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Abstract. A hyperplane arrangement is said to satisfy the “Riemann hypothesis” if all roots of its characteristic
polynomial have the same real part. This property was conjectured by Postnikov and Stanley for certain families
of arrangements which are defined for any irreducible root system and was proved for the root Aysiem

The proof is based on an explicit formula [1, 2, 11] for the characteristic polynomial, which is of independent
combinatorial significance. Here our previous derivation of this formula is simplified and extended to similar
formulae for all but the exceptional root systems. The conjecture follows in these cases.
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1. Introduction

Let .4 be a hyperplane arrangementif, i.e. a finite collection of affine subspacesRSf
of codimension one. Theharacteristic polynomig9, §2.3] of A is defined as

XA, Q) =y (0% g™,

Xel 4

whereL 4 is the poset of all affine subspaces®fwhich can be written as intersections of
some of the hyperplanes &f, 0 =R"isthe unigue minimal element &f, andu stands for

its Mobius function [14, §3.7]. The polynomial.A, q) is a fundamental combinatorial and
topological invariant of4 and plays a significant role throughout the theory of hyperplane
arrangements [9].

Very often the polynomialy(A, q) factors completely over the nonnegative integers.
This happens, for instance, whetis a Coxeter arrangement.e. the arrangement of
reflecting hyperplanes of a finite Coxeter group [9, p. 3]. A number of theories [8, 13, 16]
have been developed to explain this phenomenon (see also the survey [12]). A different
phenomenon has appeared in recent work of Postnikov and Stanley [11] and is referred
to as the “Riemann hypothesis” fot. It asserts that all roots ¢f(A, q) have the same
real part. This property was conjectured in [11] for certain affletormationsf Coxeter
arrangements and was proved for the Coxeter #pg. The proof was based on explicit
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formulae for the characteristic polynomials, first obtained in [1] [2, Part II]. In this paper
we improve and extend our previous arguments to treat case by case all but the exceptional
Coxeter types. There is no general theory known that could give a more uniform proof.

We first state precisely the Conjecture of Postnikov and Stanley and our main result.

The main result. A root systemd will be a crystallographic root system [7, §2.9] which
is not necessarily reduced, i.ecif 8 € ® with 8 = ca then we do not require that= +1.
This includes the non-reduced syst&€, which is the union oB, andC,,. Let A be the
Coxeter arrangement correspondingto A deformation of4 [11, 15] is an arrangement
each of whose hyperplanes is parallel to some hyperplapnke dfix a system of positive
roots®* and leta < b be integers. We denote ijAz{avb] (®) the deformation of4 which
has hyperplanes

(@, X) =k fore e ®" and k=a,a+1,...,b.

This reduces tod if a = b = 0. The conjecture of Postnikov and Stanley from [11, §9] is
as follows.

Conjecture1.1 Let®d be anirreducible rootsystemiR' anda b be nonnegative integers
not both zerosatistying a< b. If h; is the number of hyperplanes df = Al=a+1b] (@)
then all roots ofy(A, q) have real part equal to /1.

Note. Forany arrangement in R', the sum of the roots gf(A, q) is equal to the number
h 4 of hyperplanes ofd. Hence, if all roots of(.A4, q) have the same real part, this has to
behy/I.

The characteristic polynomial of(2"! (@) is independent of the choice of positive roots
®*, so from now and on we assume that this set is as in [7, §2.10]. We then abbreviate
Alebl (@) asplabl Clabl plabl or gelabl if o = B, C,, D, or BG, respectively. For
® = A,_,, this is an arrangement iR"~1. For convenience, we denote b@lnavb] the
arrangement of hyperplanesif of the form

Xi_sza»a+1,...,b for 1<i<j=<n,

so thatAl2?! is the product [9, Definition 2.13] of the empty one dimensional arrange-
ment andA2? (®) and hence( AR, q) = qy(Al®b (9), q), whered = A, ;. The
arrangementsi%l*b] are referred to as trextended Linial arrangement$hey were studied
enumeratively because of a remarkable conjecture of Linial and Stanley, first proved by
Postnikov [11, Thm. 8.2] (also in [1, 84] [2, §6.4]), about the nhumber of regions of the
Linial arrangementthe one which correspondsio= 1; see Remark 1 in Section 6. The
polynomialsy (AP, ) were first computed explicitly in [1, 84] [2, §6.4] with the “finite
field method”. We use the same method to find similar explicit formulae in the case of the
other classical root systems and prove the following theorem.

Theorem 1.2 Conjecturel.1 holds for the infinite families of root systemgs_A B, Cp,
D, and BG,, where n> 2.
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As remarked earlier, the proof of Theorem 1.2 will be done case by case. No uniform
proof is known.

The paper is organized as follows: Section 2 contains a review and refinement of the
finite field method of [1] [2, Part 11] and other useful background. In Section 3 we simplify
substantially the derivations of the formulae fa@rdll-?), q) andy (A%, q) givenin[1, §4]

[2, 86.4]. In particular, we get a simple proof of Postnikov’'s theorem for the number
of regions of the Linial arrangement. In Section 4 we obtain similar formulae for the
root systemsB,, C,, D, and BC,. In Section 5 we use the results of Sections 3 and 4
and an elementary lemma, employed by Postnikov and Stanley, to complete the proof of
Theorem 1.2. We conclude with some remarks in Section 6.

2. Background

We firstreview the finite field method of [1] [2, Part I1]. This method reduces the computation
of the characteristic polynomial to a simple counting problem in a vector space over a finite
field. It will be more convenient here to work over the abelian grdypf integers modulo

g, whereq is not necessarily a power of a prime. We will naturally restrict our attention to
hyperplane arrangements, as opposed to the more genbsgdacarrangements [3, 4].

Let A be any hyperplane arrangementRA andq be a positive integer. We call a
Z-arrangementf its hyperplanes are given by equations with integer coefficients. Such
equations define subsets of the finite Zgtf we reduce their coefficients modutp We
denote by 4 the union of these subsets, supressjrigom the notation. The next theorem
is a variation of [1, Thm. 2.2] [2, Thm. 5.2.1] (see also the original formulation in [6, §16]
as well as [9, Thm. 2.69], [5, Thm. 2.1] and Proposition 3.2 and Lemma 5.1 in [4]).

Theorem 2.1 Let.A be aZ-hyperplane arrangement iR". There exist positive integers
m, k which depend only oA, such that for all q relatively prime to m with g k,

XA, Q) = #(Z) — V4).

Proof: LetHi, Hy, ..., H: be some of the hyperplanesdf X C R" be their intersection
and Xy be the intersection of the corresponding subse@oﬂt suffices to guarantee that
#Xq = q9mX if X is nonempty anq = ¢ otherwise, for any such choice of hyperplanes.
The result then follows by Mbius inversion as in [1, 2, 5, 6] or, equivalently, by the
argument given in Propositions 3.1 and 3.2 of [4]. Xelbe described by the linear system

Ax = b, 1)

where A is anr by n Z-matrix andb has integer entries. Since there are invertible
matricesP, Q such thaP~'AQis diagonal, we can assume that (1) consists of the equations
dixi = b forl <i <r. Itsuffices to choosen, k so thatd; | m wheneverd; # 0 and

k > |bj| wheneved;, = 0. O

Remark We can choosm toAbe lor % ifA is aZ-deformation ofA,, or 5C,, respectively,
i.e. if Ais contained in somell&P! or BCIa-Y! for integersa < b. We will make use of this
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fact in the following sections without further comment. Also, we can ché&osd) if A is
central.

Notation. We often write
$a(y) =1y +y> 4oy

This polynomial will appear repeatedly in the formulae of Sections 3 and 4. sfiliie
operator Sacts on polynomiald of one variable by

Sf(y) = f(y—121).
The following elementary lemma will be needed in the next sections.

Lemma 2.2 For fixed positive integers,an let

na—1)
(Ga)" = A+y+ Y2+ 4y "= Y ayk.
k=0
If0<i <a-—1and f is a polynomial of degree less thanthen the sum
% f(y) = ( > cksk> fy= > af(y—Kk

k=i (moda) k=i (moda)

is independent of i and hence

1
Tif(y) = a(‘Pa(S))n f.

Proof: By linearity, it suffices to prove the result fdr(y) = yi, where 0< j <n-—-1.
We fix such g andr with 0 <r < j. The coefficientof//~" in Zjy! is (—1)r(ﬂ )s, where

s = Z ok

k=i (mod a)
Therefore, it suffices to show thaf =5, = - - - = s5_1. Note that
na—1) d r
Cek'y< = (y—) (@a(y)"
is divisible by¢,(y). Thus, settingy = w, a primitiveath root of unity, we gety + S
+ S0+ - 481031 = 0. The sameistrued is replaced witw™form =2, ..., a—1.
Hence the column vectdsy, S, . . ., Ss_1)' is in the kernel of tha— 1 bya matrix 2 whose

entry in position(m, |) is equal tow™~Y. The firsta — 1 columns of the matrix2 are
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linearly independent, so it has ramk— 1 and a one dimensional kernel. The kernel is
clearly spanned by the column vector with all entries equal to 1 so indgeds; = - --

= Sa—1. O

3. The root systemA,_1

In this section we consider the case of the root syséem. We rederive the formulae for
x(Al%a q) andx (A3, q) along the lines of [1, §4] [2, §6.4] but use a simpler and more
direct combinatorial argument. This case will serve as a prototypical example of application
of the finite field method, which we will adjust in the next section to the case of other root
systems.

For the following proof, we represent amtuple X = (Xy, X2, ..., X,) Of distinct ele-
ments ofZy as a placement of the integers2l. .., n andqg — n indistinguishable balls
along a line. Such a placement corresponds tontitigple x for which x; + 1 is the po-
sition thati occupies, counting from the left. For example, p= 10 andn = 4, the
placement

4000230010 )

corresponds to the 4-tuple (8, 4, 5, 0) of elementZgf We denote by y¥] F(y) the
coefficient ofyX in the formal power serieB (y).

Proposition 3.1 ([1, Thm. 4.4] [2, Thm. 6.4.4]) Foralla > 1and g> an we have
X(ALA q) = q[y"™"A+y+y2 4 yEHN D A ®)
j=0

Proof: Theorem 2.1 implies that, for large positive integqrsx(/ﬂ?’a], g) counts the
number ofn-tuplesx = (Xg, X2, ..., Xp) € Zg which satisfy

Xi — X ;éo,l,...,a

inZg foralll <i < j < n. Sincex satisfies these conditions if and onlyxf+ m
= (Xy+m,..., X, + m)does so, we can assume that, say= 0 and disregard the factor
of g in the right hand side of (3).

The corresponding placements of21. .., n andq — n balls, henceforth calledalid,
are the ones in which:

(i) noccupies the first position from the left and
(i) atleash balls separate an integefrom the leftmost integerto the right ofk, if k > i.

For example, the placement (2) is validiif< 2. If a maximal string of consecutive balls
hasp elements, we writgp = sa+r with 0 < r < a and think of the string as blocks
consisting ofa balls each, simply refered to asblocks followed byr balls. Ifa = 2 then
(2) has twoa-blocks.
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To construct the valid placements, ebe the number ad-blocks. Placg such blocks
along a line and the integerfirst from the left, to guaranteé)( Insert12,...,n—11in
the j spaces between the blocks and to the right of the last one, listing the integers within
each space in increasing order to guaraniige This can be done in"~! ways. Finally,
place the remaining — n — aj balls in then possible spaces between the integers and to
the right of the last one, with at moat— 1 in each space. The total number of ways is the
coefficient ofyd=" in (3). This is clearly a polynomial ig for g > an, hence (3) holds
specifically for allg > an. O

If a = 2, the three-step procedure just described to construct (2) is the following:

400 OO
40023001
4000230010

A simple application of Lemma 2.2 yields the more explicit formula)fo,ﬁ[?-a], g), given
in[11, Thm. 9.7].

Corollary 3.2 Foralla > 1,
X(A%O,aL q) = %Sn(l + S+ 82 4t Safl)n qnfl.

Proof: Formula (3) can be written in the form

(AP q) = 3 g@-n—k"
a k=q—n(moda)

where the coefficients, are as in Lemma 2.2. This lemma implies the proposed equality

for g > an. Since both hand sides are polynomialgjjrihe equality follows for aly. O

A similar formula follows forx(/fﬁva], g). For convenience, as in [1, 2], we use the
notationx(A, q) i= § x(A, 9.

Proposition 3.3 ([1, Thm. 4.3] [2, Thm. 6.4.3]) Foralla > 1,
(AL q) = (ALY, g - n).

Proof:  Forq large, the quantity on the right counts tireuples(xa, Xz, . . ., Xn) € Zg_,
which satisfyx; — xj # 1,...,a—1forall1 <i < j < nand, sayx, = 0. These
n-tuples can be modeled again by placements of leggthn of the integers 12,...,n
and balls, in which more than one integer can occupy the same position since some of the
X; may be equal.

To define an explicit bijection with the valid placements of Proposition 3.1, we start with
a valid placement and remove a ball between any two consecutive integers, including the
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pair formed by the rightmost integer in the placement apdhich is the leftmost. If no
ball lies between such a pdir, j) then we placé andj in the same position. For example,
the placement (2) becomes

4002301
and corresponds to the 4-tup® 3, 3,0) € Z¢. This map is clearly a bijection between
the two kinds of placements. O

Corollary 3.4 ([11, Thm. 9.7]) Foralla > 1,

nal q) = 9
X(An s q) - a+ 1)n

A+S+S+---+H"g"

The special casa = 1 of this corollary leads to another proof of Postnikov’s theorem
[11, 15], initially conjectured by Linial and Stanley. We give more details in Remark 1 of
Section 6.

4. Other root systems

Inthis section we derive analogues of Corollaries 3.2 and 3.4 for the root syBte@ds, Dn
andBC,. The method we use follows closely that of Section 3.

We need to adjust some of the terminology and reasoning of the previous sectign. Let
be an odd positive integer. Xf= (X, Xo, . .., Xn) is ann-tuple of elements df satisfying
X # O foralli andx; # %x; fori # j, then we represemtas a placement of the integers
1,2,...,n, each with a+ or — sign, anqu‘l — nindistinguishable balls along a line, with
an extra zero in the first position from the left. For example, omittinghsigns, for
g = 27 andn = 6 we have the placement

00203-5004-100-60. 4

Such a placement corresponds to tikieiple x for which x; + 1 or —x; + 1 is the position
thati or —i occupies, respectively, counting from the left. The placement (4) corresponds
to the 6-tuple £9, 2, 4, 8,—5, —12) of elements o¥.,;.

We first derive the analogues of Corollary 3.2 in the four cases of interest. The symbol
< refers to the total order of the integers

1<2<3<-++<0<+.-<x-3<x-2<-1

The root system BC Recall that3C[%@ has hyperplanes

xi=0,1...,a forl<i<n,

2x,=0,1,...,a forl<i <n, 5)
Xi—Xj=01...,a forl<i<j<n,
Xi+Xj=01...,a forl<i<j<n
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Proposition 4.1 Fora > 1, x(5Cl%3, q) is equal to
2
W52”+1(1+ P+S 4+ YU+ S+ S S

if a is even and

1
W52”+1(1+ SP+S 4 YL+ S+ +FhH"

if a is odd.

Proof: By Theorem 2.1, for sufficiently large odg X(BA(ZL?*a], g) counts the number of
n-tuplesx = (x4, Xz, ..., Xn) € Zg for which none of the equalities (5) holds#y. The
corresponding placements of integers and balls are the ones in which:

(i) atleast balls are placed between 0 and the leftmost nonzero integer, if this integer is
positive,
(ii) at IeastL%lJ balls are placed to the right of the rightmost integer, if this integer is
negative and
(iii) at leasta balls separate a nonzero integgefrom the leftmost integeir to the right of
Kif k > 1i.

We call again these placememalid. The placement (4) is valid faax = 1 but it is not
for a > 2. Conditions i) and {i) guarantee that no equation of the first two kinds in (5)
holds. For example)X # 1, or equivalently—x; # q—gl requires that the last position
from the right is not occupied byi. Condition {ii) takes care of the remaining two kinds
of equations.

To construct the valid placements, plage-blocks along a line, as in the proof of
Proposition 3.1, and 0 to the left. Insert2 ..., n, each with a sign, in one of the+ 1
possible spaces between 0 and &Helocks and to the right of the laatblock. List the
integers within each space in increasing order with respeet, tto guaranteeii(), and
force the— sign in the space immediately to the right of 0, to guararifed bien distribute
the remainingq—;l — n — aj balls between the integers, in blocks of at mast 1. To
take care ofi{), we distinguish two cases according to whether there is a negative integer
to the right of the rightmost-block or not. It follows that

X(BERA, q) = [yP " (ga(y)™™ > 2))"y?
j=0

P 4 YT @a) (2] + D" - @)Y,
j=0

wherep = q—;l The quantity(2j + 1)" — (2j)" in the second summand stands for the
number of ways to insert the integers2].. . ., n with signs inj + 1 possible spaces with
the — sign forced in the first space and at least engign in the last.
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We now extract the coefficients g and use Lemma 2.2 as in Corollary 3.2 to get
the proposed expressions, after some straightforward algebraic manipulations. Note that
(2j + D" — (2))" has degrea — 1 in j, so Lemma 2.2 applies to the second summand as
well. O

The derivations in the other three cases involve some complications but are treated in a
similar way, so we will omit most of the details. We let= q;zl until the end of this section.

The root system  The arrangement®? lacks the first set of hyperplanes in (5).

Proposition 4.2 Fora > 1, x(Cl, q) is equal to

4

an+1 82n+1(1+ SZ + S4+ R SZa—Z)n—l(l_l_ SZ + S4 S 8372)2qn

if a is even and
1
S A+ S+ S ST S+ S o ST

if a is odd.

Proof: The valid placements in this case are asB@, except that, in condition}, a is
replaced by . To count these placements we now distinguish four cases, according to
whether there is a positive integer between zero and the lefarolsick and whether there

is a negative integer to the right of the rightmasdblock. It follows that

X(CA, q) = [yP "1 @a(y)™™ Y 2"y
j=0

HIYP(YE 4 Y (@)Y (2] + D" = 2Ny
j=0

FIYP (YR 4 YA (aly)" D @)+ D" = 2Ny
j=0
atl |

HIYPIYE + EE +  y ) (ay))"
X Zazj+2yaj,
j=0
where

aj=j"-2(-D"+(-" (6)

The result follows in a straightforward way, as before. Note that the degieg,ofin j is
at mostn — 2 and hence Lemma 2.2 applies to the last summand as well. O
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The root system B,. The arrangemeri[%-? lacks the second set of hyperplanes in (5).
The proof of the following proposition is indirect.

Proposition 4.3 Fora > 1,
X(B8. q) = £(CE.q).

Proof: Letl, m denote the last two integers in a placement gricthe number of balls
betweerl andm and to the right ofn, respectively. For the placement (4) we have —1,
m = —6,s = 2 andt = 1. The valid placements fdB[%? are the ones which satisfy
conditions {) and {ii) of the BC, case and also:

(i) 2s+t>a—1 ifl>—-m.

Indeed, the conditiong & x; # 0, 1, ..., arequire thatifi) holds, with the extra assump-
tionk # —i, if we extend a placement, say (4), to the rest of the classegjnasd

00203-5004-100-6006001-4.---.

This also impliesi{’). Note that{i’) follows from (i) if | > m but is essential otherwise.
Itis redundant in the cases BIC, andC, because ofi(). To count the valid placements in
this case, we first count those which satisfygnd {ii) and then subtract the ones which
violate (i"). For large oddj, it follows thatX(B{?a], q) is the coefficient ofyP~" in the
expression

(@a()™ Y QJ+ D"y — fa 2 (@a(y)" Y ajy?,
j=0 j=0

where
f(y) = Y y*
s,t>0
2s+t <k

anda; is the number of ways to insert 2, ..., n with signs inj + 1 spaces and list the
integers in each space in increasing order with respec¢tan that the last two integersm
appear in the last space and satisfy —m, in addition tol < m. Itis easy to check that

fie(y) = 1+ 2y + 3y2 4.+ 2k 4 yk =

k { (Br11(Y))?, k=2r; @
& (Ngria(y), k=2r -1

and thae) = Y3, () (2 — 2)(2] — D" = ay; 1, defined by (6). In this sunk stands
for the number of integers in the last space. Using Lemma 2.2 as before, we arrive at the
same expression for(Bl%d, q) as the one obtained earlier fpCl%?, q). |
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The root system . The arrangemer®!%4 lacks the first two sets of hyperplanes in
(5). LetQ, be the arrangement of coordinate hyperplages 0 in R". ThenDPa U Q,
has hyperplanes

Xxi =0 forl<i <n,
X—X;=01,...,a forl<i<j<n, (8)
Xi+x;=01...,a forl<i<j<n.

We first prove the following lemma.

Lemma 4.4 Fora>landn> 3, (D% U Q,, q) is equal to

4 2n—1

W<¢a(82)>”*3(¢a/2<82>>4(1 +3F - S+ Q"

if a is even and

-t o3 22—+ s
T @SN @9 1"
if a is odd.

Proof: Letl’, m' denote the first two integers in a placement ant the number of balls
to the left ofl” and betweel' andm’, respectively. For the placement (4) we héve 2,
m = 3 ands’ =t' = 1. The valid placements fap[%3 U Q, are the ones which satisfy
conditions {i’) and (ii) of the B, case (see the proof of Proposition 4.1 fiiir)J and also:

i 29 +t'>a-2 if =I">m.

This is implied by {ji) if I’ = m’ but is essential otherwise. It is redundant in the cases of
BC,, C, andB, because ofij and itsC, analogue. We count these valid placements as in
the By, case, using a simple inclusion-exclusion to handle lddjtand {i’). It follows that,

for large oddg, x(f){?va] U On, q) is the coefficient ofyP~" in the expression

(@)™ Y 2] + 2"y — fas(N(@a(Y)" Y agj 2y — faa(y)(@aly)" "
: -~

j=0 ]

x Y ji2y? + faca(¥) fa2(N) @) 2 ) bjy,

j=0 j=0
where we have used the notation in (6) and (7) and

bj = 2] +2" —42j + D"+ 62))" - 42 — D"+ (2] — 2",
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by a computation similar to the one faf in the proof of Proposition 4.3. We extract this
coefficient and factor the resulting expression appropriately to get the resuilt. O

We now computey(DI%3 q) for n > 3. It is easy to check thag(DP¥, q) =
(q—a—1)?for all a.

Proposition 4.5 Fora > landn> 3, x(DP4, q) is equal to

882n—1
i At A+ +S 4+ Y314 PS4 "

if a is even and
1
S A+ S S A ST S S+ ST

if a is odd.

Proof: By Theorem 2.1, for large odd, x(DI3, q) counts the number afi-tuples
X = (X1, X2,...,%Xn) € Zg which satisfy

Xiﬂ:Xj;ﬁO,l,...,a (9)

inZqforalll <i < j <n. The ones which also satisky # O for alli were counted in
the previous lemma. Therefore, the characteristic polynomi@ﬁbf] is the sum of that

of DA U Q, andy (q), wherey (q) is the number oh-tuplesx for which (9) holds and

x; = Ofor at least one, and hence exactly onéhese can be modeled by placements which
satisfy conditionsi{’) and {ii) of the B, case but have a negative integer in the leftmost
position, instead of 0. For example,

-203-5004-100 -60

corresponds to the 6-tuple-7,0, 2, 6, —3, —10) € ZS,. Thus, when constructing these
placements, at least one negative integer is inserted to the left of the lefirbtmstk but
no positive one. The argument in tBg case shows that

Y@ = [y"" 1 @a(y)" Y (2] + D" — )My
j=0

]

—[yP" ] fa2(y) (@a(y)™ 2 Y diy¥,
j=0

where

di =apj1—a =Qj +1"-32))"+32j — D" - (2j —2".
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It follows that(q) is equal to

2n—1

——— (1 — S (¢a(S?)"A(¢aj2())%q"

an+1

if ais even and

2n—2

S
T (1= @SN (da2(S))"
if ais odd. These expressions and Lemma 4.4 imply the result. O
The analogue of Proposition 3.3 was derived for most of the cases of interest in [2].

Proposition 4.6 ([2, Thm. 7.2.4 and Thm. 7.2.7]) If ® = B, or D, and a> 1 or
® = C, or BC,and a> 2is even then

(AL @), q) = (A" (@), q — h),
where

h 2n—2, if ® = Dy;
] 2n, otherwise

Proof. Forlarge oddj, the quantities on the right hand side countriiteples(x, xo, . . .,
Xn) € ngh which satisfyx; = x; # 1,...,a—1forall1 <i < j < nand some of
the conditions; £ 1,...,a—1and % # 1,...,a — 1, depending on the case. These
n-tuples can be modeled by placements of Ien%}ﬁ, as described in the beginning of
this section, except that more than one integer can occupy the same position, possibly the
leftmost, labeled with a zero otherwise.

In each case there is an explicit bijection with the valid placements of Propositions 4.1—
4.5. Given a valid placement, we remove a ball between any two consecutive integers, as
in the proof of Proposition 3.3. These pairs of integers include the one formed by 0 and the
leftmost nonzero integer in the casesdf C,, andBC, but not in the case dD,. Also, in
all four cases we leave the number of balls to the right of the rightmost integer unchanged.
For example, the placement (4) becomes

0023B504-10-60
in the case oD, and
023 504-10-60
in the three other cases. They correspond to the 6-typlbs2, 3,5, —3, —7) € Z%, and

(—4,1,2,4, -2, —6) € Z8 respectively. Itis easy to see that this map is indeed a bijection
in each case. O
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The bijection just described breaks down in the cases oaddd® = C,, or BC,, which
need special care. The following proposition was conjectured in [2].

Proposition 4.7 ([2, Conjecture 7.2.8]) Forallodda> 1,
((C8,q) = #(C+0,q - 2n)

and
x(BCOA, q) = y(BckaY, q —2n - 1).

Proof: For the first statement, letbe a large odd integer. Start with a valid placement,

as described in the proof of Proposition 4.2. Read it from left to right, switch-thigns

to — and vice versa and disregard 0, to get a new placement. Finally remove a ball between
consecutive integers, as in the proof of Proposition 4.6, but leave the number of balls in
the far left and far right unchanged, to get a placement counted by the right hand side. For
example, (4) becomes

060 1-405-3-20,

which corresponds to the 6-tupi8, —6, —5, —3, 5, 1) of elements on?S. It is easy to
check that this map is a bijection.

Note that a direct bijective proof by Theorem 2.1 is not possible for the second statement
sinceq andq — 2n — 1 cannot both be odd. Once the valid placements3igf-2-1 are
described explicitly, an argument similar to the one in the proof of Proposition 4.1 shows
that

x(BCR271,q) = [yPl(ga(yN™™ > (2))"y
j=0

o0

HIYPIYE + -+ YY) @a)" D (@) + D" — @)y

j=0
This implies the result indirectly, by comparison to the formula of Proposition 4.1.0

Analogues of Corollary 3.4 follow in all four cases. For example, in the ca8Gafwe
have the following corollary.

Corollary 4.8 Foralla > 1, x(BCi4, q) is equal to

2S

W(Mr82+S4+--~+Sza)”(1+82+S4+-~-+Sa*1)q“
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if a is odd and

m(1+§+s4+---+82a)”(1+s+32+...+5a)qn

if a is even.

5. Proof of the main theorem

The results of Sections 3 and 4 imply a crucial case of Theorem 1.2 via the following lemma.
This lemma was used by Postnikov and Stanley in [11] to prove Conjecture 1.1 for the root
systemA,_;.

Lemma5.1 ([11, Lemma9.12]) If g, f € C[q] are such that g has degree dll roots of
g have absolute valukand all roots of f have real part equal to then all roots of ¢S) f
have real part equal to #- d/2.

Corollary5.2 Conjecturel.1holds for4 = A%Y (@), ALl (d)ifbis a positive integer
and® is one of A_1, B, C,, D, or BC,, for some n> 2.

Proof: Combine the results of Sections 3 and 4 with Lemma 5.1. O

To complete the proof of Theorem 1.2 we need one last result. The first statement in the
following proposition is the content of [2, Thm. 7.2.1]. We note that the argument in the
case ofC,, given there, was oversimplified.

Proposition 5.3 Let a, b be integers satisfying < a < b. If ® is one of A_1, By, C,, or
D, then

x(A2(@), q) = x(ACP-A (@), q — ah),

where
n, if &= An_g;
h=1{2n, if ® =B,orCy;
2n—2, if ® =D,.
For ® = BC,,
A x(BClo-P-a q — (2n+ 1)a— 1), if both aand b are odd
A 0) -

x(BCOP-a q — (2n + 1)a), otherwise
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Proof: Let® be as above butassume that eithereven obis oddif® = C, orBC,. For

largeq if ® = A,_; and large oddj otherwise, both hand sides of the proposed equalities
count placements of a certain kind. To obtain a bijection, we start with a placement counted
by the right hand side and simply addalls between consecutive integers, as defined in
Propositions 3.3 and 4.6, except that we only @@Igﬂ balls immediately to the left of O if

® = C, and that we adqj%lj balls to the right of the rightmost integerdf = C, or BC,.

If a =1 then (2) becomes

4000020300010 0
and (4) becomes

00020030 -500040-1000 -60,
0020030500040 -1000 =60,
0020030 ->500040-1000-600

or

00020030 -500040-1000-60 0,

if ® = By, Dy, C, or BC,, respectively. This map is easily seen to be a bijection in each
case.

Now suppose thad is odd,b is even andd = C, or BC,. The map described above
fails to be well defined in these cases. Moreover,do= BC,, a direct bijective proof
is not possible sincq andq — (2n + 1)a cannot both be odd. One way to overcome this
difficulty is to prove instead that

X(BACL—a,b]’ q) — X(B’\Cl[]l,b—a—l]’ q _ (Zn + 1)(a + l))
and
x(C529, q) = x(C*2-Y, g — 2n(a + 1)),

which are equivalent to the desired formulae by Proposition 4.7. Note that we have the
empty arrangement iR" on the right ifo = a+ 1. Now a bijective proof is possible. Start
with a placement counted by the left hand side and reraevé balls between consecutive
integers, but onl)?*Tl in the far right if® = BC, and in the far left and far right b = C,,.

O

We now return to the proof of the main thorem.

Proof of Theorem 1.2: Combine Corollary 5.2 and Proposition 5.3. O
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6.

1.

Remarks

Fora = 1, Corollary 3.4 yields the expression

o2 (W)a—wr
P Qq-k
20 =\ k

for the characteristic polynomial of the Linial arrangement of hyperplanBS i — X;
= 1fori < j. It follows via Zaslavsky’s theorem [17] that the numlggrof regions
into which this arrangement disse®8 is

1 & /n
?Z<k>(k+1>“,

k=0

which is also the numbef, of alternating treesonn + 1 vertices [10]. The fact that
on = fn was conjectured by Linial and Stanley and first proved by Postnikov [11, 15].
No bijective proof of this fact is known.

. The results of Section 4 yield similar expressions for the number of regions of the Linial

arrangementi! (@) for ® = B,, Cn, D, andBGC,. This expression is
n—1 n—1
2 k+ D"
g < . )( +1)
|f q) = Bn or Cn,
"2 /n—2
4 n
é < ‘ )(k +1)
if ® =D, and
n./n
> ( )(k +1)"
k=0 k

if ® = BC,. It would be interesting to find combinatorial interpretations to these
numbers similar to the one in the caseff ;.

The reasoning in Section 4 can be applied to the more general family of deformations
of the form

x=012...,b forl<i<n,
2% =1,3,...,2c—1 forl<i <n,
X —x;=01...,a forl<i<j=<n,
Xi+%x;=01,...,a forl<i<j<n.

(10)
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We will only mention the special cage= b = c. The resulting arrangement is not one

of the deformations of interest but the following proposition implies via Lemma 5.1 that
Conjecture 1.1 still holds in this case and suggests that the conjecture is true in an even
more general setting. Furthermore, the corresponding formula is easier to obtain.

Proposition 6.1 Fora = b = ¢ > 1, the arrangement10) has characteristic polynomial

1

WSZnJrl(l + 82 —+ S4 + -+ 82672)n+lqn.

Alsq the arrangement

2 =1,2,...,2a—1 forl<i <n,
Xi—Xj=2L12,...,a—=1 forl<i<j<n, (12)
Xi+Xj=212...,a—1 forl<i<j<n

has characteristic polynomial

2 2 1
Ws(l+s +S4+...+Sa)n+ qn.

Proof: The argument in the proof of Proposition 4.1 yields the expression

YA+ y+ Y+ 4y H™ Y @)y
i=0

for the characteristic polynomial of the first arrangement in question. This implies the
proposed formula, as well as the formula for the second arrangement by the argument in
the proof of Proposition 4.6. O
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