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Abstract. We provide simple characterizations of short-braid avoiding and fully commutative elements in an
affine Weyl groupW, generalizing results of Fan and Stembridge for finite Weyl groups. Our results rely on the
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Introduction and basic definitions

In his paper [4] Fan introduces after Zelevinski the following notion for elements of a Cox-
eter system(W, S).

Definition 1 An elementw ∈ W is short-braid avoiding if no reduced expression ofw

contains a substring of the formsts, s, t ∈ S.

The notion of short-braid avoiding element is strictly related to the following definitions,
due to Fan [3] and Stembridge [8].

Considers, t ∈ Sand denote bym(s, t) the order ofst ∈ W; we call the stringst . . .︸ ︷︷ ︸
m(s,t)

the
long braid of s and t .

Definition 2 Forw ∈ W we say thatw is commutative if no reduced expression ofw
contains a substring of the formsts, s, t being non-commuting generators inS such that
the simple root corresponding tot is at least as long as the simple root corresponding tos.

Definition 3 Forw ∈ W we say thatw is fully commutative if no reduced expression of
w contains the long braid of some pair of non-commuting generators.

Remark Denote byWs, Wc, Wf c the sets of short-braid avoiding, commutative and fully
commutative elements inW respectively.
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It turns out thatWs=Wc=Wf c for simply-laced Coxeter groups. The relationWs = Wf c

holds since the only defining relations which are not commutation relations are those of
typests= tst, s, t ∈ S. The equalityWc = Wf c is obvious. Moreover Fan and Stembridge
[3], [5] provide the following remarkable root-theoretic characterization of these elements.
Let1 be the canonical root system of(W, S) and set

N(w) = {α ∈ 1+ | w−1(α) ∈ −1+}.

Thenw is commutative if and only ifα, β ∈ N(w)⇒ α + β /∈ N(w). In the general case,
the three definitions introduced differ (although the inclusion relationWs ⊆ Wc ⊆ Wf c

holds). Let us work out explicitly the example of a Weyl groupW of typeG2. If s2 denotes
the simple reflection corresponding to the short simple root, then we have

Ws = {1, s1, s2, s1s2, s2s1}
Wc = {1, s1, s2, s1s2, s2s1, s1s2s1}

Wf c = W \ {s1s2s1s2s1s2(= s2s1s2s1s2s1)}

In [3], [4], [8] the types ofW for which Ws,Wc,Wf c are finite are determined; in each of
these cases, their cardinalities are also determined. Moreover, whenW is a finite Weyl group,
Fan provides the following remarkable criterion forw ∈ W to be short-braid avoiding:
w ∈ W is short-braid avoiding if and only if any reduced expression ofw remains reduced
when a simple reflection is deleted in any possible way.

This result has interesting applications since it gives a simple smoothness criterion for
Schubert varieties attached to braid-avoiding elements. On the other hand, as noticed in
[4, 5], the criterion does not hold for affine Weyl groups (a counterexample in typeÃ2 is
s1s2s3s1s2).

In this paper we provide a combinatorial characterization of the elements inWs, Wf c for
affineWeyl groupsW in terms of the subsetsN(w) which encode the elements ofW.

Before stating our results we fix the notation and we give some preliminary definitions.
Let W be an irreducible Weyl group (possibly affine) and let1 be the associated root sys-

tem (lying in a real vector spaceV). Fix a positive system1+ in1 and let5 = {α1, . . . , αl }
be a corresponding basis of simple roots; then we have1 = W5 and1 = 1+ t −1+
(t denotes the disjoint union). We list some standard notation relative to these data.

A = (ai j )
l
i, j=1 (generalized) Cartan matrix corresponding to1,

si fundamental reflection relative toαi ∈ 5,
S= {s1, . . . , sl } set of Coxeter generators forW,
` length function w.r.t.S,
sα reflection relative toα ∈ 1+,
( , ) standard W-invariant bilinear form onV ,

positive definite if1 is finite,
positive semidefinite with kernelRδ if 1 is affine,

〈α, β〉 = 2(α, β)

(β, β)
(α, β ∈ 1),
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Supp(α) support ofα:
if α =∑n

i=1 aiαi , thenSupp(α) = {αi | ai 6= 0}.
N(α, β) = (Nα + Nβ) ∩1 (α, β ∈ 1+).

For a rootα ∈ 1 as usualα > 0 meansα ∈ 1+. We recall that for eachv,w ∈ W
we have`(v) = |N(v)| and N(vw) = N(v) + vN(w), where+ denotes the symmetric
difference; moreoverN(vw) = N(v) t vN(w) if and only if `(vw) = `(v)+ `(w).

For any R ⊆ 1 set W(R) = 〈sβ | β ∈ R〉. We say thatR is a subsystem of 1 if it
is W(R)-invariant. Note thatR+ := R∩ 1+ is a set of positive roots forR. We say that
R ⊆ 1+ is a p-subsystemif R = R ∩ 1+ for some subsystemR. Equivalently,R is a
p-subsystem ifR ⊆ 1+ andR ∪ −R is a subsystem.

If R ⊆ 1 is a subsystem, we denote the cardinality of a root basis forR by rk(R), and
we call it therank of R.

Moreover we say thatR is parabolic if

1 ∩ SpanQ(R) = R.

As usual we say that a subsystemR of 1 is standard parabolic if 5 ∩ R is a basis for
R. Clearly a standard parabolic subsystem is parabolic. Moreover it is easily seen that a
subsystemR is parabolic if and only ifR+ = vR′+ for some standard parabolic subsystem
R′ andv ∈ W (see [1, VI, 1.7, Prop. 24]).

If 1 is an irreducible affine root system and10 the associated finite root system, then
10 is irreducible (in particular it has a unique highest root); moreover (cf. [6])

1+ = ((10)+ + Nδ) ∪ (−(10)+ + Z+δ)

We call the elements of10 (resp.(10)+) finite roots (resp.finitepositive roots).
Let R0 be any subsystem of10. Then

R= {β + kδ | β ∈ R0, k ∈ Z}

is clearly a subsystem of1 and it is the affine root system associated toR0. Forα ∈ 10 set:

α :=
{
{α + nδ | n ∈ N} if α ∈ (10)+,
{α +mδ | m ∈ Z+} if −α ∈ (10)+;

we callα theδ-string of α. When considering an affine rootβ0 + kδ, β0 ∈ 10, we write
k ∈ N′ to meank ∈ N if β0 > 0 andk ∈ Z+ if β0 < 0.

Moreover we say that a rootβ is parallel to α (β ‖ α) if β + α ∈Zδ or β − α ∈Zδ.

Definition 4 We say thatL ⊆ 1+ is dependent if there exist pairwise non-parallel roots
α, β, γ ∈ L andk ∈ Z+ such thatα + β = kγ ; we say thatL is independent if it is not
dependent.
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Our main theorems are the following.

Theorem 1 Assume1 6∼= Ã1. Thenw ∈ Ws if and only if N(w) is independent.

Remark If 1 ∼= Ã1, thenw /∈ Ws if and only if `(w) ≥ 3. This is equivalent to the
condition of dependence in Definition 4 without any requirement about parallelism.

Theorem 2 Letw ∈W. Thenw ∈Wf c if and only if N(w)does not contain any irreducible
parabolic p-subsystem of rank2.

Preliminaries

We introduce now the main tools for the proof of the main theorems.

Definition 5 Let L ⊆ 1+ and<be a total order onL. We say thatL is associated tow ∈ W
if L = N(w). We say that(L , <) is associated to the reduced expressionsi1 · · · sim = w
(w ∈ W) if

L = {αi1 < si1

(
αi2

)
< · · · < si1 · · · sim−1

(
αim

)}
(in particularL = N(w)).

The following Proposition 1 is the easy part of a well known theorem of Dyer [2]; it holds
for any Coxeter system. We prove it here for completeness.

Proposition 1 Assume that(L , <) is associated to some reduced expression of some
element of W. Then, for eachα, β ∈ 1+, q, r ∈ R+, the following conditions hold:
(I) if α, β ∈ L, α < β, and qα + rβ ∈ 1, then qα + rβ ∈ L andα < qα + rβ < β.

(II) if qα + rβ ∈ L andβ 6∈ L, thenα ∈ L andα < qα + rβ.

In particular, if L is associated to some element of W, then, forα, β ∈ 1+, q, r ∈ R+ we
have:
(I′) if α, β ∈ L, qα + rβ ∈ 1, then qα + rβ ∈ L.

(II ′) if qα + rβ ∈ L andβ 6∈ L, thenα ∈ L.

Proof: Assume that(L , <) = {β1 < · · · < βn} with β1 = αi1, β j = si1 · · · si j−1(αi j ),
1< j ≤ n,w = si1 · · · sin reduced expression. First assumeα, β ∈ L, q, r ∈ R+, qα+ rβ ∈
1. Then by definitionw−1(α), w−1(β) < 0; thusw−1(qα+ rβ) = qw−1(α)+ rw−1(β) <

0, i.e.,qα+ rβ ∈ L. Assumeα = β j andβ = βk, with j < k and putv = si1 · · · si j−1. Then
(L ′, <′) := {v−1(β j ) < · · · < v−1(βk)} is associated to the reduced expressionsi j · · · sik
and hasv−1(α) andv−1(β) as its first and last element, respectively. By the first part of
our proof we havev−1(qα + rβ)∈ L ′, and clearlyv−1(α) <′ v−1(qα + rβ) <′ v−1(β). It
follows directly thatα < qα + rβ < β.

Next assumeqα+rβ ∈ L; qα+rβ = βm, m≤ n. Then{β1 < · · · < βm} is associated to
the reduced expressionu = si1 · · · sim and hasqα+rβ as its last element. Assume towards a
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contradiction that neitherα ∈ N(u) norβ ∈ N(u). Then, by definition,u−1(α), u−1(β) >

0; thusu−1(qα+ rβ) = qu−1(α)+ ru−1(β) > 0, against the assumption, so that we have
necessarilyα ∈ N(u) or β ∈ N(u). Moreover, clearly, ifα or β belongs toN(u), then it
precedesqα + rβ = βm. This implies the assertion forL. 2

Remark For k ∈ N we haveα + kδ = 1
k+1α + k

k+1(α + (k + 1)δ); if α ∈ 1+ and
α + kδ ∈ L for somek ∈ N, then sinceL is finite, by condition (II) of Proposition 1 we
obtain thatα ∈ L. Moreover, by condition (I),α + hδ ∈ L if 0 ≤ h ≤ k, h ∈ N. Similarly,
since for eachk α + kδ = (k+ 1)α + k(−α + δ), if α ∈ L, then−α + δ 6∈ L. In fact if
α ∩ L 6= ∅, then−α ∩ L = ∅.

The conditions of Proposition 1 are also sufficient for(L , <) to be associated to some
reduced expression of somew ∈W [2]. Indeed, for the root system of an (affine) Weyl
group they can be weakened [7], as we shall see below. We denote by1̄ (resp.1̄+) the
generalized root system (resp. positive root system) [8] associated to the Cartan matrixA
of 1,

1̄ = 1 t ±Z+δ, 1̄+ = 1+ t Z+δ.

Theorem A [7] Let L ⊆ 1+ be finite and< be a total order on L.(L , <) is associated
to some reduced expression of some element of W if and only if, for eachα, β ∈ 1̄+, the
following conditions hold:
(1) if α, β ∈ L, α < β, andα + β ∈ 1̄, thenα + β ∈ L andα < α + β < β.
(2) If α + β ∈ L andβ 6∈ L, thenα ∈ L andα < α + β.

L is associated to some element of W if and only if for eachα, β ∈ 1̄+:
(1′) if α, β ∈ L, α + β ∈ 1̄, thenα + β ∈ L
(2′) if α + β ∈ L andβ 6∈ L, thenα ∈ L.

Corollary 1 Let L ⊆ 1+ be finite. Then the following are equivalent:
i) L is associated to some element of W;

ii) L satisfies conditions(I′) and(II ′) of Proposition1;
iii) L satisfies conditions(1′) and(2′) of Theorem A.

Corollary 2 Let L ⊆ 1+ be finite and< be a total order on L. Then the following are
equivalent:

i) (L , <) is associated to some reduced expression of some element of W;
ii) (L , <) satisfies conditions(I) and(II) of Proposition1;

iii) (L , <) satisfies conditions(1) and(2) of Theorem A.

Definition 6 Let L ⊆ 1+ and< be a total order onL. L is called compatible if it satisfies
one of the three equivalent conditions of Corollary 1.(L , <) is called compatible, if it
satisfies one of the three equivalent conditions of Corollary 2 (in particularL is compatible).
In such a case we also say that< is a compatible order.
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Note thatN(w) determinesw ∈ W, thus Theorem A establishes a bijection between
W and the compatible finite subsets of1+; moreover it gives a bijection between the
compatible orders onN(w) and the reduced expressions ofw, for any fixedw ∈ W.

Proofs of the main theorems

If < is a compatible order onN(w), then, by condition (I) of Proposition 1, or (1) of
Theorem A, we get that min(N(w),<) is a simple root. Indeed any simple root inN(w)
can be taken as the least root for some compatible order onN(w); in the following lemma
we state this and other basic properties of compatible sets and orders in a convenient form
for our next developments.

Lemma 1 Let L be a finite compatible set,α ∈ L be a simple root, and L′ = sα(L \ {α}).
Then:

i) L ′ is compatible.
ii) If <′ is a compatible order on L′, then the total order defined on L by:
α = min(L , <) andβ < β ′ if and only if sα(β) <′ sα(γ ) for β, γ ∈ L \ {α} (∗)
is compatible. In particular there exists a compatible order< on L such thatα=
min(L , <).

iii) Conversely, if< is a compatible order on L such thatα = min(L , <), then the total
order<′ defined on L′ by (∗) is compatible. In particular ifβ is the successor ofα in
(L , <), then sα(β) is a simple root.

Proof:

i) By assumption there existsw ∈ W such thatL = N(w). Setw′ = sαw; then`(w′) =
`(w)− 1, henceN(w) = N(sα) t sαN(w′) = {α} t sαN(w′) and thereforeN(w′) =
sα(N(w)\α) = L ′. It follows thatL ′ is compatible.

ii) If (L ′, <′) is associated to the reduced expressionsi1 · · · sik , then(L , <) is associated
to the reduced expressionsαsi1 · · · sik , therefore it is compatible.

iii) (L , <) is associated to the some reduced expression starting withsα, saysαsi1 · · · sik ;
then(L ′, <′) is associated to the reduced expressionsi1 · · · sik , therefore it is compatible.

2

Lemma 2 Suppose that N(w) is endowed with a compatible order<. If R+ is a finite
p-subsystem, then M= R+ ∩ N(w) is compatible as a subset of R= R+ ∪−R+, and the
restriction of< to M is compatible.

Proof: Supposeα, β ∈ M, α + β ∈ R+ = 1̄+ ∩ R = 1+ ∩ R ⊆ 1+; then the
compatibility of N(w) impliesα + β ∈ N(w) and in turnα + β ∈ M . If now α + β ∈ M ,
then as above the compatibility ofN(w) and the relationR+ = 1+ ∩ R imply α ∈ M or
β ∈ M as desired. The claim regarding the order is proved in the same way. 2

Lemma 3 Let ξ be a positive root in an affine root system1; then ξ, ξ + δ can be
consecutive in a compatible order on some compatible subset of1+ if and only if1 is of
typeÃ1.
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Proof: Assume thatξ, ξ+δ are consecutive in a compatible order. By Lemma 1 iii) there
existsw ∈ W such that bothα = w(ξ) andsαw(ξ + δ) = −α + δ are simple roots; this
clearly implies1 ∼= Ã1. The converse is also clear. 2

Theorem 1. Assume1 6∼= Ã1. Thenw ∈ Ws if and only if N(w) is independent.

Proof: Set N = N(w). Assumew /∈ Ws; we have to prove thatN is dependent. By
hypothesis,w can be written in reduced form asw = usi sj si v wheresi , sj ∈ S, u, v ∈ W.
Then in the ordering induced by such a reduced expression,u(αi ), u(si (α j )), u(si sj (αi ))

are consecutive. Butu(αi )+ u(si sj (αi )) = −ai j u(si (α j )) and moreover, since1 6∼= Ã1, αi

andα j are not parallel; thereforeN is dependent.
Conversely, assume thatN is dependent. EndowN with an arbitrary compatible order<

and consider the set

I< = {(α, γ, β) ∈ (N)×3 | α < γ < β, α ∦β, ∃k ∈ Z+ α + β = kγ }.

For a triple(α, γ, β) ∈ I< set

ρ<(α, γ, β) = |{x ∈ N | α < x < β}|

Take any triple(α, γ, β) such thatρ<(α, γ, β) is minimal. By repeated applications of
Lemma 1 we may assumeα = min N, so thatα is simple. Sinceα, β, henceγ , are not
mutually parallel, they are contained in a uniquely determined finite parabolic subsystem
R of rank 2. Letβ ′ be the only root in1+ which completesα to a root basis forR+, so
that R+ = N(α, β ′). By Lemma 2,(R+ ∩ N, <) is compatible inR. Since it hasα as its
first element, it is associated to some expression of typesαsβ ′sα . . . , so that(R+ ∩ N, <) =
{α < sα(β ′) < sαsβ ′(α) < · · ·}. Therefore, by the minimality ofρ< we haveγ = sα(β ′)
andβ = sαsβ ′(α). If γ is the successor ofα in N, then by Lemma 1sα(γ ) = β ′ is simple
in 1. Also sβ ′sα(β) = α is simple, hence, again by Lemma 1, there exists a compatible
order onN starting withα < γ < β, which corresponds to a reduced expression ofw

starting with the braidsαsβ ′sα. Assume that there existsx ∈ N, such thatα < x < γ .
We defineγ0 = γ and, for i ≥ 1, γi = max<{η ∈ N | η < γi−1, (η, γi−1) 6= 0} if
{η ∈ N | η < γi−1, (η, γi−1) 6= 0} is non empty. Letγn be the last element we can define
in such a way. Ifγn 6= α, then we can replace< with a suitable compatible order in which
γn precedesα; therefore without loss of generality we may assume thatγn = α. Moreover,
if n = 1, then for eachx ∈ N such thatα < x < γ we havex ⊥ γ ; thus we can
bring γ adjacent toα and we are done. Assume by contradictionn ≥ 2. We claim that
γi ∦ γi+1 ∀ i = 0, . . . ,n−1. Otherwise, sinceN is compatible,γi −γi+1 = δ. Moreover, by
the definition ofγi+1, there exists a compatible order in whichγi+1, γi appear in consecutive
positions: this contradicts Lemma 3. Now remark that, sinceγi + γi+1 is a not a root by the
minimality of ρ<, the definition of theγi ’s forcesγi − γi+1 to be a root. Such a root must
be positive, otherwise we getγi+1 − γi ∈ N andγi+1 − γi < γi+1 < γi , against the the
minimality of ρ<. Then we defineki = max{h ∈ Z+ | hγi − γi+1 ∈ 1+}. Since we are
assumingn ≥ 2, we havew−1(ki γi − γi+1) > 0: this follows from the minimality ofρ<
(if γi+1 = α thenγi 6= γ and by our previous remarkski γi − γi+1 6= β). Adding up such
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relations we get thatw−1(kn−1 · · · k0γ − α) is a sum of positive roots with non-negative
coefficients. This is a contradiction ifkn−1 · · · k0 ≥ k, sincew−1(kγ − α) = w−1(β) < 0
andw−1(γ ) < 0; in particular we get a contradiction ifk = 1. So we assumek > 1. We
remark that if1 6∼= G2, G̃2, any finite rank 2 indecomposable subsystem of1 is of type
A2 or B2. If 1 ∼= G2, G̃2, any finite rank 2 subsystem of1 is of typeA2 or G2. Therefore,
if k > 1 thenk = 2 if α, γ, β are included in a subsystem of typeB2, andk = 3 if α, γ, β
are included in a subsystem of typeG2. It follows that for eachki > 1, we haveki = k.
Moreover, ifη, η′ are non parallel and non orthogonal roots in1, then〈η, η′〉 = ±1 if η and
η′ have the same length orη is short;〈η, η′〉 = ±k if η is long andη′ is short. Thus ifk > 1,
we get in particular thatα is long andγ is short. Now we remark that(γi , γi+1) > 0. If
ki = 1 for each 0≤ i ≤ n− 1, thenγ0, . . . , γn all have the same length: this is impossible
sinceγ0 = γ is short andγn = α is long. Thus for somei we haveki = k and thus
kn−1 · · · k0 ≥ k. 2

Lemma 4 Assume1 6∼= G2, G̃2 and α, β ∈ 1+. If (α, β) < 0 then eitherα ‖ β or
N(α, β) is a p-subsystem. In the latter caseN(α, β)∪ −N(α, β) is an irreducible parabolic
subsystem having{α, β} as a basis.

Proof: Assume thatα, β are not parallel and setR= (Qα+Qβ)∩1. ThenR is clearly a
finite parabolic rank 2 subsystem of1. Since1 6∼= G2, G̃2 the type ofR is one ofA1× A1,
A2, B2. Indeed it cannot beA1 × A1, sinceR containsα andβ which are not orthogonal,
hence it isA2 or B2. But if R′ is a root system of typeA2 or B2, then any two roots with
negative scalar product are a basis ofR′, thus{α, β} is a basis forR andR+ = N(α, β).

2

Lemma 5 Assume that the simple rootsαi , α j belong to N(w). Then some reduced
expression ofw starts with the long braid of si and sj .

Proof: Set Xi j = {w ∈ W | w−1(αi ) > 0 andw−1(α j ) > 0} andWi j = 〈si , sj 〉. By
[1, IV, ex. 1.3] there exist uniqueu ∈ Wi j and v ∈ Xi j such thatw = uv; moreover
`(w) = `(u) + `(v) so thatN(w) = N(u) t uN(v). By definitionαi , α j 6∈ N(v) hence
α 6∈ N(v) for eachα ∈ R(αi , α j ). Now Wi j permutesR(αi , α j ) and therefore it permutes
1\R(αi , α j ). Sincesk permutes1+\{αk} for k = i, j , it follows that Wi j permutes the
positive roots out ofR(αi , α j ). Therefore we haveαi , α j 6∈ uN(v). On the other hand
αi , α j ∈ N(w), thusαi , α j ∈ N(u). Thereforeu is the longest element inWi j and its
reduced expressions are the long braids ofsi andsj . 2

Given any finite parabolic subsystemR in1, there always exists a compatible pair(L , <)
with L finite, in which the roots of the p-subsystemR+ are consecutive. In fact, there exist a
standard parabolic p-subsystemR′ andw ∈ W such thatwR′+ = R+. Let u be the longest
element ofW(R′) and considerwu. ThenN(wu) = N(w)+wN(u) = N(w)+w(R′+) =
N(w)+ R+; sincew−1(R+) = R′+, we have indeedN(wu) = N(w)t R+. Therefore the
join of a reduced expression ofw and a reduced expression ofu is a reduced expression of
wu; in the order induced onN(wu) by any such reduced expressionR+ appears as a final
section.
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On the other hand if we fix a compatible setL including a parabolic p-subsystemR+, then
it may happen that there is no compatible order onL of whichR+ is a section. For instance in
typeD4, considerw = s2s1s3s2s4s2s3s1s2. Thenα2, α1+2α2+α3+α4, α1+α2+α3+α4 ∈
N(w) and they form a parabolic p-subsystem of typeA2, but they can be consecutive in
no compatible order ofN(w). Nonetheless for the caseAn we have the following “strong”
result:

Proposition 2 Suppose W= Sn+1, the symmetric group on n+ 1 letters (so that1 is
a root system of type An); considerw ∈ W. Then, for any triple of roots{α, α + β, β} in
N(w), there exists a compatible order in N(w) in which these elements are consecutive.

Proof: We proceed by induction oǹ(w). Consider a triple{α, α + β, β} ⊆ N(w). If
there exists a simple rootγ ∈ N(w) different fromα andβ then we consider the triple
{sγ (α), sγ (α + β), sγ (β)} ⊆ N(sγw). Since`(sγw) < `(w), by induction there exists a
compatible order onN(sγw) in whichsγ (α), sγ (α+β), sγ (β)are consecutive; by Lemma 1
this order comes from a compatible order onN(w) in whichα, α + β, β are consecutive.
We have two more cases to consider: either bothα andβ are simple roots or one of the
two—sayα—is the only simple root inN(w). In the first case we are done by Lemma 5;
in the other case we get a contradiction, since by compatibilityβ should containα in its
support but this would implyα + β /∈ 1. 2

Theorem 2. Let w ∈ W. Thenw ∈ Wf c if and only if N(w) does not contain any
irreducible parabolic p-subsystem of rank2.

Proof: We show thatw /∈ Wf c if and only if N(w) contains an irreducible p-subsystem
of rank 2; ifw /∈ Wf c, then for somei, j ∈ {1, . . . , l },w = u si sj . . .︸ ︷︷ ︸

m(i, j )

v, u, v ∈ W, `(w) =
`(u)+m(i, j )+ `(v).

Then

N(w) = N(u) t u(N(si sj . . .)) t usi sj . . . (N(v)).

But N(si sj . . .) = N(αi , α j ) is clearly an irreducible p-subsystem of rank 2, henceu
(N(αi , α j )) = N(u(αi ), u(α j )) is too.

Next assume that the set of irreducible rank 2 p-subsystems contained inN(w) is non-
empty; this implies in particular1À Ã1. SetN = N(w). Fix any compatible order< on
N. For any parabolic p-subsystemR+ ⊆ N setR= R+ ∪ −R+ and

d<(R) = |{x ∈ N |min R+ < x < maxR+}|,

where the maximum and minimum are taken with respect to the restriction of< to R+.
Choose a finite parabolic irreducible p-subsystem of rank 2,R+ ⊆ N such thatd<(R) is
minimal. Then setα = min R+, β = maxR+, andγ = min(R+\{α}), the successor of
α in R+. Consider the set{x ∈ N |α < x < γ }: if it is empty, then by Lemma 1iii ),
β = sα(γ ) is simple and we conclude using Lemma 5. We shall prove that ifx ∈ N and
α < x < γ , thenx is orthogonal toα. From this, by Lemma 1iii ), it follows that we can
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bring α adjacent toγ , still obtaining a compatible order onN, and we can conclude by
Lemma 5. It is enough to prove it forx the successor ofα in N since ifx ⊥ α, then we can
exchangeα andx in (N, <), still obtaining a compatible order<′ on N in whichd<′(R) is
minimal. As in the proof of theorem 1 we may assume thatα = min N and thatα is simple.
Moreover we may assumeβ = maxN. So letx = min(N\{α}), x 6= γ .

Remark that a subsystem of typeA2 is parabolic unless it is contained in a (sub)system
of type G2; moreover, if1 contains a subsystem of typeG2, then1 is of type G2 or
G̃2. A subsystem of typeB2 or G2 is always parabolic. These remarks lead us to consider
separately theG2, G̃2 cases.

First case: 1 6∼= G2, G̃2

We first prove that if1 is an affine system, then for eachξ ∈ R+, ξ is the least root (w.r.t.
<) in its δ-string. Sinceα is simple, we haveα ∈ 10 or α = −θ + δ, θ being the highest
root in10. Assumeβ = β0+kδ with β0 ∈ 10 andk ∈ N′. SinceN is compatible, ifβ0 > 0
thenβ0 ∈ N and ifβ0 < 0 thenβ0+ δ ∈ N. We have〈α, β〉 = 〈α, β0+ kδ〉 = 〈α, β0〉 and
〈β, α〉 = 〈β0+ kδ, α〉 = 〈β0, α〉 for eachk ∈ Z; therefore, since1 6∼= G̃2, {α, β0+ kδ} is a
basis for a parabolic irreducible subsystem of rank 2 in1 if and only if {α, β0} is. Thus, by
the minimality ofd<(R), if β0 > 0 thenβ = β0, and ifβ0 < 0 thenβ = β0 + δ. Since by
assumptionα+β is a root, ifβ = β0+δwithβ0 < 0, thenα is a finite simple root (recall that
θ + η /∈ 1 ∀ η ∈ (10)+); similarly, if α = −θ + δ thenβ is finite positive. In both cases if
ξ ∈ R+, ξ 6= α, β thenξ = ξ0+δ with−ξ0 ∈ (10)+. If α andβ are positive finite, then the
same holds for anyξ ∈ R+. In any case, eachξ ∈ R+ has the required minimality condition.

From the above result we get thatx does not belong to the sameδ-string of any root in
R+ other thanα. Indeed, by compatibility,x is not parallel to any root inR+ other thanα;
moreover, by Lemma 3,x is not parallel toα.

Henceforth1 may be finite or not. We distinguish several cases.

I. R∼= A2. ThenR+ = {α, γ, β}, γ = α + β.
First suppose that x has the same length as α, β, γ . Remark that(x, α) ≥ 0: other-
wisex+α ∈ 1 andα < α+x < x against the choice ofx. Thus〈x, α〉 = 〈α, x〉 = 1.
If 〈x, γ 〉 = 0, then〈x, β〉 = −1 and we get a contradiction by Lemma 4. Similarly
〈x, γ 〉 6= −1, therefore〈x, γ 〉 = 〈γ, x〉 = 1. It follows thatx − α andγ − x are
roots. The compatibility of the order forces bothx−α andγ − x to be positive. Now
{α, x, x − α} and{x, γ, γ − x} are parabolicp-subsystems of1 of type A2, thus,
by the minimality ofd<(R+), x − α, γ − x 6∈ N. Butβ = (x − α)+ (γ − x) ∈ N,
against the compatibility ofN.
Next assume that α, β, γ are long and x is short. Then(〈α, x〉, 〈x, α〉) = (2, 1). As
abovex 6⊥ γ , thus(〈γ, x〉, 〈x, γ 〉) = (2, 1). Thenα, x, 2x−α, x−α are roots and the
compatibility of< forces them to be positive; thus they form a parabolic p-subsystem
of 1 of type B2. Similarly, x, γ, γ − x, γ − 2x form a parabolic p-subsystem of1.
By our choice of minimality we havex − α, γ − 2x 6∈ N.
But β = (γ − x) + (x − α) = (2x − α) + (γ − 2x), therefore by compatibility,
γ − x, 2x − α ∈ N. Now 〈γ − 2x, α〉 = −1, thusγ − 2x + α is a (positive) root.
We haveγ = (γ − 2x + α) + (2x − α); it is easily seen thatγ, γ − 2x + α, and
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2x − α are all long, thus they form a parabolic p-subsystem of1 of type A2. Since
γ, 2x − α ∈ N, by minimality we getγ − 2x + α 6∈ N. But then the decomposition
γ − x = (γ − 2x + α)+ (x − α) contradicts the compatibility ofN.
Finally assume that α, β, γ are short and x is long. Then we have(〈α, x〉, 〈x, α〉)=
(〈γ, x〉, 〈x, γ 〉) = (1, 2). As above we get that{α, x, x − α, x − 2α} and
{x, γ,2γ − x, γ − x} are parabolic p-subsystems of1 of type B2. By minimality,
x−2α, γ − x 6∈ N and by compatibility,x−α, 2γ − x ∈ N. Now 〈γ − x, α〉 = −1,
thusγ − x + α is a (positive) root. Nowγ − x + α, x − α, andγ are all short and
(γ −x+α)+(x−α) = γ , thusγ −x+α, x−α, andγ form a parabolic p-subsystem
of 1 of type A2; sinceγ, x − α ∈ N, by minimalityγ − x + α 6∈ N. But then we
get a contradiction:β = (x − 2α)+ (γ − x + α) ∈ N andx − 2α, γ − x + α 6∈ N.

II. a) R ∼= B2 andα is long. ThenR+ = {α, α + β, α + 2β, β}. Setγ = α + β and
γ ′ = α + 2β.
Assume that x is long. Then〈x, α〉 = 〈α, x〉 = 1; as above(x, γ ) 6= 0, otherwise
(x, β) < 0. Since also(x, γ ) 6< 0, we get thus(〈x, γ 〉, 〈γ, x〉) = (2, 1). It follows
that{α, x, x−α} is a parabolic p-subsystem of1 of typeA2 and{x, γ,2γ −x, γ −x}
is a parabolic p-subsystem of typeB2. By minimality, x − α, γ − x 6∈ N, whereas
(x − α)+ (γ − x) = β ∈ N: a contradiction.
Next assume that x is short. Then(〈x, α〉, 〈α, x〉) = (1, 2)and〈x, γ 〉 = 〈γ, x〉 = 1;
{α, x, 2x − α, x − α} is a parabolicp-subsystem of typeB2 and{x, γ, γ − x} is a
parabolic p-subsystem of typeA2. As above we get a contradiction since by minimality
x − α, γ − x 6∈ N.

II. b) R ∼= B2 andα is short. ThenR+ = {α, 2α + β, α + β, β}. Setγ = 2α + β and
γ ′ = α + β.
Assume that x is short. Arguing as above we get〈x, α〉 = 〈α, x〉 = 1 and〈x, γ ′〉 =
〈γ ′, x〉 = 1. Thus{α, x, x − α} and{x, γ ′, γ ′ − x} are parabolic p-subsystems of1
of type A2. By minimality γ ′ − x, x − α 6∈ N and as above we get a contradiction.
Finally assume that x is long. Then(〈x, α〉, 〈α, x〉) = (〈x, γ ′〉, 〈γ ′, x〉) = (2, 1);
it follows (x, β) = 0 and thus〈x, γ 〉 = 〈γ, x〉 = 1. Then{α, x, x − α, x − 2α} is
a parabolic p-subsystem of typeB2 and{x, γ, γ − x} is a parabolic p-subsystem of
type A2. Sinceβ = (x − 2α) + (γ − x), we get a contradiction arguing as in the
previous cases. This concludes the proof for all types of1 other thanG2, G̃2.

Second case:1 ∼= G2, G̃2

The case1 = G2 is trivial, since there are no irreducible proper parabolic p-subsystems of
rank 2. So we assume1 ∼= G̃2.

First assume that R∼= G2. We can argue as in the general case and get that each element
in N+(α, β) is minimal in itsδ-string, with respect to<. Clearlyx must be parallel to some
root inN+(α, β); but it is not parallel toα, being consecutive toα, and it cannot be parallel
to any other root inR+, since each element in such a set is minimal in itsδ-string. Therefore
we must haved<(R) = 0.

Next assume R∼= A2. First we prove the following criterion.
Suppose a=a0 + hδ, b = b0 + kδ, with a0, b0∈10, h, k∈Z. {a, b} is a basis for a

parabolic subsystem of type A2 if and only if a0 and b0 are long, (a0, b0) < 0, and
3 - (2h+ k), (h+ 2k).
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Assume thata, b∈1 are a basis for a parabolic subsystemR ∼= A2. ThenR= (Za +
Zb)∩1 = (Qa+Qb)∩1. Clearly we have〈a0, b0〉 = 〈b0,a0〉 = −1; moreover, from the
Dynkin diagram, we see thata, b, hencea0, b0 must be long. Then we have1

3(2α0+b0)∈10,
therefore, if 3| (2h+ k), also 1

3(2a+ b)∈1: this would imply(Za+Zb) ∩1 6= (Qa+
Qb)∩1against the assumption. Therefore 3- (2h+ k)and similarly 3- (h+2k). Conversely,
assume thata, b are long roots such that〈a, b〉 = 〈b,a〉 = −1. If N(a, b) is not parabolic,
a, b are included in a parabolic subsystem of typeG2. Then 1

3(2a + b), 1
3(a + 2b)∈1;

therefore 3| (2h+ k), (h+ 2k).
Now we go on by a direct inspection.

I. α = α1. By the above criterion, together with our choice of minimality, we get either
β = (α1+ 3α2)+ δ, orβ = −θ + δ; we distinguish the two cases.
a) β = (α1 + 3α2) + δ. By compatibility, α1 + 3α2∈ N; moreover, sinceβ =
(α1 + δ) + 3α2, at least one ofα2, α1 + δ belongs toN. In the first case we get a
contradiction sinceα1, α2 clearly generate a parabolic p-subsystem; in the latter case
we get a contradiction sinceα1 + 3α2, α1 + δ generate a parabolic p-subsystem of
type A2.
b)β = −θ+δ. Thenγ = −α1−3α2+δ. In this caseβ, γ are minimal in theirδ-string,
thusx cannot be parallel to any ofα, β, γ and therefore it cannot be long. Moreover
(α1, x) > 0 andx must be minimal in itsδ string, therefore we have eitherx = α1+ α2

or x = −α2+ δ. In the first case we get a contradiction since{x, β} is a basis for a para-
bolic subsystem of typeG2; the second case is not possible, sincex = β + 2(α1+ α2)

and neitherβ, norα1+ α2 precedex in N.
II. α = −θ + δ. Thenβ = α1 or β = α1 + 3α2. In both subcases,β, γ are minimal in

their δ-string and thereforex is short; since(x, α) > 0, we getx = −α1 − α2 + δ or
x = −α1− 2α2+ δ.
a)β = α1. Thenγ = −α1 − 3α2 + δ. If x = −α1 − α2 + δ we get a contradiction
since{x, β} is a basis for aG2 subsystem. The casex = −α1− 2α2+ δ is not possible
sincex = γ + α2 and neitherγ , norα2 precedex in N.
b) β = α1 + 3α2. Thenγ = −α1 + δ. We getx 6= −α1 − 2α2 + δ, otherwisex, β
would be a basis for aG2 subsystem. Finally the casex = −α1−α2+ δ is not possible
since 2x = (−θ + 2δ)+ α2 and neither−θ + 2δ, norα2 precedex in N. 2
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