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Abstract. We investigate an apparent hodgepodge of topics: a Robinson-Schensted algorithm for(3+ 1)-free
posets, Chung and Graham’sG-descent expansion of the chromatic polynomial, a quasi-symmetric expansion
of the path-cycle symmetric function, and an expansion of Stanley’s chromatic symmetric function XG in terms
of a new symmetric function basis. We show how the theory ofP-partitions (in particular, Stanley’s quasi-
symmetric function expansion of the chromatic symmetric function XG) unifies them all, subsuming two old
results and implying two new ones. Perhaps our most interesting result relates to the still-open problem of finding
a Robinson-Schensted algorithm for(3+ 1)-free posets. (Magid has announced a solution but it appears to be
incorrect.) We show that such an algorithm ought to “respect descents,” and that the best partial algorithm so
far—due to Sundquist, Wagner, and West—respects descents if it avoids a certain induced subposet.
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1. Introduction

The theory ofP-partitions continues to spawn new ideas more than twenty years after its
birth. Our main object of interest here is one such outgrowth, namely the expansion of
Stanley’s chromatic symmetric function in terms of Gessel’s fundamental quasi-symmetric
functionsQS,d (reproduced as Theorem 1 below). Although innocent-looking, this expan-
sion has numerous ramifications, some of them surprising. The purpose of this paper is to
explore some of these offshoots.

In Section 3, we recall the result, stating it in a way that differs slightly from the usual
formulation. The justification for this modification of standard terminology is that it shows
more clearly the relationship with two other closely related results in the literature: Chung
and Graham’sG-descent expansion of the chromatic polynomial [3, Theorem 2] and the
expansion of the path-cycle symmetric function in terms of theQS,d [2, Proposition 7]. The
original proofs of these latter two results did not appeal directly to Stanley’s expansion;
here we show that theG-descent result and an important special case of the path-cycle
symmetric function result are essentially special cases of Stanley’s result. Apart from being
a pleasing unification of previously disparate results, this provides some evidence that this
new formulation of Stanley’s theorem is the “right” one.

In Section 4, we investigate the implications of Theorem 1 for Robinson-Schensted
algorithms for(3+ 1)-free posets, a topic that has attracted some recent attention ([9,
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Section 3.7] and [15]). This is perhaps the most interesting part of this paper, especially for
nonspecialists in symmetric functions. An algebraic argument of Gasharov shows that there
ought to exist a Robinson-Schensted algorithm for(3+ 1)-free posets that generalizes the
usual Robinson-Schensted algorithm, but no such algorithm is currently known. The best
partial result is due to Sundquist, Wagner, and West [15], who provide an algorithm that is
valid only on a proper subclass of the class of(3+ 1)-free posets—the so-called “beast-
free” (3+ 1)-free posets. In Section 4 we show that a Robinson-Schensted algorithm
for (3+ 1)-free posets should “respect descents.” The Sundquist-Wagner-West algorithm
respects descents only on a proper subclass of the class of beast-free(3+ 1)-free posets,
so it probably needs to be modified even for beast-free(3+ 1)-free posets.

Finally, in Section 5, we investigate the connection with a new symmetric function basis
that was introduced in [2]. The theorem proved here hopefully provides more evidence that
this symmetric function basis is a worthy object of study.

2. Preliminaries

We shall assume that reader is familiar with the basic facts about set partitions, posets,
permutations, and so on; a good reference is [13]. Our notation for symmetric functions
and partitions for the most part follows that of Macdonald [8]. Ifλ is an integer partition,
we writerλ! for r1!r2! · · ·, whereri is the number of parts ofλ of sizei . We will always take
our symmetric functions in countably many variables. In addition to the usual symmetric
function bases, we shall need theaugmented monomial symmetric functionsm̃λ [4], which
are defined by

m̃λ
def= rλ! mλ,

wheremλ of course denotes the usual monomial symmetric function. We will sometimes
usesetpartitions instead ofintegerpartitions in subscripts; for example, ifπ is a set partition
then the expressionpπ is to be understood as an abbreviation forptype(π). We will useω to
denote the involution that sendssλ to sλ′ .

If d is a positive integer, we use the notation [d] for the set{1, 2, . . . ,d}.
Following Gessel [7] and Stanley [12], we define a power series in the countably many

variablesx = {x1, x2, . . .} to bequasi-symmetricif the coefficients of

xr1
i1

xr2
i2
· · · xrk

ik
and xr1

j1
xr2

j2
· · · xrk

jk

are equal wheneveri1 < i2 < · · · < i k and j1 < j2 < · · · < jk. For any subsetSof [d−1]
define thefundamentalquasi-symmetric functionQS,d(x) by

QS,d(x) =
∑

i1≤···≤id
i j<i j+1 if j∈S

xi1xi2 · · · xid .

Sometimes we will writeQS,d for QS,d(x) if there is no danger of confusion.
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If g is a symmetric or quasi-symmetric function in countably many variables and of
bounded degree, then we shall writeg(1n) for the polynomial in the variablen obtained by
settingn of the variables equal to one and the rest equal to zero. An important example
of this procedure is given in the following proposition, whose (easy) proof we leave as an
exercise.

Proposition 1 For any S⊆ [d − 1],

QS,d(1
n) =

(
n+ d − |S| − 1

d

)
.

Throughout, the unadorned termgraph will mean a finite simple labelled undirected
graph. IfG is a graph we letV(G) andE(G) denote its vertex set and edge set respectively.
A stable partitionof G is a partition ofV(G) such that every block is a stable set, i.e., no
two vertices in the same block are connected by an edge. Stanley’schromatic symmetric
functionXG is defined by

XG
def=
∑
π

m̃π ,

where the sum is over all stable partitionsπ of G. For motivation for the definition of XG,
see [12]. Here we will just mention that an equivalent definition of XG is

XG =
∑

κ:V(G)→N

( ∏
v∈V(G)

xκ(v)

)
,

where the sum is over allproper coloringsκ, i.e., mapsκ : V(G)→ N such thatκ(u) 6=
κ(v)wheneveru is adjacent tov. One can check that XG(1n) is just the chromatic polynomial
of G.

3. The fundamental theorem

The fundamental result in this subject is Stanley’s expansion of the chromatic symmetric
function in terms of Gessel’s fundamental quasi-symmetric functions. We shall now present
this result; more precisely, as mentioned in the introduction, we shall present a reformulation
of the result, and then we will go on to show how this reformulation subsumes Chung and
Graham’sG-descent expansion of the chromatic polynomial and a special case of the
expansion of the path-cycle symmetric function in terms of theQS,d.

A number of details will be omitted from the proofs in this section because the arguments
consist mostly of definition-chasing.

We need some definitions. The first of these looks trivial but is actually one of the most
important.

Definition A sequencingof a graph or a poset with a vertex setV that has cardinalityd
is a bijections : [d] → V .
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It is helpful to think of a sequencing as the sequences(1), s(2), . . . , s(d) of vertices. The
reason we claim that this definition is important is that the usual approach to this subject
regards a permutation of some kind (either of [d] or of V) as the fundamental object of
interest, but as we shall see below, it is often sequencings that are most natural to consider.
Even the standard approach often finds it necessary to resort to inverse maps at certain points
to convert permutations to sequencings; by focusing on sequencings directly we obviate
this.

“Dual” to the notion of a sequencing is alabelling, which is a bijectionα : V → [d]. A
labellingα of a poset isorder-reversingif α(x) > α(y) wheneverx < y.

A sequencings of a graphG induces an acyclic orientationo(s) of G: if i < j ands(i )
is adjacent tos( j ), then direct the edge froms( j ) to s(i ). The acyclic orientation in turn
induces a poset structurēo(s) on the vertex set ofG: makes(i ) less thans( j ) whenever
s( j ) points tos(i ) and then take the transitive closure of this relation.

Let G be a graph withd vertices. Ifα is a labelling ofG ands is a sequencing ofG, then
we say thats has anα-descent at i(for i ∈ [d − 1]) if the permutationα ◦ s has a descent
at i . Theα-descent set D(α, s) of s is the set

{i ∈ [d − 1] | s has anα-descent ati }.

(It is helpful to visualize this by visualizing a numerical label on each element of the
sequences(1), s(2), . . . , s(d); the sequence of labels is the one-line representation of the
permutationα ◦ s and the descents occur at the descents of this permutation.)

We can now state Stanley’s theorem.

Theorem 1 Let G be a graph with d vertices. Suppose that to each sequencing s of G
there is associated an order-reversing labellingαs of ō(s). Suppose further thatαs = αs′

whenever s and s′ are two sequencings of G that induce the same acyclic orientation of G.
Then

XG =
∑

all sequencingss

QD(αs,s),d.

Sketch of proof: The basic idea here can be traced back to [11]. For each acyclic orien-
tationo of G, let s be some sequencing that induceso and defineωo : ō→ [d] to be the
order-reversing bijectionαs. Let L (ō, ωo) be the set of all linear extensions ofō, regarded
as permutations of [d] via ωo, and ife is a permutation letD(e) denote the descent set ofe.
Then [12, Theorem 3.1], combined with [12, Eq. (8)], states that

XG =
∑

o

∑
e∈L (ō,ωo)

QD(e),d, (3.1)

where the first sum is over all acyclic orientationso of G.
Now there is a bijection between the set of all sequencings ofG and the set of ordered

pairs{(o, e) | e ∈L (ō)}—given a sequencings, let o be the acyclic orientation induced
by s and lete= ωo ◦ s = αs ◦ s. Theorem 1 then follows from (3.1) once we verify that
D(e) corresponds toD(αs, s) under this bijection. 2
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Chung and Graham [3, Theorem 2] have shown that if the chromatic polynomial of a
graph is expanded in terms of the polynomial basis(

x + k

d

)
k=0,...,d

(3.2)

then the coefficients can be interpreted in terms of what they callG-descents.In their paper,
Chung and Graham give a sketch of a somewhat complicated proof of this result, and remark
that while in principle it follows from Brenti’s expansion [1, Theorem 4.4] (which in turn
is essentially what one obtains by specializing Theorem 1 via the mapg 7→ g(1n)), the
implication is not particularly direct. However, Chung and Graham’s result follows directly
from Theorem 1 by choosing theαs appropriately and then specializing from symmetric
functions to one-variable polynomials, as we shall now see.

Again, we need some definitions. Topeela posetP is to remove its minimal elements,
then to remove the minimal elements of what is left, and so on. Therankρ(x) of an element
x ∈ P is the stage at which it is removed in the peeling process.

Next we give the definition of Chung and Graham’s concept of aG-descent, translated
into our terminology. LetG be a graph withd vertices. Letβ be a labelling ofG and
let s be a sequencing ofG. If v is a vertex ofG then we defineρ(v) by using the poset
structureō(s). We then say thats has a CGβ-ascent at i(for i ∈ [d − 1]) if either

1. ρ(s(i )) < ρ(s(i + 1)) or
2. ρ(s(i )) = ρ(s(i + 1)) andβ(s(i )) < β(s(i + 1)).

TheCGβ-ascent set of sis defined in the obvious way. We then have the following result.

Corollary 1 If G is a graph with d vertices and a labellingβ, then

XG =
∑

S

NS QS,d, (3.3)

where the sum is over all subsets S⊆ [d − 1] and NS is the number of sequencings of G
with CGβ-ascent set S.

Sketch of proof: The appropriate choices ofαs in Theorem 1 are as follows. Given a
sequencings, arrange the vertices ofG in the following “peeling order”: first take the
elements of highest rank in̄o(s), then the elements of next highest rank, and so on; ar-
range elements with the same rank in decreasing order of theirβ-labels. Now define the
labellingαs by settingαs(v) = j where j is the position ofv in the peeling order. It is
now straightforward to check that the CGβ-ascent set ofs coincides with theαs-descent
set ofs. 2

Chung and Graham’s result [3, Theorem 2] now follows as a special case of Corollary 1.
For if we apply the mapg 7→ g(1n) to (3.3), the left-hand side specializes to the chromatic
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polynomial ofG ([12, Proposition 2.2]) and by Proposition 1 the right-hand side specializes
to the binomial coefficient sum

∑
S

NS

(
n+ d − |S| − 1

d

)
=
∑

k

Nk

(
n+ k

d

)
,

whereNk is the number of sequencings withd − 1− k CG β-ascents, i.e., withk CG β-
descents (where CGβ-descents are defined in the natural way). This is exactly the result
of Chung and Graham [3, Theorem 2].

Our second corollary involves the expansion of the path-cycle symmetric function4D

in terms of theQS,d [2, Proposition 7]. (We shall not give the formal definition of the path-
cycle symmetric function here because we will not need it; suffice it to say that it is a certain
symmetric function invariant4D that can be associated to any digraphD.) For certain
digraphsD, 4D coincides with the chromatic symmetric function XG of some graphG,
and therefore, in these cases, [2, Proposition 7] gives an interpretation of the coefficients
of theQS,d-expansion of XG. This interpretation is ostensibly different from the one given
by Theorem 1, but as we shall show presently, it again follows directly from Theorem 1 via
suitable choices ofαs.

We shall now make these somewhat vague remarks precise. LetP be a poset withd
vertices. Ifs is a sequencing ofP, we say thats has adescent at i(for i ∈ [d − 1])
if s(i ) 6< s(i + 1). Thedescent set D(s) of s is again defined in the obvious way. The
incomparability graphinc(P) of P is the graph with the same vertex set asP and in which
two vertices are adjacent if and only if they are incomparable elements ofP.

An acyclic, transitively closed digraph is equivalent to a poset. According to [2,
Proposition 2], the path-cycle symmetric function of such a digraph coincides with the
chromatic symmetric function of the incomparability graph of the equivalent poset. There-
fore, what [2, Proposition 7] says in this case is the following.

Corollary 2 Let P be a poset with d vertices. Then

Xinc(P) =
∑

all sequencingss

QD(s),d.

We now claim that this result can also be derived from Theorem 1.

Sketch of proof: We define theαs as follows. Lets be any sequencing of inc(P). The
maximal elements of̄o(s) form a stable set in inc(P) and therefore a chain inP; call the
minimal (with respect to the ordering ofP, not of ō(s)) element of this chainv1, and set
αs(v1) = 1. Now deletev1 and repeat the procedure, i.e., letv2 be theP-minimal element
among theō(s)-maximal elements of the deleted graph, and setαs(v2) = 2. Continue in
this way untilαs(v) is defined for allv. We leave to the reader the (straightforward although
not entirely trivial) task of verifying that theαs-descents ofs (considered as a sequencing
of inc(P)) coincide with the descents ofs (considered as a sequencing ofP). 2
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4. Robinson-Schensted and (3+ 1)-free Posets

A poset is said to be(3+ 1)-freeif it contains no induced subposet isomorphic to the disjoint
union of a three-element chain with a singleton. Unless otherwise noted, all posets in this
section are assumed to be(3+ 1)-free.

Gasharov [6] has proved a remarkable result about the expansion of Xinc(P) in terms of
Schur functions. To state it we must first recall the notion of aP-tableau. IfP is any poset,
a (standard) P-tableauis an arrangement of the elements ofP into a Ferrers shape such
that the rows are strictly increasing (i.e., each row is a chain) and the columns are weakly
increasing (by which we mean that ifu appearsimmediately abovev [when the tableau is
drawn English style] thenu 6> v). Each element ofP appears exactly once in the tableau.
Then Gasharov’s result is the following.

Theorem 2 Let P be a(3+ 1)-free poset. Then

Xinc(P) =
∑
λ

f λPsλ,

where fλP is the number of P-tableaux of shapeλ.

It would be nice to have a direct bijective proof of Theorem 2 (Gasharov’s proof is not).
In [14] Stanley remarks that whenP is a chain, f λP is just the number of standard Young
tableaux of shapeλ, so a bijective proof of Theorem 2 is provided by the Robinson-Schensted
correspondence. (For background on Robinson-Schensted and tableaux, see [10].) Stanley
further remarks that Magid [9, Section 3.7] has produced a generalization of the Robinson-
Schensted correspondence that provides the desired bijective proof of Theorem 2. However,
the exposition in [9, Section 3.7] is difficult to follow, and to the best of my understanding
there is an error in the construction. LetP be the four-element poset whose Hasse diagram
looks like an uppercase “N.” (We shall refer to this poset asPoset N.) Label the vertices
a, b, c, andd from left to right and from top to bottom, as in reading English. Then the
two sequencesdacbanddbcaappear to generate the same pair of tableaux under Magid’s
insertion algorithm, which should not happen since the insertion algorithm is supposed to
give a bijection between sequencings of the poset and pairs of tableaux. It is possible that
I am misinterpreting Magid’s algorithm, but if I am correct then the problem of finding a
bijective proof of Theorem 2 is still open. The best partial result is due to Sundquist et al.
[15], who provide an algorithm that gives the desired bijection for a certain proper subclass
of (3+ 1)-free posets.

We shall say more about the algorithm in [15] in a moment, but our main purpose here is
to observe that combining Corollary 2 with Theorem 2 gives us some insight into the kind
of Robinson-Schensted algorithm we want. Ifλ ` d then from [12, Eq. (15)] we have

sλ =
∑

S

f λS QS,d,

where the sum is over allS⊆ [d − 1] and f λS is the number of standard Young tableaux
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with shapeλ and descent setS. Combining this with Theorem 2 yields

Xinc(P) =
∑

S

∑
λ

f λP f λS QS,d.

In other words, the coefficient ofQS,d in Xinc(P) is the number of ordered pairs(T, T ′)
whereT is a P-tableau andT ′ is a standard Young tableau with the same shape and with
descent setS.

Comparing this with Corollary 2, we see that not only does there exist a bijection between
sequencings ofP and ordered pairs(T, T ′) with T a P-tableau andT ′ a standard Young
tableau, but there exists such a bijection with the further property that it respects descents.
(It is well known that this is true in the case of the usual Robinson-Schensted algorithm.)
It is therefore natural to hope for an algorithm that also respects descents. For one thing,
this would provide an alternative proof of Gasharov’s theorem.

We might ask if the Sundquist-Wagner-West algorithm respects descents, at least for the
class of(3+ 1)-free posets to which it is applicable. The answer is no, and the sequencings
of Poset N mentioned above in connection with Magid’s algorithm are also counterexamples
for this question. However, we do have the following result.

Theorem 3 The Sundquist-Wagner-West algorithm respects descents when restricted to
the class of(3+ 1)-free posets that do not contain Poset N as an induced subposet.

Proof: The Sundquist-Wagner-West algorithm applies to a more general class of objects
than we have been discussing here, but in our present context, it reduces to the following.
Let P be a(3+ 1)-free poset. Given a sequencings of P, construct an ordered pair(T, T ′)
whereT is a P-tableau andT ′ is a standard Young tableau byinserting s(1), s(2), and
so on in turn. TheP-tableauT will be the insertion tableau, andT ′ will be the recording
tableau. The recording is done in the normal way and requires no comment. To insert
an elements(i ) into T , observe that each rowR of T is a chain. (This property is trivial
to begin with and it will be easy to see that it is preserved at each stage of the insertion
process.) Therefore, sinceP is (3+ 1)-free,s(i ) is incomparable to at most two elements
of R. If s(i ) is incomparable to zero elements ofR, then the situation is indistinguishable
from standard Robinson-Schensted, so proceed in the expected way: appends(i ) to the end
of R if s(i ) is greater than every element ofR; otherwise, lets(i ) bump the smallest element
of R greater thans(i ) and proceed inductively by inserting the bumped element into the
next row of the insertion tableau. Ifs(i ) is incomparable to exactly one element ofR, make
s(i ) bump that one element. Finally, ifs(i ) is incomparable to two elements ofR, make
s(i ) “skip over” R and inductively inserts(i ) into the next row. We remark that it is easy
to show that if there are any elements inR incomparable tos(i ), then these elements must
be in a single consecutive block and thats(i ) must be greater than everything to the left of
this block and less than everything to the right of this block. Keeping this fact in mind will
make it easier to follow the arguments below.

Sundquist, Wagner and West prove that the above algorithm produces a bijection ifP
is what they call “beast-free” in addition to being(3+ 1)-free. Since the beast contains
Poset N as an induced subposet, the bijection is valid for the posets that we are concerned
with here.



DESCENTS, QUASI-SYMMETRIC FUNCTIONS 235

To show that descents are respected in this algorithm, we proceed by a straightforward
case-by-case analysis. Suppose first thats(i ) 6< s(i + 1). We wish to show thati + 1
appears in a lower row thani in the recording tableau. We claim first that whens(i + 1)
is inserted, it cannot be appended at the end of row 1. To see this, back up and think about
what could have happened whens(i ) was inserted. Ifs(i ) did not skip over row 1, then
s(i +1) could not then be appended to row 1 sinces(i ) 6< s(i +1). If on the other hands(i )
did skip over row 1, thens(i )must be incomparable to two elements in row 1, and because
P is (3+ 1)-free, we must haves(i ) > s(i + 1), ands(i + 1) cannot be appended to row 1
because this would forces(i ) to be greater than everything in row 1, contradiction.

Now if s(i ) is appended to the end of row 1 then we are done. Otherwise, each ofs(i ) and
s(i + 1) gives rise to an element to be inserted into row 2; call these two elementsu andv
respectively. (They need not be distinct froms(i ) ands(i + 1) but they must be distinct
from each other.) By induction it suffices to show thatu 6< v. We have several cases.

1. Supposeu = s(i ), i.e., supposes(i ) skips over row 1. Ifv = s(i + 1) then we are done.
Otherwise, suppose towards a contradiction thats(i ) < v. Consider the situation before
the insertion ofs(i ). Sincev 6= s(i + 1), v must be in row 1, and sinces(i ) < v, s(i )
is less than everything to the right ofv. But s(i ) is incomparable to two elements in
row 1, so there must exist at least two elements in row 1 to the left ofv. Let q andr
be the two elements in row 1 immediately precedingv. Now s(i + 1) bumpedv so
q < r < s(i + 1). Sinces(i ) 6< s(i + 1), we haves(i ) 6< q ands(i ) 6< r . But since
s(i ) is less thanv and everything to the right ofv, we must haves(i ) 6> q ands(i ) 6> r
for otherwise there could not be two elements in row 1 incomparable tos(i ). Therefore
s(i ) 6> s(i + 1) ands(i ) together withq < r < s(i + 1) is a (3+ 1), contradiction.

2. Supposeu 6= s(i ) ands(i ) < u. If s(i + 1) = v then sinces(i ) 6< s(i + 1) = v and
s(i ) < u we must haveu 6< v and we are done. So we may assume thats(i + 1) 6= v.
Suppose towards a contradiction thatu < v. Then whens(i +1) is inserted into row 1 it
bumps something (namelyv) that is greater thanu and thus greater thans(i ). Sinces(i )
is sitting in row 1 whens(i + 1) is inserted, this forcess(i + 1) > s(i ), contradiction.

3. Suppose thatu 6= s(i ) and thats(i ) andu are incomparable. We have two subcases:
eithers(i +1) 6= v or s(i +1) = v. In the former case, suppose towards a contradiction
that u < v. Sincev > u, v must be sitting in row 1 to the right ofs(i ) just before
s(i + 1) bumps it. Thereforev > s(i ) and hences(i + 1) > s(i ) (sinces(i + 1) bumps
v and nots(i )), contradiction. In the latter case, again suppose towards a contradiction
thatu < v. Sinces(i ) andu are incomparable, this implies thats(i + 1) = v 6< s(i ),
i.e., thats(i ) ands(i + 1) are incomparable. Thenu < s(i + 1) together withs(i ) form
a (2+ 1), so thats(i ) is one of the two elements in row 1 incomparable tos(i + 1) that
causes(i + 1) to skip over row 1. Letw be the other element in row 1 incomparable
to s(i + 1); thenw is either the immediate successor or the immediate predecessor
of s(i )—and therefore ofu beforeu was bumped bys(i ). Actually, though,w cannot be
a predecessor ofu since this would makes(i +1) > w. Combining all this information,
we see thats(i ) < w > u < s(i + 1) together form an induced subposet isomorphic to
Poset N, contradiction.

To complete the proof of the theorem we just need to show that ifs(i ) < s(i + 1) then we
do not obtain a descent in the recording tableau. Ifs(i + 1) is appended to the end of row 1
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then we are done. Ifs(i ) is appended to the end of row 1 then so iss(i + 1) and again we
are done. Therefore, as before, it is enough by induction to show that “u < v”.

Suppose first thats(i ) bumps some elementu from row 1. If s(i + 1) also bumps some
elementv from row 1 then sinces(i ) < s(i + 1) we must haveu < v, so by induction
we are done; therefore we may assume thats(i + 1) skips over row 1. Suppose towards
a contradiction thatu 6< s(i + 1). Thens(i + 1) is not greater than the element in row 1
immediately to the right ofu, buts(i +1) isgreater thans(i ), which displacesu. Therefore,
after the insertion ofs(i ), the two elements in row 1 incomparable tos(i + 1) must be the
two elementsq andr in row 1 immediately to the right ofs(i ). Hencey 6< u, but then
u < q < r andy form a(3+ 1), contradiction.

It remains to consider the case whens(i ) skips over row 1. Ifs(i + 1) also skips over
then we are done. We have two remaining subcases: either the elementv that s(i + 1)
bumps is larger thans(i + 1) or elsev ands(i + 1) are incomparable.

In the former case, letw1 andw2 be the two elements in row 1 incomparable tos(i ) (just
prior to the insertion ofs(i )). Sinces(i ) < s(i + 1) we must haves(i + 1) 6< w1 and
s(i + 1) 6< w2. Since by assumptions(i + 1) bumps something larger than itself, we must
havey > w1 and y > w2. Thereforev must lie to the right ofw1 andw2, sov > s(i ),
which is want we want to show.

In the latter case, suppose towards a contradiction thats(i ) 6< v. We cannot havev < s(i )
because thenv < s(i ) < s(i + 1), contradicting the incomparability ofv ands(i + 1).
Sov is incomparable tos(i ). Consider row 1 just before the insertion ofs(i + 1); s(i ) is
incomparable to two elements in row 1, and one of these isv. The other one, which we may
callw, must be either the immediate predecessor or the immediate successor ofv. If w is the
immediate successor ofv then this forcess(i+1) < w and sinces(i ) < s(i+1) this implies
s(i ) < w, contradiction. Thereforew is the immediate predecessor ofv. Combining this
information we see thats(i ) < s(i + 1) > w < v is an induced subposet isomorphic to
Poset N, contradiction. 2

Possibly, then, the Sundquist-Wagner-West algorithm needs to be modified not only in
the case of posets containing the “beast” but also beast-free posets that contain Poset N.
However, so far I have not been able to find a modification of the Sundquist-Wagner-West
algorithm with all the properties we would like it to have.

5. The symmetric function basis{ξλ}

In [2] a new symmetric function basis, which we shall denote by{ξλ} (in place of the
original but more cumbersome notation{4̃λ}), is introduced. For completeness we repeat
the definition here. For each integer partitionλ, let Dλ denote the digraph consisting of
a disjoint union of directed paths such that thei th directed path hasλi vertices. IfF is a
subset of the setE(Dλ) of edges ofDλ, then the spanning subgraph ofDλ with edge setF
is a disjoint union of directed paths. The multiset of sizes of these directed paths forms an
integer partition which we denote byπ(F). The number of parts ofπ(F) is denoted by
`(π(F)). Then the symmetric functionξλ is defined by

ξλ =
∑

F⊆E(Dλ)

m̃π(F)

`(π(F))!
,
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where the sum is over all subsetsF of E(Dλ). Two things that make this basis interesting are
that it provides a symmetric function generalization of the polynomial basis (3.2), and that
there is a linear involution that exchanges theξ ’s with the monomial symmetric functions.
See [2] for details.

In [2, Theorem 3] it is stated that XG is ξ -positive (i.e., that its expansion in terms of the
ξλ has nonnegative coefficients). The proof, however, is not given there. My original proof
of this claim was a direct argument giving a combinatorial interpretation of the coefficients
in this expansion in terms of Chung and Graham’sG-descents. However, a different proof
will be presented here that is perhaps more illuminating, since it shows how the result
follows from Theorem 1.

We need a technical lemma. Ifπ andσ are set partitions, writeπ ≤ σ for “π refinesσ ”.
If π ≤ σ , let ki denote the number of blocks ofσ that are composed ofi blocks ofπ , and
following Doubilet [5] define

λ(π, σ )!
def=
∏

i

i !ki .

Also, given any integer partitionsµ andν, letπ be any set partition of typeµ and define

cµ,ν
def=

∑
{σ≥π |type(σ )=ν}

λ(π, σ )!.

Lemma 1 The number of subsets F of E(Dλ) such thatπ(F) = ν equals cν,λrλ!/rν !.

Proof: See the proof of [2, Proposition 13]. 2

If S is a subset of [d − 1] then we define thetypeof S to be the integer partition whose
parts are the lengths of the subwords obtained by breaking the word 123. . .d after each
element ofS.

Theorem 4 Let g be any symmetric function. If aλ and bS,d are constants such that

g =
∑
λ

aλξλ and g =
∑
S,d

bS,d QS,d,

then

aλ =
∑

{S|type(S)=λ}
bS,d.

Proof: It is not difficult to see that it suffices to prove the theorem for the caseg = ξµ.
For d a positive integer andSa subset of [d − 1], define

MS,d
def=

∑
i1≤i2≤···≤id

i j<i j+1 iff j∈S

xi1xi2 · · · xid .
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Then

mλ =
∑

{S|type(S)=λ}
MS,d and QS,d =

∑
T⊇S

MT,d,

where in the first summationd is the size ofλ. By an inclusion-exclusion argument,

mλ =
∑

{S|type(S)=λ}

∑
T⊇S

(−1)|T |−|S|QT,d.

Let qλ,T,d be the coefficient ofQT,d in mλ. We compute∑
{T |type(T)=ν}

qλ,T,d.

Observe that there is a bijection between subsets of typeλ and orderings of the parts ofλ:
given a subsetS⊆ [d−1] of typeλ, take the sequence of the lengths of the subwords of the
word 123. . .d obtained by breaking after each element ofS. Thinking of such subwords
as directed paths, we see that for any fixedSof typeλ, the number of subsetsT ⊇ Ssuch
that type(T) = ν is just the number of subsetsF of E(Dλ) satisfyingπ(F) = ν, which
from Lemma 1 is

rλ!

rν !
cν,λ.

Now there arè (λ)!/rλ! subsetsSof typeλ, and if type(S) = λ and type(T) = ν then

(−1)|T |−|S| = (sgnν)(sgnλ).

Putting all this together, we see that∑
{T |type(T)=ν}

qλ,T,d = `(λ)!

rν !
cν,λ(sgnν)(sgnλ).

But, again from Lemma 1,

ξµ =
∑
λ

rµ!

rλ!
cλ,µ

rλ!

`(λ)!
mλ.

Hence ifg = ξµ, then

∑
{S|type(S)=ν}

bS,d =
∑
λ

rµ!

rλ!
cλ,µ

rλ!

`(λ)!
· `(λ)!

rν !
cν,λ(sgnν)(sgnλ)

= rµ!

rν !

∑
λ

(sgnν)cν,λ(sgnλ)cλ,µ

= δµν,
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because((sgnλ)cλ,µ) is the matrix ofωwith respect to the augmented monomial symmetric
function basis (by [5, Appendix 1, #9]) andω is an involution. This completes the proof.

2

It follows as an immediate corollary that any symmetric function (such as XG or sλ) that
is Q-positive is alsoξ -positive, and moreover if there is a combinatorial interpretation of the
QS,d-coefficients then it carries over into a combinatorial interpretation of theξλ coefficients.

We should caution the reader, however, thatξλ is not Q-positive. Nor is it true that the
only QS,d’s in theQS,d-expansion ofξλ with nonzero coefficients are those with type(S) =
λ. Thus, while Theorem 4 allows one to translate combinatorialinterpretations of the
coefficientsof theQ-expansion of a symmetric functiong into combinatorial interpretations
of the coefficients of theξ -expansion ofg, there is no guarantee that combinatorialproofs
can be so translated. Some tricky reshuffling of combinatorial information occurs in the
transition from theQS,d’s to the ξλ’s. In fact, I do not know of a direct combinatorial
proof that theξλ-expansion of the Schur functions enumerates Young tableaux according
to descents.
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