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Abstract. We investigate an apparent hodgepodge of topics: a Robinson-Schensted algoritBa Irfree

posets, Chung and Grahan@descent expansion of the chromatic polynomial, a quasi-symmetric expansion
of the path-cycle symmetric function, and an expansion of Stanley’s chromatic symmetric fungtiorteéfms

of a new symmetric function basis. We show how the theornPgfartitions (in particular, Stanley’s quasi-
symmetric function expansion of the chromatic symmetric functie) ¥nifies them all, subsuming two old
results and implying two new ones. Perhaps our most interesting result relates to the still-open problem of finding
a Robinson-Schensted algorithm @&+ 1)-free posets. (Magid has announced a solution but it appears to be
incorrect.) We show that such an algorithm ought to “respect descents,” and that the best partial algorithm so
far—due to Sundquist, Wagner, and West—respects descents if it avoids a certain induced subposet.
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1. Introduction

The theory ofP-partitions continues to spawn new ideas more than twenty years after its
birth. Our main object of interest here is one such outgrowth, namely the expansion of
Stanley’s chromatic symmetric function in terms of Gessel’s fundamental quasi-symmetric
functionsQs g4 (reproduced as Theorem 1 below). Although innocent-looking, this expan-
sion has numerous ramifications, some of them surprising. The purpose of this paper is to
explore some of these offshoots.

In Section 3, we recall the result, stating it in a way that differs slightly from the usual
formulation. The justification for this modification of standard terminology is that it shows
more clearly the relationship with two other closely related results in the literature: Chung
and Graham'ss-descent expansion of the chromatic polynomial [3, Theorem 2] and the
expansion of the path-cycle symmetric function in terms of@hg [2, Proposition 7]. The
original proofs of these latter two results did not appeal directly to Stanley’s expansion;
here we show that th&-descent result and an important special case of the path-cycle
symmetric function result are essentially special cases of Stanley’s result. Apart from being
a pleasing unification of previously disparate results, this provides some evidence that this
new formulation of Stanley’s theorem is the “right” one.

In Section 4, we investigate the implications of Theorem 1 for Robinson-Schensted
algorithms for (3 4+ 1)-free posets, a topic that has attracted some recent attention ([9,
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Section 3.7] and [15]). This is perhaps the most interesting part of this paper, especially for
nonspecialists in symmetric functions. An algebraic argument of Gasharov shows that there
ought to exist a Robinson-Schensted algorithm(8# 1)-free posets that generalizes the
usual Robinson-Schensted algorithm, but no such algorithm is currently known. The best
partial result is due to Sundquist, Wagner, and West [15], who provide an algorithm that is
valid only on a proper subclass of the clasg®# 1)-free posets—the so-called “beast-
free” (3+ 1)-free posets. In Section 4 we show that a Robinson-Schensted algorithm
for (3+ 1)-free posets should “respect descents.” The Sundquist-Wagner-West algorithm
respects descents only on a proper subclass of the class of bea@-frd¢-free posets,
so it probably needs to be modified even for beast-fBe¢ 1)-free posets.

Finally, in Section 5, we investigate the connection with a new symmetric function basis
that was introduced in [2]. The theorem proved here hopefully provides more evidence that
this symmetric function basis is a worthy object of study.

2. Preliminaries

We shall assume that reader is familiar with the basic facts about set partitions, posets,
permutations, and so on; a good reference is [13]. Our notation for symmetric functions
and partitions for the most part follows that of Macdonald [8]x i an integer partition,

we writer; ! forri!r,! - - ., wherer; is the number of parts of of sizei. We will always take

our symmetric functions in countably many variables. In addition to the usual symmetric
function bases, we shall need thegmented monomial symmetric functiagms[4], which

are defined by

~ def
m, =r,'m,,

wherem,, of course denotes the usual monomial symmetric function. We will sometimes
usesetpartitions instead dhtegerpartitions in subscripts; for examplerifis a set partition
then the expressiop, is to be understood as an abbreviation igpe). We will usew to
denote the involution that sendsto s, .

If d is a positive integer, we use the notatial} for the set{1, 2, ..., d}.

Following Gessel [7] and Stanley [12], we define a power series in the countably many
variablesx = {xy, Xy, ...} to bequasi-symmetrid the coefficients of

Xirlxirz oxand xTxfr...xTk
172 Tk J177)2 Jk

are equal whenever < i, < --- <igandj; < jo < --- < jk. Forany subsebof [d — 1]
define thefundamentajuasi-symmetric functio®s g (x) by

Qsd) = Y XX, X

- a=siy
ij<ijp1if jeS

Sometimes we will writeQs 4 for Qs q(X) if there is no danger of confusion.
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If gis a symmetric or quasi-symmetric function in countably many variables and of
bounded degree, then we shall wigil") for the polynomial in the variable obtained by
settingn of the variables equal to one and the rest equal to zero. An important example
of this procedure is given in the following proposition, whose (easy) proof we leave as an
exercise.

Proposition 1 For any SC [d — 1],

n+d—|S|—1>

Qsa(1") = ( q

Throughout, the unadorned tergnaph will mean a finite simple labelled undirected
graph. IfG is a graph we le¥ (G) andE(G) denote its vertex set and edge set respectively.
A stable partitionof G is a partition ofV (G) such that every block is a stable set, i.e., no
two vertices in the same block are connected by an edge. Staolegmatic symmetric
functionXg is defined by

def -
Xs 'S m,.
g

where the sum is over all stable partition®f G. For motivation for the definition of ¥,
see [12]. Here we will just mention that an equivalent definition gfi¥X

Xe= Y (n xm)>,

k:V(G)—N \ veV(G)

where the sum is over gliroper colorings, i.e., mapsc : V(G) — N such that (u) #
k (v)wheneveuis adjacentt@. One cancheckthatg(1")isjustthe chromatic polynomial
of G.

3. The fundamental theorem

The fundamental result in this subject is Stanley’s expansion of the chromatic symmetric
function in terms of Gessel's fundamental quasi-symmetric functions. We shall now present
this result; more precisely, as mentioned in the introduction, we shall present areformulation
of the result, and then we will go on to show how this reformulation subsumes Chung and
Graham’sG-descent expansion of the chromatic polynomial and a special case of the
expansion of the path-cycle symmetric function in terms of@hg;.

A number of details will be omitted from the proofs in this section because the arguments
consist mostly of definition-chasing.

We need some definitions. The first of these looks trivial but is actually one of the most
important.

Definition A sequencingf a graph or a poset with a vertex 3étthat has cardinalityl
is a bijections : [d] — V.
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Itis helpful to think of a sequencing as the sequesidg, s(2), . . ., s(d) of vertices. The
reason we claim that this definition is important is that the usual approach to this subject
regards a permutation of some kind (either @f ¢r of V) as the fundamental object of
interest, but as we shall see below, it is often sequencings that are most natural to consider.
Even the standard approach often finds it necessary to resort to inverse maps at certain points
to convert permutations to sequencings; by focusing on sequencings directly we obviate
this.

“Dual” to the notion of a sequencing idabelling, which is a bijectiorw : V — [d]. A
labellinga of a poset ioorder-reversingf «(x) > «(y) wheneverx < .

A sequencing of a graphG induces an acyclic orientatian(s) of G: if i < j ands(i)
is adjacent tas(j ), then direct the edge fros(j) to s(i). The acyclic orientation in turn
induces a poset structutgs) on the vertex set o&: makes(i) less thars(j) whenever
s(j) points tos(i) and then take the transitive closure of this relation.

Let G be a graph withd vertices. Ifx is a labelling ofG andsis a sequencing ds, then
we say thas has anx-descent at (for i € [d — 1]) if the permutationx o s has a descent
ati. Thea-descent set v, s) of sis the set

{i € [d—1]|shas amx-descent at}.

(It is helpful to visualize this by visualizing a numerical label on each element of the
sequencea(l), s(2), ..., s(d); the sequence of labels is the one-line representation of the
permutationx o s and the descents occur at the descents of this permutation.)

We can now state Stanley’s theorem.

Theorem 1 Let G be a graph with d vertices. Suppose that to each sequencing s of G
there is associated an order-reversing labelligof o(s). Suppose further thais = oy
whenever s and sire two sequencings of G that induce the same acyclic orientation of G.
Then

Xe = Z Qb (as.s).d-

all sequencings

Sketch of proof: The basic idea here can be traced back to [11]. For each acyclic orien-
tation o of G, lets be some sequencing that indueeand definev, : 0 — [d] to be the
order-reversing bijections. Let ¥(o0, w,) be the set of all linear extensions@fregarded

as permutations ofl] via w,, and ifeis a permutation leD (e) denote the descent setef
Then [12, Theorem 3.1], combined with [12, Eq. (8)], states that

Xe=)_ Y. Qoed .1

0 ec(0,w,)

where the first sum is over all acyclic orientatiansf G.

Now there is a bijection between the set of all sequencings ahd the set of ordered
pairs{(o, €) | e € Z(0)}—qiven a sequencing, let o be the acyclic orientation induced
by sand lete = w, 0 S = a5 0 S. Theorem 1 then follows from (3.1) once we verify that
D(e) corresponds t® (s, S) under this bijection. O
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Chung and Graham [3, Theorem 2] have shown that if the chromatic polynomial of a
graph is expanded in terms of the polynomial basis

(X 2: k) k=0.....d (32)

.....

then the coefficients can be interpreted in terms of what theycakscentsln their paper,
Chung and Graham give a sketch of a somewhat complicated proof of this result, and remark
that while in principle it follows from Brenti’'s expansion [1, Theorem 4.4] (which in turn
is essentially what one obtains by specializing Theorem 1 via thegnap g(1")), the
implication is not particularly direct. However, Chung and Graham'’s result follows directly
from Theorem 1 by choosing the, appropriately and then specializing from symmetric
functions to one-variable polynomials, as we shall now see.

Again, we need some definitions. Peela posetP is to remove its minimal elements,
then to remove the minimal elements of what is left, and so on.rditieo (X) of an element
x € P is the stage at which it is removed in the peeling process.

Next we give the definition of Chung and Graham’s concept Gfdescent, translated
into our terminology. LelG be a graph withd vertices. Lets be a labelling ofG and
let s be a sequencing db. If v is a vertex ofG then we defineo(v) by using the poset
structureo(s). We then say that has a CG8-ascent ati(fori € [d — 1]) if either

1. p(s(i)) < p(s(i + 1)) or
2. p(s(i)) = p(s(i + 1)) andB(s(i)) < B(s(i + 1)).

TheCG g-ascent set of & defined in the obvious way. We then have the following result.

Corollary 1  If G is a graph with d vertices and a labellingy then

X = Z Ns Qs.d, (3.3)
s

where the sum is over all subsets=§d — 1] and Ns is the number of sequencings of G
with CG g-ascent set S.

Sketch of proof: The appropriate choices of in Theorem 1 are as follows. Given a
sequencings, arrange the vertices @ in the following “peeling order”: first take the
elements of highest rank ia(s), then the elements of next highest rank, and so on; ar-
range elements with the same rank in decreasing order of gHaioels. Now define the

labelling as by settingas(v) = j wherej is the position ofv in the peeling order. It is
now straightforward to check that the G&ascent set o$ coincides with thexs-descent
set ofs. O

Chung and Graham’s result [3, Theorem 2] now follows as a special case of Corollary 1.
For if we apply the mag +— g(1") to (3.3), the left-hand side specializes to the chromatic
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polynomial ofG ([12, Proposition 2.2]) and by Proposition 1 the right-hand side specializes
to the binomial coefficient sum

gNs<n—|—d—d|8|—1> :ZNk<n—gk>»

k

whereN is the number of sequencings with— 1 — k CG g-ascents, i.e., withk CG 8-
descents (where CB-descents are defined in the natural way). This is exactly the result
of Chung and Graham [3, Theorem 2].

Our second corollary involves the expansion of the path-cycle symmetric furi€tion
in terms of theQs 4 [2, Proposition 7]. (We shall not give the formal definition of the path-
cycle symmetric function here because we will not need it; suffice it to say thatit is a certain
symmetric function invarianEp that can be associated to any digrdpl) For certain
digraphsD, Ep coincides with the chromatic symmetric functior %f some grapiG,
and therefore, in these cases, [2, Proposition 7] gives an interpretation of the coefficients
of the Qs g-expansion of X%. This interpretation is ostensibly different from the one given
by Theorem 1, but as we shall show presently, it again follows directly from Theorem 1 via
suitable choices afs.

We shall now make these somewhat vague remarks preciseP beta poset withd
vertices. Ifs is a sequencing oP, we say that has adescent at i(for i € [d — 1])
if s(i) # s(i +1). Thedescent set &) of sis again defined in the obvious way. The
incomparability graphinc(P) of P is the graph with the same vertex setfaand in which
two vertices are adjacent if and only if they are incomparable elemems of

An acyclic, transitively closed digraph is equivalent to a poset. According to [2,
Proposition 2], the path-cycle symmetric function of such a digraph coincides with the
chromatic symmetric function of the incomparability graph of the equivalent poset. There-
fore, what [2, Proposition 7] says in this case is the following.

Corollary 2 Let P be a poset with d vertices. Then

Xie(P)=" > Qoe.a-

all sequencings

We now claim that this result can also be derived from Theorem 1.

Sketch of proof: We define thexs as follows. Lets be any sequencing of iGE). The
maximal elements of(s) form a stable set in i) and therefore a chain iR; call the
minimal (with respect to the ordering &, not of o(s)) element of this chaim;, and set
as(vy) = 1. Now deletev; and repeat the procedure, i.e.,dgetbe theP-minimal element
among theo (s)-maximal elements of the deleted graph, ancugét,) = 2. Continue in
this way untilas(v) is defined for alb. We leave to the reader the (straightforward although
not entirely trivial) task of verifying that thes-descents 0§ (considered as a sequencing
of inc(P)) coincide with the descents ef(considered as a sequencingR). O
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4. Robinson-Schensted and (3- 1)-free Posets

A posetis said to bé3 + 1)-freeif it contains no induced subposetisomorphic to the disjoint
union of a three-element chain with a singleton. Unless otherwise noted, all posets in this
section are assumed to &+ 1)-free.

Gasharov [6] has proved a remarkable result about the expansiap.@f, ¥ terms of
Schur functions. To state it we must first recall the notion Bftableau. IfP is any poset,
a (standard P-tableauis an arrangement of the elementsPinto a Ferrers shape such
that the rows are strictly increasing (i.e., each row is a chain) and the columns are weakly
increasing (by which we mean thatufappearsmmediately above [when the tableau is
drawn English style] then # v). Each element oP appears exactly once in the tableau.
Then Gasharov’s result is the following.

Theorem 2 Let P be a(3 + 1)-free poset. Then

Xine(py = Z fésx,
%

where f is the number of P-tableaux of shape

It would be nice to have a direct bijective proof of Theorem 2 (Gasharov’s proof is not).
In [14] Stanley remarks that whef is a chain,f} is just the number of standard Young
tableaux of shapkg, so a bijective proof of Theorem 2 is provided by the Robinson-Schensted
correspondence. (For background on Robinson-Schensted and tableaux, see [10].) Stanley
further remarks that Magid [9, Section 3.7] has produced a generalization of the Robinson-
Schensted correspondence that provides the desired bijective proof of Theorem 2. However,
the exposition in [9, Section 3.7] is difficult to follow, and to the best of my understanding
there is an error in the construction. Letbe the four-element poset whose Hasse diagram
looks like an uppercase “N.” (We shall refer to this posePaset N) Label the vertices
a, b, ¢, andd from left to right and from top to bottom, as in reading English. Then the
two sequencedacbanddbcaappear to generate the same pair of tableaux under Magid’s
insertion algorithm, which should not happen since the insertion algorithm is supposed to
give a bijection between sequencings of the poset and pairs of tableaux. It is possible that
| am misinterpreting Magid’s algorithm, but if I am correct then the problem of finding a
bijective proof of Theorem 2 is still open. The best partial result is due to Sundquist et al.
[15], who provide an algorithm that gives the desired bijection for a certain proper subclass
of (3+ 1)-free posets.

We shall say more about the algorithm in [15] in a moment, but our main purpose here is
to observe that combining Corollary 2 with Theorem 2 gives us some insight into the kind
of Robinson-Schensted algorithm we wanta K d then from [12, Eqg. (15)] we have

A
s.= ) f{Qsa,
s

where the sum is over a§ € [d — 1] and f4 is the number of standard Young tableaux
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with shapel and descent s& Combining this with Theorem 2 yields
Xinc(P) = Z Z f% féQS,d-
S

In other words, the coefficient s gq in Xinepy is the number of ordered pai(3, T')
whereT is a P-tableau and’ is a standard Young tableau with the same shape and with
descent seb.

Comparing this with Corollary 2, we see that not only does there exist a bijection between
sequencings oP and ordered pairéT, T') with T a P-tableau and” a standard Young
tableau, but there exists such a bijection with the further property that it respects descents.
(It is well known that this is true in the case of the usual Robinson-Schensted algorithm.)
It is therefore natural to hope for an algorithm that also respects descents. For one thing,
this would provide an alternative proof of Gasharov’s theorem.

We might ask if the Sundquist-Wagner-West algorithm respects descents, at least for the
class of(3 + 1)-free posets to which it is applicable. The answer is no, and the sequencings
of Poset N mentioned above in connection with Magid’s algorithm are also counterexamples
for this question. However, we do have the following result.

Theorem 3 The Sundquist-Wagner-West algorithm respects descents when restricted to
the class of3 + 1)-free posets that do not contain Poset N as an induced subposet.

Proof: The Sundquist-Wagner-West algorithm applies to a more general class of objects
than we have been discussing here, but in our present context, it reduces to the following.
Let P be a(3 + 1)-free poset. Given a sequencisgf P, construct an ordered p4&if, T')
whereT is a P-tableau andl'’ is a standard Young tableau byserting 1), s(2), and
so on in turn. TheP-tableauT will be the insertion tableau, ant will be the recording
tableau. The recording is done in the normal way and requires no comment. To insert
an elemens(i) into T, observe that each roR of T is a chain. (This property is trivial
to begin with and it will be easy to see that it is preserved at each stage of the insertion
process.) Therefore, sindeis (3 + 1)-free,s(i) is incomparable to at most two elements
of R. If s(i) is incomparable to zero elementsRfthen the situation is indistinguishable
from standard Robinson-Schensted, so proceed in the expected way: afipémthe end
of Rif s(i) is greater than every elementRf otherwise, les(i ) bump the smallest element
of R greater thars(i) and proceed inductively by inserting the bumped element into the
next row of the insertion tableau. dfi ) is incomparable to exactly one elemenfyfmake
s(i) bump that one element. Finally,sfi) is incomparable to two elements Bf make
s(i) “skip over” R and inductively insers(i) into the next row. We remark that it is easy
to show that if there are any elementsRrincomparable t&(i ), then these elements must
be in a single consecutive block and tkéf) must be greater than everything to the left of
this block and less than everything to the right of this block. Keeping this fact in mind will
make it easier to follow the arguments below.

Sundquist, Wagner and West prove that the above algorithm produces a bijed®on if
is what they call “beast-free” in addition to beig + 1)-free. Since the beast contains
Poset N as an induced subposet, the bijection is valid for the posets that we are concerned
with here.
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To show that descents are respected in this algorithm, we proceed by a straightforward
case-by-case analysis. Suppose first #itat # s(i + 1). We wish to show thait + 1
appears in a lower row thanin the recording tableau. We claim first that wheh + 1)
is inserted, it cannot be appended at the end of row 1. To see this, back up and think about
what could have happened whs(i) was inserted. 15(i) did not skip over row 1, then
s(i + 1) could not then be appended to row 1 sis@e # s(i +1). If on the other hand(i)

did skip over row 1, thes(i) must be incomparable to two elements in row 1, and because
Pis (3+ 1)-free, we must have(i) > s(i + 1), ands(i + 1) cannot be appended to row 1
because this would forcsi) to be greater than everything in row 1, contradiction.

Now if s(i) is appended to the end of row 1 then we are done. Otherwise, esgh afd
s(i + 1) gives rise to an element to be inserted into row 2; call these two elemeamtsv
respectively. (They need not be distinct fradt) ands(i + 1) but they must be distinct
from each other.) By induction it suffices to show tbag v. We have several cases.

1. Supposel = s(i), i.e., supposs(i) skips over row 1. Ifv = s(i + 1) then we are done.
Otherwise, suppose towards a contradiction $igt < v. Consider the situation before
the insertion of(i). Sincev # s(i + 1), v must be inrow 1, and sincxi) < v, s(i)
is less than everything to the right of But s(i) is incomparable to two elements in
row 1, so there must exist at least two elements in row 1 to the laft dfet q andr
be the two elements in row 1 immediately precedingNow s(i + 1) bumpedv so
q<r <s@+1. Sinces(i) # s(i + 1), we haves(i) #£ g ands(i) # r. But since
s(i) is less tharv and everything to the right af, we must haves(i) # g ands(i) # r
for otherwise there could not be two elements in row 1 incomparaldé toTherefore
s(i) # s(i + 1) ands(i) together withqg <r < s(i + 1) is a 3+ 1), contradiction.

2. Supposel # s(i) ands(i) < u. If s(i +1) = v then sinces(i) # s(i +1) = v and
s(i) < uwe must haver £ v and we are done. So we may assume $liat- 1) # v.
Suppose towards a contradiction that v. Then whers(i + 1) is inserted into row 1 it
bumps something (namely that is greater than and thus greater thati ). Sinces(i)
is sitting in row 1 whers(i + 1) is inserted, this forces(i + 1) > s(i), contradiction.

3. Suppose that # s(i) and thats(i) andu are incomparable. We have two subcases:
eithers(i + 1) # v ors(i + 1) = v. In the former case, suppose towards a contradiction
thatu < v. Sincev > u, v must be sitting in row 1 to the right cf(i) just before
s(i + 1) bumps it. Therefore > s(i) and hence(i + 1) > s(i) (sinces(i + 1) bumps
v and nots(i)), contradiction. In the latter case, again suppose towards a contradiction
thatu < v. Sinces(i) andu are incomparable, this implies thai + 1) = v # s(i),

i.e., thats(i) ands(i + 1) are incomparable. Than< s(i + 1) together withs(i) form

a 2+ 1), so thats(i) is one of the two elements in row 1 incomparablstio+ 1) that
causes(i + 1) to skip over row 1. Letw be the other element in row 1 incomparable

to s(i + 1); thenw is either the immediate successor or the immediate predecessor
of s(i)—and therefore ofi beforeu was bumped bg(i ). Actually, thoughw cannot be

a predecessor af since this would maks(i + 1) > w. Combining all this information,

we see thas(i) < w > u < s(i + 1) together form an induced subposet isomorphic to
Poset N, contradiction.

To complete the proof of the theorem we just need to show thséit)if< s(i + 1) then we
do not obtain a descent in the recording tableas(ilf- 1) is appended to the end of row 1
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then we are done. H(i) is appended to the end of row 1 then sa(is+ 1) and again we
are done. Therefore, as before, it is enough by induction to showuhaty”.

Suppose first that(i) bumps some elementfrom row 1. Ifs(i + 1) also bumps some
elementv from row 1 then sinces(i) < s(i + 1) we must haver < v, so by induction
we are done; therefore we may assume #tat- 1) skips over row 1. Suppose towards
a contradiction thatl # s(i + 1). Thens(i + 1) is not greater than the element in row 1
immediately to the right ofi, buts(i + 1) isgreater thas(i ), which displaces. Therefore,
after the insertion o(i ), the two elements in row 1 incomparablest® + 1) must be the
two elementgy andr in row 1 immediately to the right of(i). Hencey # u, but then
u < <r andy forma(3+ 1), contradiction.

It remains to consider the case whain) skips over row 1. Ifs(i + 1) also skips over
then we are done. We have two remaining subcases: either the elertteits(i + 1)
bumps is larger thag(i + 1) or elsev ands(i + 1) are incomparable.

In the former case, lat; andw, be the two elements in row 1 incomparables¢o (just
prior to the insertion of(i)). Sinces(i) < s(i + 1) we must haves(i + 1) # w; and
S(i +1) £ wo. Since by assumptios(i + 1) bumps something larger than itself, we must
havey > w; andy > w,. Thereforev must lie to the right ofw; andw,, sov > s(i),
which is want we want to show.

Inthe latter case, suppose towards a contradictiorsthatt v. We cannot have < s(i)
because then < s(i) < s(i + 1), contradicting the incomparability af ands(@i + 1).
Sov is incomparable ta(i). Consider row 1 just before the insertionsgf + 1); s(i) is
incomparable to two elements in row 1, and one of these e other one, which we may
callw, must be either the immediate predecessor or the immediate successbinofs the
immediate successor othen this forces(i +1) < w and sinces(i) < s(i +1) thisimplies
s(i) < w, contradiction. Therefore is the immediate predecessorwof Combining this
information we see that(i) < s(i + 1) > w < v is an induced subposet isomorphic to
Poset N, contradiction. O

Possibly, then, the Sundquist-Wagner-West algorithm needs to be modified not only in
the case of posets containing the “beast” but also beast-free posets that contain Poset N.
However, so far | have not been able to find a modification of the Sundquist-Wagner-West
algorithm with all the properties we would like it to have.

5. The symmetric function basis{£,}

In [2] a new symmetric function basis, which we shall denote{&y (in place of the
original but more cumbersome notatif8, }), is introduced. For completeness we repeat
the definition here. For each integer partitionlet D, denote the digraph consisting of

a disjoint union of directed paths such that ttfe directed path has; vertices. IfF is a
subset of the sdE(D;) of edges ofD,, then the spanning subgraphdf with edge se¥

is a disjoint union of directed paths. The multiset of sizes of these directed paths forms an
integer partition which we denote by(F). The number of parts of (F) is denoted by
£(mr(F)). Then the symmetric functiof), is defined by

My (F)

f= (Pl

FCE(Dy)
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where the sumis over all subs&t®f E(D,). Two things that make this basis interesting are
that it provides a symmetric function generalization of the polynomial basis (3.2), and that
there is a linear involution that exchanges §gewith the monomial symmetric functions.
See [2] for details.

In[2, Theorem 3] it is stated thatXis &-positive (i.e., that its expansion in terms of the
&, has nonnegative coefficients). The proof, however, is not given there. My original proof
of this claim was a direct argument giving a combinatorial interpretation of the coefficients
in this expansion in terms of Chung and Graha@'slescents. However, a different proof
will be presented here that is perhaps more illuminating, since it shows how the result
follows from Theorem 1.

We need a technical lemma.sfando are set partitions, write < o for “x refineso”.
If 7 < o, letk; denote the number of blocks afthat are composed ofblocks ofx, and
following Doubilet [5] define

A, 0)!dZEf1_[i!k".

Also, given any integer partitions andv, let 7 be any set partition of type and define

' E Y @l

{o =7 |type(o)=v}
Lemmal The number of subsets F of B;) such thatz(F) = v equals ¢ ,r;!/r,!.
Proof: See the proof of [2, Proposition 13]. O

If Sis a subset ofd — 1] then we define theypeof Sto be the integer partition whose
parts are the lengths of the subwords obtained by breaking the word kP3after each
element ofS.

Theorem 4 Let g be any symmetric function. If and bs 4 are constants such that

g=) a& and g=) bsaQsa,
A S,d

then
a, = Z bS,d-

{Sitype(S=1}

Proof: It is not difficult to see that it suffices to prove the theorem for the cases,,.
Ford a positive integer an& a subset ofd — 1], define

def
MS,d = Z Xii Xip +*+ Xig-

a=iz<- <lq
ij<ijpiff jeS
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Then

m.= Y  Msg and Qsg= Y Mra,
{Sitype(S)=1} T2S

where in the first summatiosh is the size ofs. By an inclusion-exclusion argument,

m= > ) HT8Qra

{Sltype(S)=2} T2S

Letq, 1.4 be the coefficient 00+ 4 in m;,. We compute

Z Q.74

{Tltype(T)=v}

Observe that there is a bijection between subsets ofityared orderings of the parts af
given a subseb C [d — 1] of typea, take the sequence of the lengths of the subwords of the
word 123...d obtained by breaking after each elementofThinking of such subwords
as directed paths, we see that for any figaf type A, the number of subse® 2 Ssuch
that typ&T) = v is just the number of subseks of E(D;) satisfyingz(F) = v, which
from Lemma 1 is
!
m Cya-
Now there aré(1)!/r;! subsetsS of type A, and if typgS) = A and typ&T) = v then
(—DT=1S = (sgnv)(sgnh).

Putting all this together, we see that

o)!
D Gura = Coa(SInu)(Sgni).
{Titype(T)=v} v

But, again from Lemma 1,
r.! r!

= <G ——my.

Z ;u! TPN T

Hence ifg = §,, then

Sl S ER G sgnu)(sgn)

b _~
Sd T TR

{Sitype(S)=v} A

r,!
5 D _(59nw)C, 5 (SN
v A

= 8[1.1)7
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becausé(sgnx)c, ,,) is the matrix ofw with respect to the augmented monomial symmetric
function basis (by [5, Appendix 1, #9]) arglis an involution. This completes the proof.
O

It follows as an immediate corollary that any symmetric function (such@ers,) that
is Q-positive is als@ -positive, and moreover if there is a combinatorial interpretation of the
Qs g-coefficients thenit carries over into a combinatorial interpretation dftheefficients.

We should caution the reader, however, thais not Q-positive. Nor is it true that the
only Qsg4’s in the Qs g-expansion of; with nonzero coefficients are those with tyfge =
A. Thus, while Theorem 4 allows one to translate combinatamigrpretations of the
coefficient®f the Q-expansion of a symmetric functigrinto combinatorial interpretations
of the coefficients of thé-expansion ofj, there is no guarantee that combinatopedofs
can be so translated. Some tricky reshuffling of combinatorial information occurs in the
transition from theQgg4's to the &,’s. In fact, | do not know of a direct combinatorial
proof that thet, -expansion of the Schur functions enumerates Young tableaux according
to descents.
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