A Root System Criterion for Fully Commutative and Short Braid-Avoiding Elements in Affine Weyl Groups

PAOLA CELLINI cellini@math.unipd.it Dipartimento di Matematica Pura e Applicata, Università di Padova, Via Belzoni 7, 35131 Padova, Italy

PAOLO PAPI papi@mat.uniroma1.it Dipartimento di Matematica Istituto G. Castelnuovo, Università di Roma "La Sapienza," Piazzale Aldo Moro 5, 00185 Rome, Italy

Received December 30, 1997; Revised July 31, 1998

Abstract. We provide simple characterizations of short-braid avoiding and fully commutative elements in an affine Weyl group W, generalizing results of Fan and Stembridge for finite Weyl groups. Our results rely on the combinatorics of the *compatible* subsets of the root system of W.

Keywords: affine Weyl group, short-braid avoiding element, fully commutative element

Introduction and basic definitions

In his paper [4] Fan introduces after Zelevinski the following notion for elements of a Coxeter system (W, S).

Definition 1 An element $w \in W$ is short-braid avoiding if no reduced expression of w contains a substring of the form *sts*, *s*, *t* \in *S*.

The notion of short-braid avoiding element is strictly related to the following definitions, due to Fan [3] and Stembridge [8].

Consider $s, t \in S$ and denote by m(s, t) the order of $st \in W$; we call the string $\underbrace{st \dots}_{m(s,t)}$ the long braid of s and t.

Definition 2 For $w \in W$ we say that w is commutative if no reduced expression of w contains a substring of the form *sts*, *s*, *t* being non-commuting generators in *S* such that the simple root corresponding to *t* is at least as long as the simple root corresponding to *s*.

Definition 3 For $w \in W$ we say that w is fully commutative if no reduced expression of w contains the long braid of some pair of non-commuting generators.

Remark Denote by W_s , W_c , W_{fc} the sets of short-braid avoiding, commutative and fully commutative elements in W respectively.

It turns out that $W_s = W_c = W_{fc}$ for simply-laced Coxeter groups. The relation $W_s = W_{fc}$ holds since the only defining relations which are not commutation relations are those of type sts = tst, $s, t \in S$. The equality $W_c = W_{fc}$ is obvious. Moreover Fan and Stembridge [3], [5] provide the following remarkable root-theoretic characterization of these elements. Let Δ be the canonical root system of (W, S) and set

$$N(w) = \{ \alpha \in \Delta^+ \mid w^{-1}(\alpha) \in -\Delta^+ \}.$$

Then *w* is commutative if and only if α , $\beta \in N(w) \Rightarrow \alpha + \beta \notin N(w)$. In the general case, the three definitions introduced differ (although the inclusion relation $W_s \subseteq W_c \subseteq W_{fc}$ holds). Let us work out explicitly the example of a Weyl group *W* of type G_2 . If s_2 denotes the simple reflection corresponding to the short simple root, then we have

$$W_s = \{1, s_1, s_2, s_1s_2, s_2s_1\}$$
$$W_c = \{1, s_1, s_2, s_1s_2, s_2s_1, s_1s_2s_1\}$$
$$W_{fc} = W \setminus \{s_1s_2s_1s_2s_1s_2(=s_2s_1s_2s_1s_2s_1)\}$$

In [3], [4], [8] the types of W for which W_s , W_c , W_{fc} are finite are determined; in each of these cases, their cardinalities are also determined. Moreover, when W is a finite Weyl group, Fan provides the following remarkable criterion for $w \in W$ to be short-braid avoiding: $w \in W$ is short-braid avoiding if and only if any reduced expression of w remains reduced when a simple reflection is deleted in any possible way.

This result has interesting applications since it gives a simple smoothness criterion for Schubert varieties attached to braid-avoiding elements. On the other hand, as noticed in [4, 5], the criterion does not hold for affine Weyl groups (a counterexample in type \tilde{A}_2 is $s_1s_2s_3s_1s_2$).

In this paper we provide a combinatorial characterization of the elements in W_s , W_{fc} for *affine* Weyl groups W in terms of the subsets N(w) which encode the elements of W.

Before stating our results we fix the notation and we give some preliminary definitions. Let *W* be an irreducible Weyl group (possibly affine) and let Δ be the associated root system (lying in a real vector space *V*). Fix a positive system Δ^+ in Δ and let $\Pi = \{\alpha_1, \ldots, \alpha_l\}$ be a corresponding basis of simple roots; then we have $\Delta = W\Pi$ and $\Delta = \Delta^+ \sqcup -\Delta^+$ (\sqcup denotes the disjoint union). We list some standard notation relative to these data.

$A = (a_{ij})_{i, j=1}^{l}$	(generalized) Cartan matrix corresponding to Δ ,
Si	fundamental reflection relative to $\alpha_i \in \Pi$,
$S = \{s_1, \ldots, s_l\}$	set of Coxeter generators for W,
l	length function w.r.t. S,
S_{α}	reflection relative to $\alpha \in \Delta^+$,
(,)	standard W-invariant bilinear form on V,
	positive definite if Δ is finite,
	positive semidefinite with kernel $\mathbb{R}\delta$ if Δ is affine,
$\langle \alpha, \beta \rangle = rac{2(\alpha, \beta)}{(\beta, \beta)}$	$(\alpha, \beta \in \Delta),$

Supp (α) support of α : if $\alpha = \sum_{i=1}^{n} a_i \alpha_i$, then $Supp(\alpha) = \{\alpha_i \mid a_i \neq 0\}$. $\mathbb{N}(\alpha, \beta) = (\mathbb{N}\alpha + \mathbb{N}\beta) \cap \Delta$ $(\alpha, \beta \in \Delta^+)$.

For a root $\alpha \in \Delta$ as usual $\alpha > 0$ means $\alpha \in \Delta^+$. We recall that for each $v, w \in W$ we have $\ell(v) = |N(v)|$ and N(vw) = N(v) + vN(w), where + denotes the symmetric difference; moreover $N(vw) = N(v) \sqcup vN(w)$ if and only if $\ell(vw) = \ell(v) + \ell(w)$.

For any $R \subseteq \Delta$ set $W(R) = \langle s_{\beta} | \beta \in R \rangle$. We say that R is a subsystem of Δ if it is W(R)-invariant. Note that $R^+ := R \cap \Delta^+$ is a set of positive roots for R. We say that $\Re \subseteq \Delta^+$ is a *p*-subsystem if $\Re = R \cap \Delta^+$ for some subsystem R. Equivalently, \Re is a *p*-subsystem if $\Re \subseteq \Delta^+$ and $\Re \cup -\Re$ is a subsystem.

If $R \subseteq \Delta$ is a subsystem, we denote the cardinality of a root basis for R by rk(R), and we call it the rank of R.

Moreover we say that R is parabolic if

$$\Delta \cap Span_{\mathbb{Q}}(R) = R.$$

As usual we say that a subsystem R of Δ is *standard parabolic* if $\Pi \cap R$ is a basis for R. Clearly a standard parabolic subsystem is parabolic. Moreover it is easily seen that a subsystem R is parabolic if and only if $R^+ = vR'^+$ for some standard parabolic subsystem R' and $v \in W$ (see [1, VI, 1.7, Prop. 24]).

If Δ is an irreducible affine root system and Δ^0 the associated finite root system, then Δ^0 is irreducible (in particular it has a unique highest root); moreover (cf. [6])

$$\Delta^+ = ((\Delta^0)^+ + \mathbb{N}\delta) \cup (-(\Delta^0)^+ + \mathbb{Z}^+\delta)$$

We call the elements of Δ^0 (resp. $(\Delta^0)^+$) *finite* roots (resp. *finite* positive roots).

Let R_0 be any subsystem of Δ^0 . Then

$$R = \{\beta + k\delta \mid \beta \in R_0, \quad k \in \mathbb{Z}\}$$

is clearly a subsystem of Δ and it is the affine root system associated to R_0 . For $\alpha \in \Delta^0$ set:

$$\underline{\alpha} := \begin{cases} \{\alpha + n\delta \mid n \in \mathbb{N}\} & \text{if } \alpha \in (\Delta^0)^+, \\ \{\alpha + m\delta \mid m \in \mathbb{Z}^+\} & \text{if } -\alpha \in (\Delta^0)^+; \end{cases}$$

we call $\underline{\alpha}$ the δ -string of α . When considering an affine root $\beta_0 + k\delta$, $\beta_0 \in \Delta^0$, we write $k \in \mathbb{N}'$ to mean $k \in \mathbb{N}$ if $\beta_0 > 0$ and $k \in \mathbb{Z}^+$ if $\beta_0 < 0$.

Moreover we say that a root β is *parallel* to α ($\beta \parallel \alpha$) if $\beta + \alpha \in \mathbb{Z}\delta$ or $\beta - \alpha \in \mathbb{Z}\delta$.

Definition 4 We say that $L \subseteq \Delta^+$ is *dependent* if there exist pairwise non-parallel roots $\alpha, \beta, \gamma \in L$ and $k \in \mathbb{Z}^+$ such that $\alpha + \beta = k\gamma$; we say that *L* is independent if it is not dependent.

Our main theorems are the following.

Theorem 1 Assume $\Delta \ncong \tilde{A}_1$. Then $w \in W_s$ if and only if N(w) is independent.

Remark If $\Delta \cong \tilde{A}_1$, then $w \notin W_s$ if and only if $\ell(w) \ge 3$. This is equivalent to the condition of dependence in Definition 4 without any requirement about parallelism.

Theorem 2 Let $w \in W$. Then $w \in W_{fc}$ if and only if N(w) does not contain any irreducible parabolic *p*-subsystem of rank 2.

Preliminaries

We introduce now the main tools for the proof of the main theorems.

Definition 5 Let $L \subseteq \Delta^+$ and < be a total order on L. We say that L is associated to $w \in W$ if L = N(w). We say that (L, <) is associated to the reduced expression $s_{i_1} \cdots s_{i_m} = w$ $(w \in W)$ if

$$L = \{\alpha_{i_1} < s_{i_1}(\alpha_{i_2}) < \cdots < s_{i_1} \cdots s_{i_{m-1}}(\alpha_{i_m})\}$$

(in particular L = N(w)).

The following Proposition 1 is the easy part of a well known theorem of Dyer [2]; it holds for any Coxeter system. We prove it here for completeness.

Proposition 1 Assume that (L, <) is associated to some reduced expression of some element of W. Then, for each $\alpha, \beta \in \Delta^+$, $q, r \in \mathbb{R}^+$, the following conditions hold: (I) if $\alpha, \beta \in L, \alpha < \beta$, and $q\alpha + r\beta \in \Delta$, then $q\alpha + r\beta \in L$ and $\alpha < q\alpha + r\beta < \beta$. (II) if $q\alpha + r\beta \in L$ and $\beta \notin L$, then $\alpha \in L$ and $\alpha < q\alpha + r\beta$.

In particular, if *L* is associated to some element of *W*, then, for $\alpha, \beta \in \Delta^+$, $q, r \in \mathbb{R}^+$ we have:

(I') if α , $\beta \in L$, $q\alpha + r\beta \in \Delta$, then $q\alpha + r\beta \in L$. (II') if $q\alpha + r\beta \in L$ and $\beta \notin L$, then $\alpha \in L$.

Proof: Assume that $(L, <) = \{\beta_1 < \cdots < \beta_n\}$ with $\beta_1 = \alpha_{i_1}, \beta_j = s_{i_1} \cdots s_{i_{j-1}}(\alpha_{i_j}), 1 < j \leq n, w = s_{i_1} \cdots s_{i_n}$ reduced expression. First assume $\alpha, \beta \in L, q, r \in \mathbb{R}^+, q\alpha + r\beta \in \Delta$. Then by definition $w^{-1}(\alpha), w^{-1}(\beta) < 0$; thus $w^{-1}(q\alpha + r\beta) = qw^{-1}(\alpha) + rw^{-1}(\beta) < 0$, i.e., $q\alpha + r\beta \in L$. Assume $\alpha = \beta_j$ and $\beta = \beta_k$, with j < k and put $v = s_{i_1} \cdots s_{i_{j-1}}$. Then $(L', <') := \{v^{-1}(\beta_j) < \cdots < v^{-1}(\beta_k)\}$ is associated to the reduced expression $s_{i_j} \cdots s_{i_k}$ and has $v^{-1}(\alpha)$ and $v^{-1}(\beta)$ as its first and last element, respectively. By the first part of our proof we have $v^{-1}(q\alpha + r\beta) \in L'$, and clearly $v^{-1}(\alpha) <' v^{-1}(q\alpha + r\beta) <' v^{-1}(\beta)$. It follows directly that $\alpha < q\alpha + r\beta < \beta$.

Next assume $q\alpha + r\beta \in L$; $q\alpha + r\beta = \beta_m, m \le n$. Then $\{\beta_1 < \cdots < \beta_m\}$ is associated to the reduced expression $u = s_{i_1} \cdots s_{i_m}$ and has $q\alpha + r\beta$ as its last element. Assume towards a

contradiction that neither $\alpha \in N(u)$ nor $\beta \in N(u)$. Then, by definition, $u^{-1}(\alpha)$, $u^{-1}(\beta) > 0$; thus $u^{-1}(q\alpha + r\beta) = qu^{-1}(\alpha) + ru^{-1}(\beta) > 0$, against the assumption, so that we have necessarily $\alpha \in N(u)$ or $\beta \in N(u)$. Moreover, clearly, if α or β belongs to N(u), then it precedes $q\alpha + r\beta = \beta_m$. This implies the assertion for *L*.

Remark For $k \in \mathbb{N}$ we have $\alpha + k\delta = \frac{1}{k+1}\alpha + \frac{k}{k+1}(\alpha + (k+1)\delta)$; if $\alpha \in \Delta^+$ and $\alpha + k\delta \in L$ for some $k \in \mathbb{N}$, then since *L* is finite, by condition (II) of Proposition 1 we obtain that $\alpha \in L$. Moreover, by condition (I), $\alpha + h\delta \in L$ if $0 \le h \le k, h \in \mathbb{N}$. Similarly, since for each $k \quad \alpha + k\delta = (k+1)\alpha + k(-\alpha + \delta)$, if $\alpha \in L$, then $-\alpha + \delta \notin L$. In fact if $\underline{\alpha} \cap L \neq \emptyset$, then $\underline{-\alpha} \cap L = \emptyset$.

The conditions of Proposition 1 are also sufficient for (L, <) to be associated to some reduced expression of some $w \in W$ [2]. Indeed, for the root system of an (affine) Weyl group they can be weakened [7], as we shall see below. We denote by $\overline{\Delta}$ (resp. $\overline{\Delta}^+$) the generalized root system (resp. positive root system) [8] associated to the Cartan matrix Aof Δ ,

$$\bar{\Delta} = \Delta \sqcup \pm \mathbb{Z}^+ \delta, \quad \bar{\Delta}^+ = \Delta^+ \sqcup \mathbb{Z}^+ \delta.$$

Theorem A [7] Let $L \subseteq \Delta^+$ be finite and < be a total order on L. (L, <) is associated to some reduced expression of some element of W if and only if, for each $\alpha, \beta \in \overline{\Delta}^+$, the following conditions hold:

(1) if $\alpha, \beta \in L$, $\alpha < \beta$, and $\alpha + \beta \in \overline{\Delta}$, then $\alpha + \beta \in L$ and $\alpha < \alpha + \beta < \beta$. (2) If $\alpha + \beta \in L$ and $\beta \notin L$, then $\alpha \in L$ and $\alpha < \alpha + \beta$.

L is associated to some element of *W* if and only if for each $\alpha, \beta \in \overline{\Delta}^+$: (1') if $\alpha, \beta \in L, \alpha + \beta \in \overline{\Delta}$, then $\alpha + \beta \in L$ (2') if $\alpha + \beta \in L$ and $\beta \notin L$, then $\alpha \in L$.

Corollary 1 Let $L \subseteq \Delta^+$ be finite. Then the following are equivalent:

- i) *L* is associated to some element of *W*;
- ii) *L* satisfies conditions (I') and (II') of Proposition 1;
- iii) L satisfies conditions (1') and (2') of Theorem A.

Corollary 2 Let $L \subseteq \Delta^+$ be finite and < be a total order on L. Then the following are equivalent:

- i) (L, <) is associated to some reduced expression of some element of W;
- ii) (L, <) satisfies conditions (I) and (II) of Proposition 1;
- iii) (L, <) satisfies conditions (1) and (2) of Theorem A.

Definition 6 Let $L \subseteq \Delta^+$ and < be a total order on L. L is called compatible if it satisfies one of the three equivalent conditions of Corollary 1. (L, <) is called compatible, if it satisfies one of the three equivalent conditions of Corollary 2 (in particular L is compatible). In such a case we also say that < is a compatible order.

Note that N(w) determines $w \in W$, thus Theorem A establishes a bijection between W and the compatible finite subsets of Δ^+ ; moreover it gives a bijection between the compatible orders on N(w) and the reduced expressions of w, for any fixed $w \in W$.

Proofs of the main theorems

If < is a compatible order on N(w), then, by condition (I) of Proposition 1, or (1) of Theorem A, we get that $\min(N(w), <)$ is a simple root. Indeed any simple root in N(w) can be taken as the least root for some compatible order on N(w); in the following lemma we state this and other basic properties of compatible sets and orders in a convenient form for our next developments.

Lemma 1 Let *L* be a finite compatible set, $\alpha \in L$ be a simple root, and $L' = s_{\alpha}(L \setminus \{\alpha\})$. *Then:*

- i) L' is compatible.
- ii) If <' is a compatible order on L', then the total order defined on L by:

 $\alpha = \min(L, <)$ and $\beta < \beta'$ if and only if $s_{\alpha}(\beta) <' s_{\alpha}(\gamma)$ for $\beta, \gamma \in L \setminus \{\alpha\}$ (*) is compatible. In particular there exists a compatible order < on L such that $\alpha = \min(L, <)$.

iii) Conversely, if < is a compatible order on L such that $\alpha = \min(L, <)$, then the total order <' defined on L' by (*) is compatible. In particular if β is the successor of α in (L, <), then $s_{\alpha}(\beta)$ is a simple root.

Proof:

- i) By assumption there exists $w \in W$ such that L = N(w). Set $w' = s_{\alpha}w$; then $\ell(w') = \ell(w) 1$, hence $N(w) = N(s_{\alpha}) \sqcup s_{\alpha}N(w') = \{\alpha\} \sqcup s_{\alpha}N(w')$ and therefore $N(w') = s_{\alpha}(N(w) \setminus \alpha) = L'$. It follows that L' is compatible.
- ii) If (L', <') is associated to the reduced expression $s_{i_1} \cdots s_{i_k}$, then (L, <) is associated to the reduced expression $s_{\alpha}s_{i_1} \cdots s_{i_k}$, therefore it is compatible.
- iii) (L, <) is associated to the some reduced expression starting with s_{α} , say $s_{\alpha}s_{i_1}\cdots s_{i_k}$; then (L', <') is associated to the reduced expression $s_{i_1}\cdots s_{i_k}$, therefore it is compatible.

Lemma 2 Suppose that N(w) is endowed with a compatible order <. If R^+ is a finite *p*-subsystem, then $M = R^+ \cap N(w)$ is compatible as a subset of $R = R^+ \cup -R^+$, and the restriction of < to M is compatible.

Proof: Suppose $\alpha, \beta \in M, \alpha + \beta \in R^+ = \overline{\Delta}^+ \cap R = \Delta^+ \cap R \subseteq \Delta^+$; then the compatibility of N(w) implies $\alpha + \beta \in N(w)$ and in turn $\alpha + \beta \in M$. If now $\alpha + \beta \in M$, then as above the compatibility of N(w) and the relation $R^+ = \Delta^+ \cap R$ imply $\alpha \in M$ or $\beta \in M$ as desired. The claim regarding the order is proved in the same way. \Box

Lemma 3 Let ξ be a positive root in an affine root system Δ ; then ξ , $\xi + \delta$ can be consecutive in a compatible order on some compatible subset of Δ^+ if and only if Δ is of type \tilde{A}_1 .

10

Proof: Assume that ξ , $\xi + \delta$ are consecutive in a compatible order. By Lemma 1 iii) there exists $w \in W$ such that both $\alpha = w(\xi)$ and $s_{\alpha}w(\xi + \delta) = -\alpha + \delta$ are simple roots; this clearly implies $\Delta \cong \tilde{A}_1$. The converse is also clear.

Theorem 1. Assume $\Delta \ncong \tilde{A}_1$. Then $w \in W_s$ if and only if N(w) is independent.

Proof: Set N = N(w). Assume $w \notin W_s$; we have to prove that N is dependent. By hypothesis, w can be written in reduced form as $w = us_i s_j s_i v$ where $s_i, s_j \in S$, $u, v \in W$. Then in the ordering induced by such a reduced expression, $u(\alpha_i), u(s_i(\alpha_j)), u(s_i s_j(\alpha_i))$ are consecutive. But $u(\alpha_i) + u(s_i s_j(\alpha_i)) = -a_{ij}u(s_i(\alpha_j))$ and moreover, since $\Delta \not\cong \tilde{A}_1, \alpha_i$ and α_i are not parallel; therefore N is dependent.

Conversely, assume that N is dependent. Endow N with an arbitrary compatible order < and consider the set

$$I_{<} = \{ (\alpha, \gamma, \beta) \in (N)^{\times 3} \mid \alpha < \gamma < \beta, \ \alpha \not\parallel \beta, \ \exists k \in \mathbb{Z}^{+} \ \alpha + \beta = k\gamma \}.$$

For a triple $(\alpha, \gamma, \beta) \in I_{<}$ set

$$\rho_{<}(\alpha, \gamma, \beta) = |\{x \in N \mid \alpha < x < \beta\}|$$

Take any triple (α, γ, β) such that $\rho_{<}(\alpha, \gamma, \beta)$ is minimal. By repeated applications of Lemma 1 we may assume $\alpha = \min N$, so that α is simple. Since α , β , hence γ , are not mutually parallel, they are contained in a uniquely determined finite parabolic subsystem *R* of rank 2. Let β' be the only root in Δ^+ which completes α to a root basis for R^+ , so that $R^+ = \mathbb{N}(\alpha, \beta')$. By Lemma 2, $(R^+ \cap N, <)$ is compatible in R. Since it has α as its first element, it is associated to some expression of type $s_{\alpha}s_{\beta'}s_{\alpha}\ldots$, so that $(R^+ \cap N, <) =$ $\{\alpha < s_{\alpha}(\beta') < s_{\alpha}s_{\beta'}(\alpha) < \cdots\}$. Therefore, by the minimality of $\rho_{<}$ we have $\gamma = s_{\alpha}(\beta')$ and $\beta = s_{\alpha}s_{\beta'}(\alpha)$. If γ is the successor of α in N, then by Lemma 1 $s_{\alpha}(\gamma) = \beta'$ is simple in Δ . Also $s_{\beta'}s_{\alpha}(\beta) = \alpha$ is simple, hence, again by Lemma 1, there exists a compatible order on N starting with $\alpha < \gamma < \beta$, which corresponds to a reduced expression of w starting with the braid $s_{\alpha}s_{\beta'}s_{\alpha}$. Assume that there exists $x \in N$, such that $\alpha < x < \gamma$. We define $\gamma_0 = \gamma$ and, for $i \ge 1$, $\gamma_i = \max_{\langle \eta \in N \mid \eta < \gamma_{i-1}, (\eta, \gamma_{i-1}) \neq 0 \rangle$ if $\{\eta \in N \mid \eta < \gamma_{i-1}, (\eta, \gamma_{i-1}) \neq 0\}$ is non empty. Let γ_n be the last element we can define in such a way. If $\gamma_n \neq \alpha$, then we can replace < with a suitable compatible order in which γ_n precedes α ; therefore without loss of generality we may assume that $\gamma_n = \alpha$. Moreover, if n = 1, then for each $x \in N$ such that $\alpha < x < \gamma$ we have $x \perp \gamma$; thus we can bring γ adjacent to α and we are done. Assume by contradiction $n \geq 2$. We claim that $\gamma_i \not\parallel \gamma_{i+1} \forall i = 0, \dots, n-1$. Otherwise, since N is compatible, $\gamma_i - \gamma_{i+1} = \delta$. Moreover, by the definition of γ_{i+1} , there exists a compatible order in which γ_{i+1} , γ_i appear in consecutive positions: this contradicts Lemma 3. Now remark that, since $\gamma_i + \gamma_{i+1}$ is a not a root by the minimality of $\rho_{<}$, the definition of the γ_i 's forces $\gamma_i - \gamma_{i+1}$ to be a root. Such a root must be positive, otherwise we get $\gamma_{i+1} - \gamma_i \in N$ and $\gamma_{i+1} - \gamma_i < \gamma_{i+1} < \gamma_i$, against the the minimality of $\rho_{<}$. Then we define $k_i = \max\{h \in \mathbb{Z}^+ \mid h\gamma_i - \gamma_{i+1} \in \Delta^+\}$. Since we are assuming $n \ge 2$, we have $w^{-1}(k_i\gamma_i - \gamma_{i+1}) > 0$: this follows from the minimality of $\rho_{<}$ (if $\gamma_{i+1} = \alpha$ then $\gamma_i \neq \gamma$ and by our previous remarks $k_i \gamma_i - \gamma_{i+1} \neq \beta$). Adding up such

relations we get that $w^{-1}(k_{n-1}\cdots k_0\gamma - \alpha)$ is a sum of positive roots with non-negative coefficients. This is a contradiction if $k_{n-1}\cdots k_0 \ge k$, since $w^{-1}(k\gamma - \alpha) = w^{-1}(\beta) < 0$ and $w^{-1}(\gamma) < 0$; in particular we get a contradiction if k = 1. So we assume k > 1. We remark that if $\Delta \ncong G_2$, \tilde{G}_2 , any finite rank 2 indecomposable subsystem of Δ is of type A_2 or B_2 . If $\Delta \cong G_2$, \tilde{G}_2 , any finite rank 2 subsystem of Δ is of type A_2 or G_2 . Therefore, if k > 1 then k = 2 if α, γ, β are included in a subsystem of type B_2 , and k = 3 if α, γ, β are included in a subsystem of type B_2 , and k = 3 if α, γ, β are included in a subsystem of type G_2 . It follows that for each $k_i > 1$, we have $k_i = k$. Moreover, if η, η' are non parallel and non orthogonal roots in Δ , then $\langle \eta, \eta' \rangle = \pm 1$ if η and η' have the same length or η is short; $\langle \eta, \eta' \rangle = \pm k$ if η is long and η' is short. Thus if k > 1, we get in particular that α is long and γ is short. Now we remark that $(\gamma_i, \gamma_{i+1}) > 0$. If $k_i = 1$ for each $0 \le i \le n - 1$, then $\gamma_0, \ldots, \gamma_n$ all have the same length: this is impossible since $\gamma_0 = \gamma$ is short and $\gamma_n = \alpha$ is long. Thus for some i we have $k_i = k$ and thus $k_{n-1}\cdots k_0 \ge k$.

Lemma 4 Assume $\Delta \ncong G_2$, G_2 and $\alpha, \beta \in \Delta^+$. If $(\alpha, \beta) < 0$ then either $\alpha \parallel \beta$ or $\mathbb{N}(\alpha, \beta)$ is a p-subsystem. In the latter case $\mathbb{N}(\alpha, \beta) \cup -\mathbb{N}(\alpha, \beta)$ is an irreducible parabolic subsystem having $\{\alpha, \beta\}$ as a basis.

Proof: Assume that α , β are not parallel and set $R = (\mathbb{Q}\alpha + \mathbb{Q}\beta) \cap \Delta$. Then *R* is clearly a finite parabolic rank 2 subsystem of Δ . Since $\Delta \ncong G_2$, \tilde{G}_2 the type of *R* is one of $A_1 \times A_1$, A_2 , B_2 . Indeed it cannot be $A_1 \times A_1$, since *R* contains α and β which are not orthogonal, hence it is A_2 or B_2 . But if *R'* is a root system of type A_2 or B_2 , then any two roots with negative scalar product are a basis of *R'*, thus { α , β } is a basis for *R* and $R^+ = \mathbb{N}(\alpha, \beta)$.

Lemma 5 Assume that the simple roots α_i , α_j belong to N(w). Then some reduced expression of w starts with the long braid of s_i and s_j .

Proof: Set $X_{ij} = \{w \in W \mid w^{-1}(\alpha_i) > 0 \text{ and } w^{-1}(\alpha_j) > 0\}$ and $W_{ij} = \langle s_i, s_j \rangle$. By [1, IV, ex. 1.3] there exist unique $u \in W_{ij}$ and $v \in X_{ij}$ such that w = uv; moreover $\ell(w) = \ell(u) + \ell(v)$ so that $N(w) = N(u) \sqcup uN(v)$. By definition $\alpha_i, \alpha_j \notin N(v)$ hence $\alpha \notin N(v)$ for each $\alpha \in R(\alpha_i, \alpha_j)$. Now W_{ij} permutes $R(\alpha_i, \alpha_j)$ and therefore it permutes $\Delta \setminus R(\alpha_i, \alpha_j)$. Since s_k permutes $\Delta^+ \setminus \{\alpha_k\}$ for k = i, j, it follows that W_{ij} permutes the positive roots out of $R(\alpha_i, \alpha_j)$. Therefore we have $\alpha_i, \alpha_j \notin uN(v)$. On the other hand $\alpha_i, \alpha_j \in N(w)$, thus $\alpha_i, \alpha_j \in N(u)$. Therefore u is the longest element in W_{ij} and its reduced expressions are the long braids of s_i and s_j .

Given any finite parabolic subsystem R in Δ , there always exists a compatible pair (L, <) with L finite, in which the roots of the p-subsystem R^+ are consecutive. In fact, there exist a standard parabolic p-subsystem R' and $w \in W$ such that $wR'^+ = R^+$. Let u be the longest element of W(R') and consider wu. Then $N(wu) = N(w) + wN(u) = N(w) + w(R'^+) = N(w) + R^+$; since $w^{-1}(R^+) = R'^+$, we have indeed $N(wu) = N(w) \sqcup R^+$. Therefore the join of a reduced expression of w and a reduced expression of u is a reduced expression of wu; in the order induced on N(wu) by any such reduced expression R^+ appears as a final section.

On the other hand if we fix a compatible set *L* including a parabolic p-subsystem R^+ , then it may happen that there is no compatible order on *L* of which R^+ is a section. For instance in type D_4 , consider $w = s_2s_1s_3s_2s_4s_2s_3s_1s_2$. Then α_2 , $\alpha_1 + 2\alpha_2 + \alpha_3 + \alpha_4$, $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 \in$ N(w) and they form a parabolic p-subsystem of type A_2 , but they can be consecutive in no compatible order of N(w). Nonetheless for the case A_n we have the following "strong" result:

Proposition 2 Suppose $W = S_{n+1}$, the symmetric group on n + 1 letters (so that Δ is a root system of type A_n); consider $w \in W$. Then, for any triple of roots $\{\alpha, \alpha + \beta, \beta\}$ in N(w), there exists a compatible order in N(w) in which these elements are consecutive.

Proof: We proceed by induction on $\ell(w)$. Consider a triple $\{\alpha, \alpha + \beta, \beta\} \subseteq N(w)$. If there exists a simple root $\gamma \in N(w)$ different from α and β then we consider the triple $\{s_{\gamma}(\alpha), s_{\gamma}(\alpha + \beta), s_{\gamma}(\beta)\} \subseteq N(s_{\gamma}w)$. Since $\ell(s_{\gamma}w) < \ell(w)$, by induction there exists a compatible order on $N(s_{\gamma}w)$ in which $s_{\gamma}(\alpha), s_{\gamma}(\alpha + \beta), s_{\gamma}(\beta)$ are consecutive; by Lemma 1 this order comes from a compatible order on N(w) in which $\alpha, \alpha + \beta, \beta$ are consecutive. We have two more cases to consider: either both α and β are simple roots or one of the two—say α —is the only simple root in N(w). In the first case we are done by Lemma 5; in the other case we get a contradiction, since by compatibility β should contain α in its support but this would imply $\alpha + \beta \notin \Delta$.

Theorem 2. Let $w \in W$. Then $w \in W_{fc}$ if and only if N(w) does not contain any irreducible parabolic *p*-subsystem of rank 2.

Proof: We show that $w \notin W_{fc}$ if and only if N(w) contains an irreducible p-subsystem of rank 2; if $w \notin W_{fc}$, then for some $i, j \in \{1, ..., l\}, w = u \underbrace{s_i s_j \dots v}_{m(i,j)}, w, v \in W, \ell(w) = \ell(u) + m(i, j) + \ell(v).$

Then

$$N(w) = N(u) \sqcup u(N(s_i s_j \ldots)) \sqcup u s_i s_j \ldots (N(v)).$$

But $N(s_i s_j ...) = \mathbb{N}(\alpha_i, \alpha_j)$ is clearly an irreducible p-subsystem of rank 2, hence $u(\mathbb{N}(\alpha_i, \alpha_j)) = \mathbb{N}(u(\alpha_i), u(\alpha_j))$ is too.

Next assume that the set of irreducible rank 2 p-subsystems contained in N(w) is nonempty; this implies in particular $\Delta \ncong \tilde{A}_1$. Set N = N(w). Fix any compatible order < on N. For any parabolic p-subsystem $R^+ \subseteq N$ set $R = R^+ \cup -R^+$ and

 $d_{<}(R) = |\{x \in N \mid \min R^{+} < x < \max R^{+}\}|,$

where the maximum and minimum are taken with respect to the restriction of < to R^+ . Choose a finite parabolic irreducible p-subsystem of rank 2, $R^+ \subseteq N$ such that $d_<(R)$ is minimal. Then set $\alpha = \min R^+$, $\beta = \max R^+$, and $\gamma = \min(R^+ \setminus \{\alpha\})$, the successor of α in R^+ . Consider the set $\{x \in N \mid \alpha < x < \gamma\}$: if it is empty, then by Lemma 1 *iii*), $\beta = s_\alpha(\gamma)$ is simple and we conclude using Lemma 5. We shall prove that if $x \in N$ and $\alpha < x < \gamma$, then x is orthogonal to α . From this, by Lemma 1 *iii*), it follows that we can bring α adjacent to γ , still obtaining a compatible order on N, and we can conclude by Lemma 5. It is enough to prove it for x the successor of α in N since if $x \perp \alpha$, then we can exchange α and x in (N, <), still obtaining a compatible order <' on N in which $d_{<'}(R)$ is minimal. As in the proof of theorem 1 we may assume that $\alpha = \min N$ and that α is simple. Moreover we may assume $\beta = \max N$. So let $x = \min(N \setminus \{\alpha\}), x \neq \gamma$.

Remark that a subsystem of type A_2 is parabolic unless it is contained in a (sub)system of type G_2 ; moreover, if Δ contains a subsystem of type G_2 , then Δ is of type G_2 or \tilde{G}_2 . A subsystem of type B_2 or G_2 is always parabolic. These remarks lead us to consider separately the G_2 , \tilde{G}_2 cases.

First case: $\Delta \ncong G_2, \tilde{G}_2$

We first prove that if Δ is an affine system, then for each $\xi \in R^+$, ξ is the least root (w.r.t. <) in its δ -string. Since α is simple, we have $\alpha \in \Delta^0$ or $\alpha = -\theta + \delta$, θ being the highest root in Δ^0 . Assume $\beta = \beta_0 + k\delta$ with $\beta_0 \in \Delta^0$ and $k \in \mathbb{N}'$. Since N is compatible, if $\beta_0 > 0$ then $\beta_0 \in N$ and if $\beta_0 < 0$ then $\beta_0 + \delta \in N$. We have $\langle \alpha, \beta \rangle = \langle \alpha, \beta_0 + k\delta \rangle = \langle \alpha, \beta_0 \rangle$ and $\langle \beta, \alpha \rangle = \langle \beta_0 + k\delta, \alpha \rangle = \langle \beta_0, \alpha \rangle$ for each $k \in \mathbb{Z}$; therefore, since $\Delta \ncong \tilde{G}_2$, $\{\alpha, \beta_0 + k\delta\}$ is a basis for a parabolic irreducible subsystem of rank 2 in Δ if and only if $\{\alpha, \beta_0\}$ is. Thus, by the minimality of $d_{<}(R)$, if $\beta_0 > 0$ then $\beta = \beta_0$, and if $\beta_0 < 0$ then $\beta = \beta_0 + \delta$. Since by assumption $\alpha + \beta$ is a root, if $\beta = \beta_0 + \delta$ with $\beta_0 < 0$, then α is a finite simple root (recall that $\theta + \eta \notin \Delta \quad \forall \eta \in (\Delta^0)^+$); similarly, if $\alpha = -\theta + \delta$ then β is finite positive. In both cases if $\xi \in R^+$, $\xi \neq \alpha$, β then $\xi = \xi_0 + \delta$ with $-\xi_0 \in (\Delta^0)^+$. If α and β are positive finite, then the same holds for any $\xi \in R^+$. In any case, each $\xi \in R^+$ has the required minimality condition.

From the above result we get that *x* does not belong to the same δ -string of any root in R^+ other than α . Indeed, by compatibility, *x* is not parallel to any root in R^+ other than α ; moreover, by Lemma 3, *x* is not parallel to α .

Henceforth Δ may be finite or not. We distinguish several cases.

I. $R \cong A_2$. Then $R^+ = \{\alpha, \gamma, \beta\}, \gamma = \alpha + \beta$.

First suppose that *x* has the same length as α , β , γ . Remark that $(x, \alpha) \ge 0$: otherwise $x + \alpha \in \Delta$ and $\alpha < \alpha + x < x$ against the choice of *x*. Thus $\langle x, \alpha \rangle = \langle \alpha, x \rangle = 1$. If $\langle x, \gamma \rangle = 0$, then $\langle x, \beta \rangle = -1$ and we get a contradiction by Lemma 4. Similarly $\langle x, \gamma \rangle \neq -1$, therefore $\langle x, \gamma \rangle = \langle \gamma, x \rangle = 1$. It follows that $x - \alpha$ and $\gamma - x$ are roots. The compatibility of the order forces both $x - \alpha$ and $\gamma - x$ to be positive. Now $\{\alpha, x, x - \alpha\}$ and $\{x, \gamma, \gamma - x\}$ are parabolic *p*-subsystems of Δ of type A_2 , thus, by the minimality of $d_{<}(R^+), x - \alpha, \gamma - x \notin N$. But $\beta = (x - \alpha) + (\gamma - x) \in N$, against the compatibility of *N*.

Next assume that α , β , γ are long and x is short. Then $(\langle \alpha, x \rangle, \langle x, \alpha \rangle) = (2, 1)$. As above $x \not\perp \gamma$, thus $(\langle \gamma, x \rangle, \langle x, \gamma \rangle) = (2, 1)$. Then $\alpha, x, 2x - \alpha, x - \alpha$ are roots and the compatibility of < forces them to be positive; thus they form a parabolic p-subsystem of Δ of type B_2 . Similarly, $x, \gamma, \gamma - x, \gamma - 2x$ form a parabolic p-subsystem of Δ . By our choice of minimality we have $x - \alpha, \gamma - 2x \notin N$.

But $\beta = (\gamma - x) + (x - \alpha) = (2x - \alpha) + (\gamma - 2x)$, therefore by compatibility, $\gamma - x, 2x - \alpha \in N$. Now $\langle \gamma - 2x, \alpha \rangle = -1$, thus $\gamma - 2x + \alpha$ is a (positive) root. We have $\gamma = (\gamma - 2x + \alpha) + (2x - \alpha)$; it is easily seen that $\gamma, \gamma - 2x + \alpha$, and $2x - \alpha$ are all long, thus they form a parabolic p-subsystem of Δ of type A_2 . Since γ , $2x - \alpha \in N$, by minimality we get $\gamma - 2x + \alpha \notin N$. But then the decomposition $\gamma - x = (\gamma - 2x + \alpha) + (x - \alpha)$ contradicts the compatibility of *N*.

Finally assume that α , β , γ are short and x is long. Then we have $(\langle \alpha, x \rangle, \langle x, \alpha \rangle) = (\langle \gamma, x \rangle, \langle x, \gamma \rangle) = (1, 2)$. As above we get that $\{\alpha, x, x - \alpha, x - 2\alpha\}$ and $\{x, \gamma, 2\gamma - x, \gamma - x\}$ are parabolic p-subsystems of Δ of type B_2 . By minimality, $x - 2\alpha, \gamma - x \notin N$ and by compatibility, $x - \alpha, 2\gamma - x \in N$. Now $\langle \gamma - x, \alpha \rangle = -1$, thus $\gamma - x + \alpha$ is a (positive) root. Now $\gamma - x + \alpha, x - \alpha$, and γ are all short and $(\gamma - x + \alpha) + (x - \alpha) = \gamma$, thus $\gamma - x + \alpha, x - \alpha$, and γ form a parabolic p-subsystem of Δ of type A_2 ; since $\gamma, x - \alpha \in N$, by minimality $\gamma - x + \alpha \notin N$. But then we get a contradiction: $\beta = (x - 2\alpha) + (\gamma - x + \alpha) \in N$ and $x - 2\alpha, \gamma - x + \alpha \notin N$.

II. a) $R \cong B_2$ and α is long. Then $R^+ = \{\alpha, \alpha + \beta, \alpha + 2\beta, \beta\}$. Set $\gamma = \alpha + \beta$ and $\gamma' = \alpha + 2\beta$.

Assume that x is long. Then $\langle x, \alpha \rangle = \langle \alpha, x \rangle = 1$; as above $(x, \gamma) \neq 0$, otherwise $(x, \beta) < 0$. Since also $(x, \gamma) \neq 0$, we get thus $(\langle x, \gamma \rangle, \langle \gamma, x \rangle) = (2, 1)$. It follows that $\{\alpha, x, x - \alpha\}$ is a parabolic p-subsystem of Δ of type A_2 and $\{x, \gamma, 2\gamma - x, \gamma - x\}$ is a parabolic p-subsystem of type B_2 . By minimality, $x - \alpha, \gamma - x \notin N$, whereas $(x - \alpha) + (\gamma - x) = \beta \in N$: a contradiction.

Next assume that x is short. Then $(\langle x, \alpha \rangle, \langle \alpha, x \rangle) = (1, 2)$ and $\langle x, \gamma \rangle = \langle \gamma, x \rangle = 1$; $\{\alpha, x, 2x - \alpha, x - \alpha\}$ is a parabolic *p*-subsystem of type B_2 and $\{x, \gamma, \gamma - x\}$ is a parabolic *p*-subsystem of type A_2 . As above we get a contradiction since by minimality $x - \alpha, \gamma - x \notin N$.

II. b) $R \cong B_2$ and α is short. Then $R^+ = \{\alpha, 2\alpha + \beta, \alpha + \beta, \beta\}$. Set $\gamma = 2\alpha + \beta$ and $\gamma' = \alpha + \beta$.

Assume that *x* is short. Arguing as above we get $\langle x, \alpha \rangle = \langle \alpha, x \rangle = 1$ and $\langle x, \gamma' \rangle = \langle \gamma', x \rangle = 1$. Thus $\{\alpha, x, x - \alpha\}$ and $\{x, \gamma', \gamma' - x\}$ are parabolic p-subsystems of Δ of type A_2 . By minimality $\gamma' - x$, $x - \alpha \notin N$ and as above we get a contradiction. Finally assume that *x* is long. Then $(\langle x, \alpha \rangle, \langle \alpha, x \rangle) = (\langle x, \gamma' \rangle, \langle \gamma', x \rangle) = (2, 1)$; it follows $(x, \beta) = 0$ and thus $\langle x, \gamma \rangle = \langle \gamma, x \rangle = 1$. Then $\{\alpha, x, x - \alpha, x - 2\alpha\}$ is a parabolic p-subsystem of type B_2 and $\{x, \gamma, \gamma - x\}$ is a parabolic p-subsystem of type A_2 . Since $\beta = (x - 2\alpha) + (\gamma - x)$, we get a contradiction arguing as in the previous cases. This concludes the proof for all types of Δ other than G_2 , \tilde{G}_2 .

Second case: $\Delta \cong G_2, \tilde{G}_2$

The case $\Delta = G_2$ is trivial, since there are no irreducible proper parabolic p-subsystems of rank 2. So we assume $\Delta \cong \tilde{G}_2$.

First assume that $R \cong G_2$. We can argue as in the general case and get that each element in $\mathbb{N}^+(\alpha, \beta)$ is minimal in its δ -string, with respect to <. Clearly *x* must be parallel to some root in $\mathbb{N}^+(\alpha, \beta)$; but it is not parallel to α , being consecutive to α , and it cannot be parallel to any other root in R^+ , since each element in such a set is minimal in its δ -string. Therefore we must have $d_<(R) = 0$.

Next assume $R \cong A_2$. First we prove the following criterion.

Suppose $a = a_0 + h\delta$, $b = b_0 + k\delta$, with $a_0, b_0 \in \Delta^0$, $h, k \in \mathbb{Z}$. $\{a, b\}$ is a basis for a parabolic subsystem of type A_2 if and only if a_0 and b_0 are long, $(a_0, b_0) < 0$, and $3 \nmid (2h + k), (h + 2k)$.

Assume that $a, b \in \Delta$ are a basis for a parabolic subsystem $R \cong A_2$. Then $R = (\mathbb{Z}a + \mathbb{Z}b) \cap \Delta = (\mathbb{Q}a + \mathbb{Q}b) \cap \Delta$. Clearly we have $\langle a_0, b_0 \rangle = \langle b_0, a_0 \rangle = -1$; moreover, from the Dynkin diagram, we see that a, b, hence a_0, b_0 must be long. Then we have $\frac{1}{3}(2\alpha_0+b_0) \in \Delta^0$, therefore, if $3 \mid (2h + k)$, also $\frac{1}{3}(2a + b) \in \Delta$: this would imply $(\mathbb{Z}a + \mathbb{Z}b) \cap \Delta \neq (\mathbb{Q}a + \mathbb{Q}b) \cap \Delta$ against the assumption. Therefore $3 \nmid (2h + k)$ and similarly $3 \nmid (h+2k)$. Conversely, assume that a, b are long roots such that $\langle a, b \rangle = \langle b, a \rangle = -1$. If $\mathbb{N}(a, b)$ is not parabolic, a, b are included in a parabolic subsystem of type G_2 . Then $\frac{1}{3}(2a + b), \frac{1}{3}(a + 2b) \in \Delta$; therefore $3 \mid (2h + k), (h + 2k)$.

Now we go on by a direct inspection.

I. $\alpha = \alpha_1$. By the above criterion, together with our choice of minimality, we get either $\beta = (\alpha_1 + 3\alpha_2) + \delta$, or $\beta = -\theta + \delta$; we distinguish the two cases.

a) $\beta = (\alpha_1 + 3\alpha_2) + \delta$. By compatibility, $\alpha_1 + 3\alpha_2 \in N$; moreover, since $\beta = (\alpha_1 + \delta) + 3\alpha_2$, at least one of α_2 , $\alpha_1 + \delta$ belongs to *N*. In the first case we get a contradiction since α_1 , α_2 clearly generate a parabolic p-subsystem; in the latter case we get a contradiction since $\alpha_1 + 3\alpha_2$, $\alpha_1 + \delta$ generate a parabolic p-subsystem of type A_2 .

b) $\beta = -\theta + \delta$. Then $\gamma = -\alpha_1 - 3\alpha_2 + \delta$. In this case β , γ are minimal in their δ -string, thus *x* cannot be parallel to any of α , β , γ and therefore it cannot be long. Moreover $(\alpha_1, x) > 0$ and *x* must be minimal in its δ string, therefore we have either $x = \alpha_1 + \alpha_2$ or $x = -\alpha_2 + \delta$. In the first case we get a contradiction since $\{x, \beta\}$ is a basis for a parabolic subsystem of type G_2 ; the second case is not possible, since $x = \beta + 2(\alpha_1 + \alpha_2)$ and neither β , nor $\alpha_1 + \alpha_2$ precede *x* in *N*.

II. $\alpha = -\theta + \delta$. Then $\beta = \alpha_1$ or $\beta = \alpha_1 + 3\alpha_2$. In both subcases, β , γ are minimal in their δ -string and therefore *x* is short; since $(x, \alpha) > 0$, we get $x = -\alpha_1 - \alpha_2 + \delta$ or $x = -\alpha_1 - 2\alpha_2 + \delta$.

a) $\beta = \alpha_1$. Then $\gamma = -\alpha_1 - 3\alpha_2 + \delta$. If $x = -\alpha_1 - \alpha_2 + \delta$ we get a contradiction since $\{x, \beta\}$ is a basis for a G_2 subsystem. The case $x = -\alpha_1 - 2\alpha_2 + \delta$ is not possible since $x = \gamma + \alpha_2$ and neither γ , nor α_2 precede x in N.

b) $\beta = \alpha_1 + 3\alpha_2$. Then $\gamma = -\alpha_1 + \delta$. We get $x \neq -\alpha_1 - 2\alpha_2 + \delta$, otherwise x, β would be a basis for a G_2 subsystem. Finally the case $x = -\alpha_1 - \alpha_2 + \delta$ is not possible since $2x = (-\theta + 2\delta) + \alpha_2$ and neither $-\theta + 2\delta$, nor α_2 precede x in N.

References

- 1. N. Bourbaki, Groupes et algebres de Lie, Hermann, Paris, 1968
- 2. M. Dyer, "Hecke algebras and shellings of Bruhat intervals," Comp. Math. 89 (1993), 91-115
- C.K. Fan, "A Hecke Algebra Quotient and Properties of Commutative Elements of a Weyl Group," MIT Thesis, 1995.
- 4. C.K. Fan, "Schubert varieties and short braidedness," Transformation Groups 3 (1998), 51-57.
- 5. C.K. Fan and J.R. Stembridge, "Nilpotent orbits and commutative elements," J. Alg. 196 (1997), 490-498.
- 6. V.G. Kac, Infinite Dimensional Lie Algebras, Birkhäuser, Boston, 1983.
- 7. P. Papi, "A characterization of a special ordering in a root system," Proc. Amer. Math. Soc. 120 (1994), 661–665.
- 8. J. Stembridge, "On the fully commutative elements of a Coxeter group," J. Alg. Combin. 5 (1996), 353–385.

16