic curveE is an elliptic curve defined
over k which is isogenous to all its Galois conjugates. By takirgx, y) as the classi-
cal modular polynomial® (X, y), one describes the graph of prirpepowers isogenies
between elliptic curves. Let be the modular invariant dt. In the absence of complex
multiplication (CM),G(®p, j) is atree. Then, in order to define the corresponding projec-
tors, one uses the properties of factorization of isogenies between non-CM elliptic curves.
The conclusion is that eadhelliptic curve without CM isk-isogenous to &-elliptic curve
defined over a compositum of quadratic fields.
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