';:‘ Journal of Algebraic Combinatoridsl (2000), 5-16

(© 2000 Kluwer Academic Publishers. Manufactured in The Netherlands.

A Root System Criterion for Fully Commutative
and Short Braid-Avoiding Elements in Affine
Weyl Groups

PAOLA CELLINI cellini@math.unipd.it
Dipartimento di Matematica Pura e Applicata, Univeesdi Padova, Via Belzoni 7, 35131 Padova, Italy

PAOLO PAPI papi@mat.uniromal.it
Dipartimento di Matematica Istituto G. Castelnuovo, Univerglt Roma “La Sapienza,” Piazzale Aldo Moro 5,
00185 Rome, Italy

Received December 30, 1997; Revised July 31, 1998
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Introduction and basic definitions

In his paper [4] Fan introduces after Zelevinski the following notion for elements of a Cox-
eter systentW, S).

Definition 1 An elementw € W is short-braid avoiding if no reduced expressionof
contains a substring of the forgis s,t € S.

The notion of short-braid avoiding element is strictly related to the following definitions,
due to Fan [3] and Stembridge [8].
Considers, t € Sand denote byn(s, t) the order ot € W; we call the strin@_t. ..the
. —
long braid of s and't. mes.b)

Definition 2 Forw € W we say thatw is commutative if no reduced expressionwof
contains a substring of the forsts s, t being non-commuting generators $such that
the simple root corresponding tas at least as long as the simple root correspondirgy to

Definition 3 Forw € W we say thatw is fully commutative if no reduced expression of
w contains the long braid of some pair of non-commuting generators.

Remark Denote byWs, W, W;. the sets of short-braid avoiding, commutative and fully
commutative elements W respectively.
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It turns out thaiVs = W, = W for simply-laced Coxeter groups. The relathdg = W;,
holds since the only defining relations which are not commutation relations are those of
typests=tst, s,t € S. The equalityl, = W;. is obvious. Moreover Fan and Stembridge
[3], [5] provide the following remarkable root-theoretic characterization of these elements.
Let A be the canonical root system @, S) and set

Nw) ={e € AT | w i) e —A*}.

Thenw is commutative if and only i&, 8 € N(w) = « + 8 ¢ N(w). In the general case,
the three definitions introduced differ (although the inclusion relatMnC W, € Ws,
holds). Let us work out explicitly the example of a Weyl gratgof type G,. If s, denotes
the simple reflection corresponding to the short simple root, then we have

WS = {17 Slﬂ SZ, SJ.SZv SZS].}
WC = {17 Sla SZ? S.‘.SZa stla S_L&Sl}
Wie = W\ {19995 (= $51951551)}

In [3], [4], [8] the types ofW for which W5, W,, W are finite are determined; in each of
these cases, their cardinalities are also determined. Moreover\Witssfinite Weyl group,
Fan provides the following remarkable criterion for e W to be short-braid avoiding:
w € W is short-braid avoiding if and only if any reduced expressiow e¢¢mains reduced
when a simple reflection is deleted in any possible way.

This result has interesting applications since it gives a simple smoothness criterion for
Schubert varieties attached to braid-avoiding elements. On the other hand, as noticed in
[4, 5], the criterion does not hold for affine Weyl groups (a counterexample inAyps
$19:5381%2)-

In this paper we provide a combinatorial characterization of the elemeWs ikV; . for
affineWeyl groupsW in terms of the subsefd (w) which encode the elements \bf.

Before stating our results we fix the notation and we give some preliminary definitions.

Let W be an irreducible Weyl group (possibly affine) andddbe the associated root sys-
tem (lying in areal vector spad#). Fix a positive system ™ in A and letlT = {3, ..., o}
be a corresponding basis of simple roots; then we ltave WIT andA = AT U —A*

(u denotes the disjoint union). We list some standard notation relative to these data.

A= (g; )g,j=1 (generalized) Cartan matrix corresponding\p
S fundamental reflection relative tg < TIT,
S=1{s,...,5} set of Coxeter generators fav,

14 length function w.r.tS,

Sy reflection relative texr € A™,

(,) standard W-invariant bilinear form ow,
positive definite ifA is finite,
positive semidefinite with kern@®s if A is affine,
2, B)
(a, B) (a, B € A),

BB
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Supp(a) support ofx:
if o =Y &0, thenSuppie) = {o | & # O}
N(a, B) = N +NB)NA (a,B € AM).

For a roote € A as usualr > 0 meansx € A™. We recall that for each, w € W
we havel(v) = |[N(v)| andN(vw) = N(v) + vN(w), where+ denotes the symmetric
difference; moreoveN (vw) = N(v) U vN(w) if and only if £(vw) = €(v) + £(w).

ForanyR € A setW(R) = (sg | 8 € R). We say thatR is a subsystem of A if it
is W(R)-invariant. Note thaR™ := RN A™ is a set of positive roots foR. We say that
R C AT is ap-subsystenf )X = RN A for some subsysterR. Equivalently,f% is a
p-subsystem ifR € AT and9R U —$R is a subsystem.

If R C A is a subsystem, we denote the cardinality of a root basiffoy rk(R), and
we call it therank of R.

Moreover we say thaR is parabolic if

A N Spany(R) = R.

As usual we say that a subsystdRrof A is standard parabolic if I1 N R is a basis for
R. Clearly a standard parabolic subsystem is parabolic. Moreover it is easily seen that a
subsystenR is parabolic if and only iRt = vR'™ for some standard parabolic subsystem
R andv € W (see [1, VI, 1.7, Prop. 24)).
If A is an irreducible affine root system and the associated finite root system, then
Al is irreducible (in particular it has a unique highest root); moreover (cf. [6])

AT = (ADT + N§) U (—=(AOT +779)

We call the elements ak° (resp.(A%)*) finite roots (respfinite positive roots).
Let Ry be any subsystem af°. Then

R={+ki|BeR, kel
is clearly a subsystem af and it is the affine root system associate@®goFora € A° set:

[@+ns neN} ifaec (A%
o= ,
= {a+ms|meZT} if —ae(AYT;

we calla the §-string of .. When considering an affine rogg + ks, Bo € A°, we write
k e N'to meark e Nif 8y > 0andk € Z" if By < O.
Moreover we say that a rogtis paralleltow (8 || «) if B +a €Z5 or B — a € Z6.

Definition 4 We say thal. € A" is dependent if there exist pairwise non-parallel roots
a, B, y € L andk € Z" such thax + 8 = ky; we say thaL is independent if it is not
dependent.
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Our main theorems are the following.
Theorem 1 AssumeA 2 A;. Thenw € W; if and only if N(w) is independent.

Remark If A = A, thenw ¢ W; if and only if £(w) > 3. This is equivalent to the
condition of dependence in Definition 4 without any requirement about parallelism.

Theorem?2 Letw € W. Thenw € Ws.ifand only if N(w) does not contain any irreducible
parabolic p-subsystem of rarik

Preliminaries
We introduce now the main tools for the proof of the main theorems.

Definition5 LetL € AT and< be atotalorderoh.We say that is associatedte € W
if L = N(w). We say thaiL, <) is associated to the reduced expressipn--s,, = w
(w e W) if

L= {ail < S:"1(0“2) <. - <§- 'qu(aim)}
(in particularL = N(w)).

The following Proposition 1 is the easy part of a well known theorem of Dyer [2]; it holds
for any Coxeter system. We prove it here for completeness.

Proposition 1 Assume thatL, <) is associated to some reduced expression of some
element of W. Then, for eagh 8 € A*, g,r € R*, the following conditions hold:

) ifa, BeL,a<B,andqp+rB e A,thenge+rg e Landa < qu +rB8 < B.

(I ifge+rBelLandp ¢L,thena € L anda < qu +rp.

In particular, if L is associated to some element of W, thenefg € AT, g,r € RT we
have:

(") ifa, BeL,qu+rBe A thengr+rB € L.

(") ifge+rB e Landp ¢ L, thena € L.

Proof. Assume thall, <) = {f1 < --- < B} With 1 = ;. Bj = S, ---S,_, (i),
l<j<nw=s, -5, reduced expression. Firstassume € L,q,r € R",qa+rp ¢

A. Then by definitionv (), w1(8) < 0; thusw=(qo +rpB) = qw 1 (a) +rw1(B) <
0,i.e.,qu+rp € L. Assumex = Bj andp = fx, with | <kandputv =s, ---5, ,. Then
(L', <) == {v71(Bj) < --- < v (B} is associated to the reduced expression - s,

and hasv~1(«) andv=1(B) as its first and last element, respectively. By the first part of
our proof we have—*(qa +rB) e L', and clearlyw(«) <’ v"1(qo +rB) < v1(B). It
follows directly thatw < qo +r8 < B.

Nextassumga+rB € L;qu+rB = Bn,m < n.Then{B; < --- < B} is associated to

the reduced expression= s, - - - 5, and hagja +r 8 as its last element. Assume towards a
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contradiction that neither € N(u) nor 8 € N(u). Then, by definitionu—(«a), u=%(8) >
0; thusu=%(ga +rB) = qu~(a) + ru=*(B) > 0, against the assumption, so that we have
necessarilyr € N(u) or 8 € N(u). Moreover, clearly, itx or 8 belongs toN (u), then it
precedesjo +r8 = Bm. This implies the assertion fdr. O

Remark Fork e N we havea + k§ = o + &5 (e + (k+ 1§); if « € A* and
a + k§ € L for somek € N, then sincel is finite, by condition (Il) of Proposition 1 we
obtain thatx € L. Moreover, by condition ()¢ + hé € L if 0 < h <k, h € N. Similarly,
since foreackk o +k§ = (k+ Do + k(—a +8),if ¢ € L,then—a +§ ¢ L. Infact if
anL#@ then—anlL =4

The conditions of Proposition 1 are also sufficient fbr, <) to be associated to some
reduced expression of somee W [2]. Indeed, for the root system of an (affine) Weyl
group they can be weakened [7], as we shall see below. We denate(lssp.At) the
generalized root system (resp. positive root system) [8] associated to the CartanAnatrix
of A,

A=AuxZSs, AT =ATULZTS.

Theorem A[7] Let L € AT be finite and< be a total order on L(L, <) is associated
to some reduced expression of some element of W if and only if, fowegch AT, the
following conditions hold:

(1) ifa,Bel,a <p,anda+ B € A, thena + 8 € L anda < o + 8 < B.

(2) fa+BelLandB €L, thena € L anda < o + 8.

L is associated to some element of W if and only if for eagh e At
Q) ifa,Bel,a+Be A thene +8€lL
2) fa+pBelLandB ¢L,thena € L.

Corollary 1 Let L € A™ be finite. Then the following are equivalent:
i) L isassociated to some element of W;

i) L satisfies conditiond”) and(ll") of Propositionl;

iii) L satisfies conditiongl’) and(2') of Theorem A.

Corollary 2 Let L € AT be finite and< be a total order on L. Then the following are
equivalent:
i) (L, <) is associated to some reduced expression of some element of W
i) (L, <) satisfies conditionfl) and(ll) of Proposition;
iii) (L, <) satisfies condition§l) and(2) of Theorem A.

Definition 6 LetL € AT and< be atotal order oh.. L is called compatible if it satisfies
one of the three equivalent conditions of Corollary(lL, <) is called compatible, if it
satisfies one of the three equivalent conditions of Corollary 2 (in partitlilacompatible).
In such a case we also say thats a compatible order.
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Note thatN(w) determinesw € W, thus Theorem A establishes a bijection between
W and the compatible finite subsets af"; moreover it gives a bijection between the
compatible orders ohl (w) and the reduced expressionsuaffor any fixedw € W.

Proofs of the main theorems

If < is a compatible order olN(w), then, by condition (I) of Proposition 1, or (1) of
Theorem A, we get that m{ilN (w), <) is a simple root. Indeed any simple roothN(w)

can be taken as the least root for some compatible ordér(@n; in the following lemma

we state this and other basic properties of compatible sets and orders in a convenient form
for our next developments.

Lemmal LetL be afinite compatible set,e L be a simple root, andl= s, (L \ {«}).
Then:
i) L’is compatible.

ii) If <’ is acompatible order on1.then the total order defined on L by:
a=min(L, <)andg < g'ifand only if ,(8) <’ s,(y) for B,y € L\ {a} (%)
is compatible. In particular there exists a compatible orderon L such thaix =
min(L, <).

iii) Conversely, if< is a compatible order on L such that= min(L, <), then the total
order <’ defined on Lby (%) is compatible. In particular if8 is the successor of in
(L, <), then g(B) is a simple root.

Proof:

i) By assumption there exists € W such that. = N(w). Setw’ = s,w; thenf(w’) =
L(w) — 1, henceN(w) = N(s,) U s, N(w’) = {a} U s, N(w") and thereforeN(w’) =
sy (N(w)\a) = L. It follows thatL’ is compatible.

i) If (L, <) is associated to the reduced expressipn - s, , then(L, <) is associated
to the reduced expressiags, - - - S, , therefore it is compatible.

iii) (L, <) is associated to the some reduced expression startingawitays,s, - - - Si;

then(L’, <’) is associated to the reduced expressipn - 5, , therefore itis compatible.
O

Lemma 2 Suppose that Kv) is endowed with a compatible order. If R™ is a finite
p-subsystem, then M R* N N(w) is compatible as a subset of R R U —R™, and the
restriction of< to M is compatible.

Proof: Supposexr, € M,a+ 8 € Rt = ATNR = At N R C A*; then the
compatibility of N (w) impliese + 8 € N(w) and inturne + 8 € M. Ifnowa + 8 € M,
then as above the compatibility df(w) and the relatiorRt = A* N Rimply « € M or
B € M as desired. The claim regarding the order is proved in the same way. O

Lemma 3 Leté& be a positive root in an affine root systefy) thené, & + § can be
consecutive in a compatible order on some compatible subst af and only if A is of
typeA;.
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Proof: Assume that, & 4§ are consecutive in a compatible order. By Lemma 1 iii) there
existsw € W such tbat botlw = w(¢) ands,w(& + 8) = —a + § are simple roots; this
clearly impliesA = A;. The converse is also clear. O

Theorem 1. AssumeA 2 A;. Thenw € W if and only if N(w) is independent.

Proof: SetN = N(w). Assumew ¢ Ws; we have to prove thal is dependent. By
hypothesisw can be written in reduced form as= uss;sv wheres;,s; € S, u,v e W.
Then in the ordering induced by such a reduced expressiof), u(s («;)), u(ss;j(«i))
are consecutive. Bui(c;) + u(s sj(ei)) = —a&;u(s («j)) and moreover, sinc& # Ay, i
anda; are not parallel; thereforld is dependent.

Conversely, assume thitis dependent. EndoW with an arbitrary compatible order
and consider the set

l.={, 7. e N3 |a<y <B, alfB, IkeZ" a+ B =ky).
For a triple(w, y, B) € |- set
p<(e,y,p)=1{xe N |a <x < B}

Take any triple(e, y, 8) such thato_(«, y, 8) is minimal. By repeated applications of
Lemma 1 we may assume = min N, so thatx is simple. Sincex, 8, hencey, are not
mutually parallel, they are contained in a uniquely determined finite parabolic subsystem
R of rank 2. Letg’ be the only root inA™ which completes to a root basis foR™, so
that Rt = N(a, 8). By Lemma 2,(R™ N N, <) is compatible inR. Since it hasy as its
first element, itis associated to some expression ofsygges, ..., sothat Rt NN, <) =

{o < 5(B) < %S¢ (@) < ---}. Therefore, by the minimality 0. we havey = s,(8")
andp = s,Sg (@). If y is the successor ef in N, then by Lemma &, (y) = g’ is simple

in A. Also sg's,(B) = « is simple, hence, again by Lemma 1, there exists a compatible
order onN starting withe < y < B, which corresponds to a reduced expressiom of
starting with the braid, sg'S,. Assume that there exists € N, such thatx < x < y.
We defineyy = y and, fori > 1, % = max.{n € N | n < y_1, (n,yi-1) # O} if

{n e N|n<vy-1, (n,yi—1) # 0} is non empty. Let;, be the last element we can define
in such a way. Iy, # «, then we can replace with a suitable compatible order in which
vn precedes; therefore without loss of generality we may assume that «. Moreover,

if n = 1, then for eachx € N such thate < x < y we havex L y; thus we can
bring y adjacent tax and we are done. Assume by contradictior- 2. We claim that
YivizaVi =0, ..., n—1. Otherwise, sincél is compatibley; — yi 11 = 8. Moreover, by
the definition ofy; , 1, there exists a compatible order in whigh, 11 appear in consecutive
positions: this contradicts Lemma 3. Now remark that, since ;1 is a not a root by the
minimality of p_, the definition of the,’s forcesy; — y;,1 to be a root. Such a root must
be positive, otherwise we get,1 — 1 € N andyi.1 — 31 < vis1 < ¥, against the the
minimality of p_. Then we defind; = maxh € Z* | hy, — 141 € AT}. Since we are
assumingn > 2, we havew (ki — yi11) > 0: this follows from the minimality ofo_

(if 141 = @ theny; # y and by our previous remarksy, — 311 # B8). Adding up such
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relations we get tha—1(k,_1 - - - koy — «) is a sum of positive roots with non-negative
coefficients. This is a contradictionkf,_, - - - ko > k, sincewt(ky —a) = w™(8) <0
andw%(y) < 0; in particular we get a contradictionkf= 1. So we assumk > 1. We
remark that ifA 2 G,, G, any finite rank 2 indecomposable subsystenads of type
Ay or By. If A = G,, Gy, any finite rank 2 subsystem of is of type A, or G,. Therefore,
if k > 1thenk = 2 if «, y, B are included in a subsystem of tyBg, andk = 3 if «, y, 8
are included in a subsystem of ty@e. It follows that for eachk; > 1, we havek; = k.
Moreover, ifn, n” are non parallel and non orthogonal rootainthen(n, n’) = +1if n and
n" have the same length giis short;(n, n') = £kif nislong andy is short. Thus ik > 1,
we get in particular thak is long andy is short. Now we remark that, yi.1) > 0. If

ki =1foreachO<i < n-—1,theny, ..., y, all have the same length: this is impossible
sinceyp, = y is short andy,, = « is long. Thus for somé we havek; = k and thus
Kn-1---ko > K. O

Lemma 4 AssumeA Z Go, G, and a,B € AT If (o, B) < 0then eithera || B or
N(a, B) is a p-subsystem. In the latter cdSé&x, 8) U — N(«, B) is anirreducible parabolic
subsystem havinfg, 8} as a basis.

Proof: Assume thai, 8 are not parallel and s&® = (Qu +QpB) N A. ThenRis clearly a
finite parabolic rank 2 subsystem af SinceA % G,, G, the type ofR is one of Ay x A,
Az, B,. Indeed it cannot bé; x Ay, sinceR containsy and 8 which are not orthogonal,
hence it isA; or B,. But if R’ is a root system of typé\, or By, then any two roots with
negative scalar product are a basiffthus{a, 8} is a basis folR andR™ = N(«, B).

O

Lemma 5 Assume that the simple roots, «; belong to Nw). Then some reduced
expression ofv starts with the long braid ofisand 5.

Proof: SetXjj; = {w € W | w () > 0 andw *(aj) > O} andW;; = (s, sj). By
[1, IV, ex. 1.3] there exist uniqgua € W; andv € X;; such thatw = uv; moreover
L(w) = £(u) + £(v) so thatN(w) = N(u) U uN(v). By definitione;, «; ¢ N(v) hence
o & N(v) for eacha € R(wi, o). Now Wi; permutesR(«;, ;) and therefore it permutes
A\R(wi, ). Sinces, permutesA™*\{«y} for k = i, j, it follows thatW; permutes the
positive roots out ofR(x;, ;). Therefore we have;, «; ¢ uN(v). On the other hand
ai,aj € N(w), thuse;, j € N(u). Thereforeu is the longest element i; and its
reduced expressions are the long braids aids;. m

Given any finite parabolic subsystdRin A, there always exists a compatible pdir, <)
with L finite, in which the roots of the p-subsysteRit are consecutive. In fact, there exist a
standard parabolic p-subsyst&handw € W such thawR'* = R*. Letu be the longest
element oW(R) and considewu. ThenN (wu) = N(w)+wN(u) = N(w)+w(R™) =
N(w) + R*; sincew=*(R*) = R, we have indeedll (wu) = N(w) U R*. Therefore the
join of a reduced expression efand a reduced expressionofs a reduced expression of
wu; in the order induced ol (wu) by any such reduced expressiBi appears as a final
section.
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Onthe other hand if we fix a compatible $eincluding a parabolic p-subsystert, then
it may happen that there is no compatible ordet af which R* is a section. For instance in
type Dy, considen = $8%9%49%51S. Thenay, a1+ 2w +az+ag, 01 +az+az+ay €
N(w) and they form a parabolic p-subsystem of tyfye but they can be consecutive in
no compatible order oN (w). Nonetheless for the cagg, we have the following “strong”
result:

Proposition 2 Suppose W= S, the symmetric group on # 1 letters (so thatA is
a root system of type & considerw € W. Then, for any triple of rootgr, @ + 8, 8} in
N (w), there exists a compatible order in(M) in which these elements are consecutive.

Proof: We proceed by induction of(w). Consider a triplda, o« + 8, 8} € N(w). If
there exists a simple rogt € N(w) different froma and 8 then we consider the triple
{s,(«),s, (@ + B),s,(B)} € N(s,w). Sincel(s,w) < £(w), by induction there exists a
compatible order ol (s, w) inwhichs, («), s, (¢+8), s, (8) are consecutive; by Lemma 1
this order comes from a compatible orderNiw) in whicha, « + 8, 8 are consecutive.
We have two more cases to consider: either lhoind 8 are simple roots or one of the
two—saya—is the only simple root ifN (w). In the first case we are done by Lemma 5;
in the other case we get a contradiction, since by compatitilishould contairw in its
support but this would imply + 8 ¢ A. O

Theorem 2. Letw € W. Thenw € W if and only if N(w) does not contain any
irreducible parabolic p-subsystem of ragk

Proof: We show thatw ¢ Ws. if and only if N(w) contains an irreducible p-subsystem

ofrank 2; ifw ¢ Wi, thenforsome, j e {1,...,I},w =ussj...v,u,v e W, L(w) =
Lu) +md, j) + £(v). T(i _
3
Then

N(w) = N L u(N(ssj...))uuss;...(N©)).

But N(ssj...) = N(ai, aj) is clearly an irreducible p-subsystem of rank 2, hence
(N(ei, orj)) = N(u(ej), u(ej)) is too.

Next assume that the set of irreducible rank 2 p-subsystems contaiig@vinis non-
empty; this implies in particulan 2 A;. SetN = N(w). Fix any compatible ordet on
N. For any parabolic p-subsysteRt € N setR = Rt U —R" and

d.(R) = |[{x e N |minR" < x < maxR*}|,

where the maximum and minimum are taken with respect to the restrictientofR™.
Choose a finite parabolic irreducible p-subsystem of ranR2C N such thatd_ (R) is
minimal. Then setr = minR", B = maxR", andy = min(R™\{«}), the successor of
a in RT. Consider the sefx € N | < x < y}: if it is empty, then by Lemma 1ii),
B = s, (y) is simple and we conclude using Lemma 5. We shall prove thatdfN and
a < X < y, thenx is orthogonal tax. From this, by Lemma 1iii), it follows that we can
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bring « adjacent toy, still obtaining a compatible order oN, and we can conclude by
Lemma 5. Itis enough to prove it forthe successor @f in N since ifx L «, then we can
exchanger andx in (N, <), still obtaining a compatible ordet’ on N in whichd./(R) is
minimal. As in the proof of theorem 1 we may assume shat min N and thatx is simple.
Moreover we may assunfe= maxN. So letx = min(N\{a}), X # y.

Remark that a subsystem of type is parabolic unless it is contained in a (sub)system
of type G,; moreover, ifA contains a subsystem of tyf&,, then A is of type G, or
G,. A subsystem of typd, or G, is always parabolic. These remarks lead us to consider
separately th&,, G, cases.

Firstcase: A % G,, G,

We first prove that ifA is an affine system, then for eaghe R, & is the least root (w.r.t.
<) in its 8-string. Sincex is simple, we haver € A° ora = —6 + 8, 6 being the highest
rootin A°. Assumes = Bo+ks with gg € A®andk e N'. SinceN is compatible, iy > 0
thengy € N and if 8y < 0 thengy + 8 € N. We havela, 8) = (o, Bo + KS) = («, Bo) and
(B, a) = (Bo+ K3, &) = (Bo, ) for eachk € Z; therefore, since % G,, {«, Bo+ ké}is a
basis for a parabolic irreducible subsystem of rank 2 ifiand only if {«, 8o} is. Thus, by
the minimality ofd. (R), if 8o > 0 theng = Bq, and if By < 0 thenB = By + §. Since by
assumptiom + g isaroot, if8 = Bo+38 with By < 0, thenx is afinite simple root (recall that
0+n¢ A Vne (AY);similarly, if « = —6 + § theng is finite positive. In both cases if
£ € RY, £ # a, Bthent = £+ with —&, € (A% ™. If « andp are positive finite, then the
same holds foran§ € R*. Inany case, eache R* has the required minimality condition.

From the above result we get thatloes not belong to the samestring of any root in
R* other tharw. Indeed, by compatibilityx is not parallel to any root ifR* other thany;
moreover, by Lemma 3 is not parallel tax.

HenceforthA may be finite or not. We distinguish several cases.

. R=2 A, ThenR" ={a,y,8},y =a+ 8.
First suppose that x hasthe samelengthasa, B, y. Remark thatx, «) > 0: other-
wisex+a € Aandae < a+X < xagainstthe choice of Thus(x, ) = (a, X) = 1.
If (x,y) =0, then(x, 8) = —1 and we get a contradiction by Lemma 4. Similarly
(X, y) # —1, therefore(x, y) = (y, x) = 1. It follows thatx — « andy — x are
roots. The compatibility of the order forces both- « andy — x to be positive. Now
{a, X, X — a} and{x, y, y — X} are paraboligp-subsystems oA\ of type A, thus,
by the minimality ofd_. (R™), X —a,y —x &€ N.Butg = (X —a) + (y — X) € N,
against the compatibility oN.
Next assumethat o, B, y arelongand x isshort. Then({«, X), (X, «)) = (2, 1). As
abovex [t y,thus({y, X), (X, ¥)) = (2, 1). Thena, X, 2X—a, X —« are roots and the
compatibility of < forces them to be positive; thus they form a parabolic p-subsystem
of A of type B,. Similarly, X, v, y — X, y — 2x form a parabolic p-subsystem of.
By our choice of minimality we have — «, y — 2x & N.
Butg = (y —X) + (X — @) = (2x — «) + (y — 2x), therefore by compatibility,
y —X,2Xx —a € N. Now (y — 2X, a) = —1, thusy — 2x + « is a (positive) root.
We havey = (y — 2X + a) + (2X — «); it is easily seen that, y — 2x + «, and
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2x — « are all long, thus they form a parabolic p-subsystem aff type A,. Since
y, 2X —a € N, by minimality we gety — 2x + o ¢ N. But then the decomposition
y — X =(y — 22X+ a) + (X — «) contradicts the compatibility ofl.
Finally assumethat o, B, y areshort andx islong. Then we havé(a, X), (X, a))=
{y,x), {(X,¥) = (1,2). As above we get thafa, x,x — o, X — 2a} and
{X,y,2y — X,y — x} are parabolic p-subsystems &fof type B,. By minimality,
X —2a, y —x ¢ N and by compatibilityx —«, 2y —x € N. Now (y — X, o) = —1,
thusy — X + « is a (positive) root. Now — X + «, X — «, andy are all short and
(y =X4+a)+(X—a) = y, thusy —x+a, X —«, andy form a parabolic p-subsystem
of A of type Ay; sincey, x —a € N, by minimalityy — x + « ¢ N. But then we
get a contradiction8 = (X —2a) + (y — X+ «) € Nandx — 2o, y — X+ o & N.
Il.La) R= By anda is long. ThenR' = {a,a + B, a + 2B, B}. Sety = a + B and
y' =a+28.
Assumethat x islong. Then(x, «) = («, X) = 1; as abovéXx, y) # 0, otherwise
(X, B) < 0. Since als@x, y) # 0, we get thug(x, y), (y, X)) = (2, 1). It follows
that{«, X, X —a} is a parabolic p-subsystem afof type A, and{x, y, 2y — X, y — X}
is a parabolic p-subsystem of ty@B. By minimality, x — o, y — X € N, whereas
(X —a) + (y —X) = B € N: acontradiction.
Next assumethatx isshort. Then((X, ), (&, X)) = (1, 2) and(x, y) = (y, X) = 1;
{o, X, 2X — «, X — «} is a parabolicp-subsystem of typ®, and{x, y, y — x} is a
parabolic p-subsystem of tyge. As above we get a contradiction since by minimality
X—a,y —X¢&N.
II.b) R= By andwx is short. TherR" = {«, 20 + B, a + B, B}. Sety = 2« + B and
y =a+p.
Assumethat x isshort. Arguing as above we géx, o) = (@, X) = Land(x, y’) =
(y’, x) = 1. Thus{e, X, X — o} and{x, y’, y’ — X} are parabolic p-subsystems A&f
of type A,. By minimality y’ — X, x — a ¢ N and as above we get a contradiction.
Finally assume that x islong. Then((X, «), {a, X)) = ((X, '), {¥/, X)) = (2, 1);
it follows (x, B) = 0 and thugx, y) = (y, x) = 1. Then{a, X, X — a, X — 2a} is
a parabolic p-subsystem of tyf and{x, y, y — X} is a parabolic p-subsystem of
type Az. Since = (x — 2x) + (y — X), we get a contradiction arguing as in the
previous cases. This concludes the proof for all typea other thanG,, G,.

Second case: A = G,, G,

The caseA = G, is trivial, since there are no irreducible proper parabolic p-subsystems of
rank 2. So we assume = G,.

Firstassumethat R= G,. We can argue as inthe general case and get that each element
in N*(, B) is minimal in its§-string, with respect te:. Clearlyx must be parallel to some
root inN™ (a, B); but it is not parallel tar, being consecutive t@, and it cannot be parallel
to any other root irR™, since each element in such a set is minimal id-issring. Therefore
we must havel_ (R) = 0.

Next assume R = A,. First we prove the following criterion.

Suppose a=ag + hs, b = by + k8, with ag, bpe A% h,keZ. {a, b} is a basis for a
parabolic subsystem of type A, if and only if ag and by are long, (ap, bo) < 0, and
31 (2h + k), (h + 2k).
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Assume thag, b e A are a basis for a parabolic subsysteé®& A,. ThenR= (Za +
Zb)yN A = (Qa+Qb) N A. Clearly we havéay, bg) = (bg, ag) = —1; moreover, from the
Dynkin diagram, we see that b, henceay, by mustbe long. Thenwe ha%e2a0+bo) e AD,
therefore, if 3 (2h + k), aIso%(Za + b) € A: this would imply (Za+ Zb) N A # (Qa +
Q@b)NA againstthe assumption. Thereforg3n + k) and similarly 3 (h+2k). Conversely,
assume thad, b are long roots such th&a, b) = (b, a) = —1. If N(a, b) is not parabolic,
a, b are included in a parabolic subsystem of typg Then%(Za + b), %(a + 2b) e A;
therefore 3 (2h + k), (h + 2k).

Now we go on by a direct inspection.

l. « = ;. By the above criterion, together with our choice of minimality, we get either
B = (a1 + 3a2) + 8, or B = —6 + §; we distinguish the two cases.
a) B = (a1 + 3a2) + 6. By compatibility, @y + 3oz € N; moreover, sincegs =
(a1 + &) + 3y, at least one o, a1 + § belongs toN. In the first case we get a
contradiction sincexy, a, clearly generate a parabolic p-subsystem; in the latter case
we get a contradiction sincg; + 3wy, a1 + § generate a parabolic p-subsystem of
type A.
b)B = —6+68. Theny = —a;—3wy+48. Inthis cases, y are minimalin theis-string,
thusx cannot be parallel to any @f, 8, y and therefore it cannot be long. Moreover
(a1, X) > 0 andx must be minimal in it$ string, therefore we have either= o1 + a2
orx = —ap + 4. In the first case we get a contradiction sifieegs} is a basis for a para-
bolic subsystem of typ&,; the second case is not possible, sirce 8 + 2(a1 + «2)
and neitheiB, noray + a, precedex in N.

Il. « =—6+38. Thenpg = ay or B = a1 + 3wz. In both subcaseg, y are minimal in
their §-string and therefore is short; sinceXx, «) > 0, we getx = —a3 — a + 8 Or
X = —o1 — 2000 + 6.
a)B =a1. Theny = —a; — 302 + 8. If X = —a1 — a2 + § We get a contradiction
since{x, B} is a basis for &, subsystem. The cage= —«; — 202 + § is not possible
sincex = y + a» and neithery, nora, precedex in N.
b) B = a1+ 3wp. Theny = —a; + 8. We getx # —ay — 200 + 8, Otherwisex,
would be a basis for &, subsystem. Finally the cage= —a; — a2 + § is not possible
since X = (—0 + 26) + a, and neither-6 + 25, nora, precedex in N. O
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