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Abstract. The notion of matroid has been generalized to Coxeter matroid by Gelfand and Serganova. To each
pair (W, P) consisting of a finite irreducible Coxeter growpand parabolic subgroup is associated a collection
of objects called Coxeter matroids. The (ordinary) matroids are a special case, tiW¢ ea8g (isomorphic to
the symmetric group Sy ) and P a maximal parabolic subgroup. The main result of this paper is that for
Coxeter matroids, just as for ordinary matroids, the greedy algorithm provides a solution to a naturally associated
combinatorial optimization problem. Indeed, in many important cases, Coxeter matroids are characterized by this
property. This result generalizes the classical Rado-Edmonds and Gale theorems.

A corollary of our theorem is that, for Coxeter matroids the greedy algorithm solves the-assignment
problem. LetW be a finite group acting as linear transformations on a Euclidean §hacwl let

fey(w) = (wg,n) foré,neE,weW.

The L-assignment problem is to minimize the functifu), on a given subsdt € W.

An important tool in proving the greedy result is a bijection between thé/gét of left cosets and a “concrete”
collection A of tuples of subsets of a certain partially ordered set. If a pair of elemerif¢ afe related in
the Bruhat order, then the corresponding elementd afe related in the Gale (greedy) order. Indeed, in many
important cases, the Bruhat order Bhis isomorphic to the Gale order o#. This bijection has an important
implication for Coxeter matroids. It providémsesandindependent sefsr a Coxeter matroid, these notions not
being inherent in the definition.
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1. Introduction

Perhaps the best known algorithm in combinatorial optimization is the greedy algorithm.
The classical MAXIMAL (MINIMAL) SPANNNING TREE problem, for example, is
solved by the greedy algorithm: Given a finite graphwith weights on the edges, find
a spanning tree o with maximum (minimum) total weight. At each step in the greedy
algorithm that solves this problem, there is set of edfe®mprising the partial tree; an
edgee of maximum weight among the edges noflir(the greedy choice) is added Toso
long asT + e contains no cycle.

A natural context in which to place the greedy algorithm is that of a matroid. Consider
a pair(X, Z) consisting of a finite seX together with a nonempty collectiaghof subsets
of X, calledindependent setxlosed under inclusion. There is a natural combinatorial
optimization problem associated with this pair.

Optimization Problem Given a weight functio : X — R, find an independent set that
has the greatest total weight.
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Thegreedy algorithnfor this problem is simply:

I =0

while X # @ do
remove an element € X of largest weight
ifl +xeZthenl =1 +x

In the spanning tree problem, the 3etonsists of the set of edges®fand the independent
sets are the acyclic subsets of edges.

Itis well known that the following statements are equivalent for aphie (X, 7). Here
BB denotes the set of basesMf abasisbeing a maximal independent set.

(1) M is a matroid.

(2) The greedy algorithm correctly solves the combinatorial optimization problem associ-
ated withM for any positive weight functiog : X — R.

(3) Every basis has the same cardinality and, for every linear ordermgX, there exists
a B € B such that for anyB’ € B, if we write B = (by, by, ..., b)) and B =
(b}, by, ..., by with the elements oB and B’ both in increasing order, thdm > by
foralli.

The componentwise ordering of bases given in statement (3) is calé=lordering|[8],
and it is a main concern of this paper.

The primary purpose of this paper is to place the greedy algorithm into a natural setting
broader than that of matroids, into the setting of Coxeter matroids. The notion of matroid
has been generalized to Coxeter matroid by Gelfand and Serganova [10, 11]. To each
pair (W, P) consisting of a finite irreducible Coxeter groWp and parabolic subgroup
P is associated a collection of objects called Coxeter matroids. The (ordinary) matroids
are a special case, the cage= A, (isomorphic to the symmetric group Sym) and
P a maximal parabolic subgroup. The other Coxeter matroids provide new families of
interesting combinatorial structures analogous to the ordinary matroids. There has been a
flurry of research in the area of Coxeter matroids; in particular there are several relevant
articles in a recent issue of the journal Annals of Combinatodic4998), and a book by
Borovik and White [3] is forthcoming.

The main result of this paper, Theorem 3 of Section 5, states that for Coxeter matroids,
just as for ordinary matroids, the greedy algorithm furnishes a correct solution to a naturally
associated combinatorial optimization problem. Indeed in many important cases, Coxeter
matroids are characterized by the greedy algorithm furnishing a correct solution to the
naturally associated combinatorial optimization problem. After the completion of the first
draft of this paper, the preprint in Russian by Serganova and Zelevinsky [16] came to our
attention. That paper deals with connections between a greedy algorithm and the classical
Weyl groups. This paper generalizes and extends those results.

The organization of the paper is as follows. Section 2 gives basic definitions related to
Coxeter groups and Bruhat order. Also in that section is information about the geometric
interpretation of a Coxeter group in terms of its Coxeter complex. This allows for geometric
insight into the mainly algebraic constructions used in the paper.
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The main result of Section 3 (Theorem 1) basically states that Bruhat order is Gale
(greedy) order. For a given parabolic subgrdeimf a Coxeter group, the collection
W/ P of left cosets can be represented as a concretel sdttuples of a fixed partially
ordered set. Each elemdy, ..., By) of Ais called aradmissible setlf P is a maximal
parabolic subgroup oV, thenm = 1 and an admissible set is a single Bet If a pair
of elements ofW/P are related in the Bruhat order, then the corresponding elements of
A are related in the Gale order. Indeed, in important cases, the Bruhat oriléf Bris
isomorphic to the Gale order o#.

For a given parabolic subgroupof a Coxeter groupV, the notion ofidmissible function
f : W/P — Risdefined in Section 4. The combinatorial optimization problem associated
with the pair(W, P) is, given a subset ¢ W/P and an admissible functiof, find an
element ofL that maximizesf .

The concept o€oxeter matroid Ms defined in Section 5 and is endowed with a collection
B(M) of bases, each basis being an admissible set. This allows for the investigation of
Coxeter matroids in terms of its bases, basis being a concept not inherent in the definition
of Coxeter matroid. Section 5 also contains the main result on Coxeter matroids and the
greedy algorithm.

An application of the main theorem to theassignment problem is contained in Section
6. It provides a greedy algorithm to solve theassignment problem whdnis a Coxeter
matroid. Every finite Coxeter group can be realized as a reflection group in some
Euclidean spacE of dimension equal to the rank §¥. Consider a finite groufgV acting
as linear transformations on a Euclidean sgacend let

fe,(w) = (w&,n) for&,nek, weW.

The L-assignment problem is to minimize the functién, on a given subsdt < W.

2. Coxeter systems and Bruhat order

Let (W, S) be a finite Coxeter system of rank This means thadV is a finite group with
the setS consisting ofh generators and with the presentation

(s€ S| (s = 1),

wheremsg is the order o6s, andmgs=1 (hence each generator is an involution). The group

W is called aCoxeter groupThediagramof (W, S) is the graph where each generator is

represented by a node, and nodeands’ are joined by an edge labeleds whenever

msg > 3. By convention, the label is omittedrifisg = 3. A Coxeter system igreducible

if its diagram is a connected graph. A reducible Coxeter group is the direct product of the

Coxeter groups corresponding to the connected components of its diagram. Finite irreducible

Coxeter groups have been completely classified and are usually denofgd(by> 1),

Bn(=Cn) (n > 2), Dy (n > 4), Es, E7, Eg, F4, G2, Hz, Ha, andlz(m) (m > 5, m # 6),

the subscript denoting the rank. The diagram of each of these groups is given in figure 1.
A reflectionin W is a conjugate of some element&f Let T = T (W) denote the set

of all reflections inW. Every finite Coxeter groujV can be realized as a reflection group
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Figure L Irreducible finite reflection groups.

in some Euclidean spad&of dimension equal to the rank &Y. In this realization, each
element ofT corresponds to the orthogonal reflection through a hyperplalieamtaining

the origin. Each of the irreducible Coxeter groups listed above, exzgps, E7, andEg,

is the symmetry group of a regular convex polytope. The grags isomorphic to the
symmetric group Sym ,, the setS of generators consisting of the adjacent transpositions
(,i+D,i=212,...,n

For a finite Coxeter systerfWV, S), let ¥ denote the set of all reflecting hyperplanes
inE. LetE’ = E\ Uy H. The connected components Bf are calledchambers For
any chamber, its closurel™ is a simplicial cone ifE. These simplicial cones and all their
faces form a simplicial fan called tHeoxeter compleand denoted\ := A(W, S). Itis
known thatW acts simply transitively on the set of chambers. To identify the elements
of W with chambers, we choose a fundamental chanilpewhose facets (i.e., faces of
codimension one) are on reflecting hyperplanes for the simple reflectians; then the
bijective correspondence betwedhand the set of chambers is given toy— w (o).

Every subsetl C Sgives rise to a (standargjarabolic subgroup )/ generated byl.
The maximal parabolic subgroulgés_s; will be of special importance for us, and we will
use the shorthanBs = Ws_g; for s € S. If P = W; is a parabolic subgroup, we denote
by I'o(P) the set of points iy whose stabilizer iW is exactlyP. The closurd’o(P) is a
face of the simplicial con&, and the correspondenée— T'o(P) is a bijection between
the set of parabolic subgroups\&f and the set of faces df;. Using the action oW, we
obtain the following well known description of the faces of the Coxeter complex [12].




THE GREEDY ALGORITHM AND COXETER MATROIDS 159

Proposition 1 Let(W, S) be a finite Coxeter system. The correspondence
wP = w(o(P))
is an inclusion reversing bijection between the union of left coset spatgs modulo all

parabolic subgroups and the collection of all facesAaalW, S). Two facesw (I'p(P)) and
w'(To(P’)) are contained in the same chamberff and only ifwP N w'P’ # @.

In the case thalV is the symmetry group of a regular polyto@e:= Q(W), the Coxeter
complex is essentially the barycentric subdivision of the boundary compl€x ofwo
facesq andq’ of Q are calledincidentif eitherq c q or ' C q. The last statement
in Proposition 1 implies that two faces & are incident if and only if the corresponding
cosets have nonempty intersection.

We give two equivalent definitions of the Bruhat order on a Coxeter group; for a proof of
the equivalence see e.g., [7]. We will use the notation w for the Bruhat order. For
w € W a factorizationw = s1S;-- - into the product of simple reflections is called
reducedif it is shortest possible. Ldt{w) denote the lengtk of a reduced factorization
of w.

Definition 1 Defineu > v if there exists a sequenee= ug, Uy, ..., Uy = U such that
ui = tjuj_41 for some reflectioty € T(W), andl(u;) > l(uji_y) fori =1,2...,m.

Definition 2 If u = 515, - - - & is a reduced factorization, then> v if and only if there
existindices I<i; < --- <ij <ksuchthab =5, ---5;.

The Bruhat order can be also defined on the left coset spgde for any parabolic
subgroupP of G. Again we give two definitions.

Definition 3 Define Bruhat order oiV/P by G > v if there exists a1 € 0 andv € v
such thau > v.

Itis known (see e.g., [12]) that any cosiet W/ P has a unique representative of minimal
length, denotedi,.

Definition 4 We haved > v in the Bruhat order oitV/ P if and only if Umin > Umin.

We will associate with eacls € W a shifted version of the Bruhat order @y P, which
will be called thew-Bruhat order and denotesd,, .

Definition 5 Defined >, » in thew-Bruhat orderon W/ P if w10 > w4,

The Bruhat orders for many particular choicesfand P have been explicitly worked
out [14]. It is instructive to keep in mind the following three classical examples, where
W is of the typeA,, C, or Dy, andP = P; := Ws_(g is the special maximal parabolic
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subgroup for which the simple reflectisrcorresponds to the leftmost node in the Coxeter
diagram ofW in figure 1.

Example 1 (ordinary case) The groupW = A, is the symmetric group Sym,, the set
S={s,..., S} of generators consisting of the adjacent transpositpas(i,i + 1), =
1, ..., n. The parabolic subgroup is the stabilizer inW of the element & [1,n + 1] =
{1,...,n+ 1}, soW/Py is identified with [1 n + 1] via wP; — w(1). Under this identi-
fication, the Bruhat order ow/P; becomes the linear order on j1+ 1] given by

1<2<---<n+1

The groupA, is also isomorphic to the symmetry group of the regalaimplex. Geomet-
rically W/ P; corresponds, under the bijection of Proposition 1, to the set of vertices of the
regularn-simplex.

Example 2 (symplectic case) The groupW = C, can be identified with the subgroup
of the symmetric group Sygp consisting of all permutations that commute with the
longest permutatiomg € Sn. It is convenient to denote by [h] U[1, n]* = {1,...,n,

1*, ..., n*} the set of indices permuted by Symand to realizewy as the permutation

i — i* i, i €[1,n]. The standard choice & = {s,, ..., s} is then the following:

s =(@(,i +1@{*,d+D*fori =1,...,n—1, ands, = (n, n*). As in the previous
example,P; is the stabilizer inV of the element %k [1, n] U[1, n]*, soW/ P, is identified
with [1, n]U[1, n]* viaw Py — w(1). Under this identification, the Bruhat order vy P,
becomes the linear order on, [i] U [1, n]* given by

1<2---<n-1l<n=<n<n-1"<...<2"<1"

The groupC,, is also isomorphic to the symmetry group of the reguakaiimensional cross
polytope (general octahedron). GeometricAly P; corresponds, under the bijection of
Proposition 1, to the set of vertices of the reguladimensional cross polytope. With the
notation above, verticasandi* are antipodal.

Example 3 (even orthogonal case) The groupW = D,, can be identified with the sub-
group of even permutations in the Coxeter gr@jprealized as in the previous example.
The setS = {si, ..., sy} then consists of the elemerds= (i,i + D)(i*, (i + 1)*) for
i=1...,n—1,ands, = (n—1,n*)(n, (n—1)*). Asin the first two examples}; is the
stabilizer inW of the element k& [1, n] U[1, n]*, soW/ P, is identified with [1 n] U[1, n]*
viawP; — w(1). However, the Bruhat order oW/ P; is no longer linear; it is given by

n
1<2<---n—-1< <=-D*<... <2* <1*
n*

Returning to a general Coxeter grouMy and a parabolic subgroup, regardW as a
reflection group in Euclidean spaEavith the usual inner produ¢t, n). Fixanys € T'o(P).
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Since, by definition, the stabilizer éfin W is P, we can unambiguously define the point
U = 0(8) € E foranyu € W/P. The following proposition is given in [15] as a
consequence of the definition of Bruhat order.

Proposition 2 If 0 > ©» in the Bruhat order on WP, then(us, n) < (v8, ) for any
nelo.

3. The relation between Bruhat order and Gale order

Let (W, S) be afinite, irreducible, rank Coxeter system and = W; a parabolic subgroup
in W (recall thatP is generated by a subsktc S). We will provide a “concrete” realization
of the Bruhat order oW/ P by encoding the elements ¥¥/P as appropriate tuples of
subsets. To do this, some terminology and notation are needed.

For a finite setX, we denote by ? the set of all subsets oX. If | is another finite
set, denote by2X), the set ofl -tuples of subsets oX; that is,(2%), consists of families
A = (A))ic of subsets oK indexed byl . Suppose now thaX is a poset, i.e., is equipped
with a partial order which we write simply @s> b. We introduce the correspondi®Gale
orderon (2X), as follows.

Definition 6 If A = (A) andB = (B;) are twol -tuples of subsets iX thenA > B in
the Gale order if, for everiy € 1, there exists a bijectioffy : A — B;j such thata > fi(a)
foranya € A;.

In particular, if twol -tuplesA = (A)) andB = (B;) are comparable in the Gale order then
A andB; have the same cardinality for any |.

Returning to the Bruhat order oW/ P for P = W;, we will construct, for any proper
parabolic subgrou® in W, an embedding

B=BY:W/P - Vs ;.

For any coset € W/P and anyi € S— J, denote byi(i) € W/P the unique coset modulo
the maximal parabolic subgroup that containg.

Definition7 Foru € W/ P, theQ-basisof #isan(S—J)-tupleB(©) := B (@) = (B))ics_J
of subsets oW/ Q given by

B ={0eW/Q|unud)# ).

The rationale for the terminology “basis” will become clear in Section 5. Note thBtjsf
maximal, then th&)-basis ofv € W/P consists of the single set

B={leW/Q|UND %7}

In this casev corresponds to a vertex in the Coxeter compledV, S), and5(v) consists
of the faces corresponding (by Proposition 1) to the coseWd i@ that lie in a common
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chamber with this vertex. In the case tWdtis the symmetry group of a regular polytope
andQ is also maximal, the cosétcorresponds to a face of a certain dimension, sajy,
and(v) is the set of all faces of another dimension, kaincident witho .

Not every member of2"V/Q)s_; can appear as @-basis of some element af//P.
Those that can are callgg-admissible and the set ofQ-admissibletuples forw/P will
be denotedd(P, Q). If Q = P, the maximal parabolic subgroup corresponding to the
first node in the Coxeter diagram, then the notation will be sirpl?).

Definition 8

A(P. Q) = B3 (W/P)
A(P) = Bt (W/P)

Since the individual elements (P, Q) lie in W/Q andW/ Q is a poset with respect to
Bruhat order,A(P, Q) is itself a poset with respect to the corresponding Gale order given
in Definition 6.

The following examples are a continuation of the three examples in the previous section.

Example 1 (ordinary case) ConsiderW = A, as the symmetric group Sym,. The
parabolic subgroufP := Ws (g, is the setwise stabilizer iV of {1,2,...,k}. To
determine theP;-admissible sets, note thattife W/ P, andv € W/ Py, thenGinv # @ if
and only ifv(1) € {u(2),...,uk)}. Since{u(l),...,u(k)} can be ank-element subset
of [n + 1], the P;-admissible sets are all tikesubsets ofj + 1].

AR = ([” ; 1])
Geometrically, the admissible sets are (the vertex sets ofkthel)-dimensional faces of
the regulan-simplex. The Bruhat order oy, as given in Example 1 of Section 2, induces
the Gale order otd(Py). For example, with = 4,k = 3we have 235> 1 2 5 in the
Gale order. (As is common in the matroid literat§Pe3, 5} is simply denotd 2 3 5.)

Example 2 (symplectic case) If W = C,, an analysis similar to that in Example 1
indicates that

A= e (190T)

k

bothi andi* cannot appear simultaneouslyoir} .

For example, witim = 4, k = 3, the set 1 24is admissible btd 2 2* is not. Geometrically,

the admissible sets are (the vertex sets of) the regkiat)-dimensional faces of the regular
n-dimensional cross polytope, where a vertex and antipodal vertex pair are denoted by a
number and its star. The Bruhat order Bnas given in Example 2 of Section 2 induces

the Gale order otd(Py). For example, witm = 4, k = 3we have 12 3* > 1 2* 4 in the

Gale order because + 2%, 3* > 4,2 > 1.
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Example 3 (orthogonal case) If W = D, andk < n — 2, then, just as in th€, case,
U *
AP = {a c ([n] k[n] )

However, A(P,_1) consists of all sets inll“I"") such that botti andi* cannot appear
simultaneously and there are an even number of starred elements. Sidi{&y con-
sists of all sets in{{!"I"") such that botli andi* cannot appear simultaneously and there
are an odd number of starred elements. The Bruhat ord&; @s given in Example 3 of
Section 2 induces the Gale order @iiPy). For example, witm = 4, k = 3 we have
1*2 34 > 12 34 inthe Gale order becausé & 2*, 3* - 4* 4> 3, 2> 1.

bothi andi*cannot appear simultaneouslyoir} .

A mappingf from one poset to another is callewnotoneéf u > vimplies f (u) > f (v)
forallu, v. Abijection f for which bothf and f ~ are monotone is called aomorphism

Theorem 1 Let (W, S) be a finite irreducible Coxeter system and P and Q parabolic
subgroups. The Q-basis map

B:W/P — A(P, Q)
b > B(D)

is a monotone bijection from the set/\® with respect to Bruhat order to the sd(P, Q)
with respect to Gale order. MoreoveB is an isomorphism if the Bruhat order on M@ is
linear.

Proof: It is surjective by definition of admissible. L& = W;. Recall the notation for
a maximal parabolic subgrougy = Ws_yj;. Injectivity follows from the following known
properties of Coxeter groups [17].

(I) Njea Pj =W,;.
(i) If two elements inW/P; have the sam®-basis, then they coincide.

Statement (i) says thate W/P is determined byvP; | j ¢ J}, and statement (i) says
thatv P; is determined by it®Q-basis.
Concerning the monotone property and isomorphism there are three things to prove.

(1) vPy = uPy & vP; = uP; forall j ¢ J.

(2) vP; = uP; = B(vP)) > B(uP;) for eachj ¢ J.

(3) Ifthe Bruhat order oW/ Q is linear, then3(vP;) > B(uP}) = vP; > uP; for each
j¢d.

Statement (1) is Lemma 3.6 in Deodhar [7]. The proof there applies to our situation without
change.

In the following proof of statement (2), we will use Definition 4 (Section 2) of Bruhat
order. Ford C [n], letWJ = {w e W | [(ws) = | (w) + 1 for all s € J}. This is the set of
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all minimal representatives of cosetsWy P. It is well known [12] that for anyw € W we
havew = w’wj wherew’ € WY andw; € Wj, and this expression is unique. Moreover,
l(w) =1(w?) +(w;).

Assume thab P; > uP; and letvmin andiimin be the minimum elements inP; andu P,
respectively. The mapping : vminX — UminX, X € Pj, is a bijection betweenP; and
uP; such thatominX > ¢ (IminX). Then the mapping3 :yQ = ¢(y)Q induces a well
defined bijection betweeB(vP;) andB(uP;) such thaty Q > qAb(yQ). But this is exactly
Gale ordeB(vP;) > B(uP;). Thus statement (2) is proved.

Concerning the proof of statement (3), assume that the Bruhat orféy @nis linear. To
prove thatB is an isomorphism we must show thafitvP;) > B(uP;) thenvP; > uP;.
This requires some preliminary properties of Bruhat order:

(a) Property Z(s, wy, wo): If wy, wo € W ands € Ssatisfyl (w1) > | (swq) andl (wy) >
I (swy), thenw, > wy & wr > Swy & Swy > Swy.

(b) If w e WY ands e Ssatisfyl (w) > | (sw), thensw € W”.

(c) Ifw e W ands e SsatisfywP; > swPj, thenw > sw.

Properties (a) and (b) are in [7]. Concerning (CywHin is the minimum element ab P,
thenwmin > SWmin becausswmin € sw Pj, S0 thaswmin > wmin iS impossible. By property
(b) we haveswmin € WY, whered = [n]\{j}. The decomposition of any element &
into a product of elements k7 andW; (discussed above), implies that> sw. Thus
property (c) is proved.

Let BwP;) = {v1Q,...,vmQ} and B(uPj) = {u1Q,...,unQ}. Because we are
assuming thaB(vP;) > B(uP)), we havey;iQ > uiQ fori = 1,....m. Let vy
be the minimum element afP; and ly;n the minimum element ofiP;. The proof of
statement (3) now proceeds by induction on the lengthw@f If | (Umin) = 0, thenvmin
is the identity 1. Consequently, the minimum elements in the ces€ls.. ., v, Q are all
elements ofP;. By Definition 2 of Bruhat order, the minimum elementsef, ..., unQ
must be subwords of the minimal element0®, ..., vmnQ, hence also elements &%.
ThereforeB(vP;) = B(uP;). By the injectivity of the mapping, we havevP; = uPj;
the first instance in the induction is done. Now assumelitigfi,) > 1. Chooses € S
such thatmin > Svmin. The proof is now divided into three cases.

Case 1. Umin > Slmin. In this case we claim thag(svP;) > B(suBR); more precisely
we claim thatsy; Q > sy Q for all i. By the induction hypothesis, this would imply
thatsvP; > suB. By property (b) Stmin andsiimin are the minimum elements et P;
andsu B, respectively. Thereforgmin > Slmin. By propertyZ(s, Umin, Umin), We have
Umin > Umin, and hence the desired resuR; > uP;.

To prove the claim for Case 1, fix an indexLet v’ andu’ be elements of; Q N v P
andu; Q Nu Py, respectively. Themmin > Sumin implies thatv’'P; > sv’'P; since both
Umin @aNdSvnmin are minimum elements. This implies, by property (c), tHat sv’, which
in turn implies thatv’Q > sv’Q. Similarly Umin > SUmin implies thatu'Q > su Q. If
v” andu” are the minimum elements of Q andu’Q, resp., then clearly’Q > u'Q
implies thatv” > u”. Alsou”Q > su’Q impliesu” > su’ unlessu”Q = su’Q and
v"Q = sv”Q impliesv” > sv” unlessv” Q = sv” Q. Assuming the cases of equality do
not occur, property (s, u”, v”) implies thatsv” > su’, i.e.,svi Q > sy Q.



THE GREEDY ALGORITHM AND COXETER MATROIDS 165

Now consider the cases of equality above. First;i®) = sv”Q thensv’'Q = v'Q >
uUQ > suQ, and we are done. Second,ufQ = su’Q andv”Q > sv”Q then by
previous arguments” is the mimimum element afv’ Q. Sincev” Q > sv” Q we have
v/ > sv”. If U > su’ the argument in the paragraph above works, bsuif >~ u”
then letw = su’ andsw = u” so thatw > sw. Now v” > u” implies thatv” > sw.
By property Z(s, v, w) we have that” > sw impliessv” > sw = u”. Therefore
sv”Q > u’Q = su’Q. (Note that the argument used in this paragraph will be referred
toin Cases 2 and 3.)

Case 2. Smin > Umin @andsuB > uP;. In this case we claim tha(svP;) > B(uP;);
more particularly we claimthab; Q > u; Qforalli. By the induction hypothesis applied
to Sumin, We havesvP;j > uP;, which implies, by property (b), th&vmin > Umin. By
propertyZ (s, Slmin, Umin), W& hav&min > Umin, and hence the desired resuR; > uP;.

To prove the claim for Case 2, fix an index With the same notation as in Case 1,
this inequality implies thasu > u’ which implies thatsu’Q > u”Q which in turn
implies thatsu’ > u” unlesssu’Q = u”Q. If su” = u”, then the same arguments
as in Case 1 can be used to prove the claim for Case 2sth@t > u; Q. Moreover,
su’Q = u”Q is impossible becausg’ > su’ implies, by property (b), thagu’ is the
minimum element fosu’Q, and, sincel” is the minimum fow” Q, this would imply that
u'Q = su'Q.

Case 3. Smin > Umin andsuB = uP;. We claim thatB(svP;) > B(uP;j). By the
induction hypothesis, we hawP; > uP;, which impliesvP; > uP; exactly as in
Case 2.

To prove the claim for Case 3, consider any pa®@ anduxQ of cosets inB(uP;)
whereuxQ =su Q. (Itis possible thati; Q = ux Q.) Note that such pairs form a partition
of the setB(uP;). Our intention is to show that each p&&v; Q, sucQ} is greater than
or equal to{u; Q, uxQ} in the Gale order. In other words, eithsy; Q > u;Q and
sukQ > ukQ orsv; Q > ukQ andsvQ > u; Q.

Letu” anduZ be the minimum elements of Q andsu Q, respectively. Isu’ > u”
andsu] > ug, then, by the argument of Case 2 (and also Caseul) > u; Q and
sukQ > ukQ.

It remains to deal with the possibility that either >~ su” orug > su. Without loss of
generality assume that > su’. Since, by property (bsu” must be a minimal element
in its coset modulaQ, and, sincesuB =uP;, bothu” andsu’ represent elements of
B(uPj). Letw =su” andsw =u” and letz; > sw andz > w, be the minimal elements
of the cosets; Q and vk Q in B(vPj) that, by assumption, dominatgQ =swQ and
ukQ=wQ resp., in the Bruhat order. Sinsa > w, correspondinglyg; > z. Also
sincesw > w itfollows, asin Case 2, thab, Q = ux Q. Ifitisalso true thasv; Q > u; Q,
then the proofis complete. Assume thatitis not the casesth@t=sv; Q > u; Q = swQ.
Here is where we use the linearity of the Bruhat ordeMéfQ. Because; > sw we
havez Q > swQ and by the linearity we havewQ > sz Q. These two inequalities
imply z > sz. Butz > sw > sz implies, because; coverssz in the Bruhat
order (see [12]), that; = sw. Moreover,sw =z > zx > w implies thatz,=w. Then
siQ=5ZQ=wQ=sUQ=uxQ andsvkQ=szQ=swQ=u"Q=u; Q. Thus the
pair {sv; Q, suxQ} is equal to{u; Q, ux Q} in the Gale order, and we are done. O
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Figure 2 Gale order on4(P) is the Bruhat order on Sygn

Example4 Asanexample of a collection of admissible sets with respect to a non-maximal
parabolic subgroup, consider the c&¥e= A, ~ Sym,; and the trivial parabolic subgroup

P =W;. ThenW/P =W. The bijection betweei, and.A(P) is explicitly indicated as
follows, whereS= {s, 5} is the canonical set of generators of Sym

B(id) = B(123 = (1,12, B(s) = B(213=(2,12),
B(s) =B(132 = (1,13, B(ss) =BB19)=(3,193),
B(s1s) = B(23) = (2,23), B(sis1) = B(32)=(3,23).

According to Theorem 1, the symmetric group Syisiisomorphic taA(P). The Hasse
diagram ofA(P) with respect to the Gale order is given in figure 2, which is, by Theorem 1,
also the Hasse diagram of the Bruhat order on SyRecall that, for the symmetric group,

a permutatiornr covers a permutatios in the Bruhat order ifr is obtained froms by an
inversion that interchangeqi) ando (j) for somei < j witho (i) < o(j).

Example5 The Hasse diagram below shows the Bruhat order on the 20 elem&fdef
whereW = Hg, the symmetry group of the icosahedron. Using the bijection of Theorem 1,
the elements ofV/P; have been labeled by the@-bases inA(Ps), whereQ = P;. The
Bruhat order oW/ Q in this case is not linear:

6
1<2<3<4<5< <5"<4* <3 <2"<1%
6*

(The* denotes the antopodal vertex if the elementd/giQ are viewed, via Proposition 1,
as the 12 vertices of the icosahedron.) Nevertheless, it is easy to check that figure 3 is
also the Hasse diagram for the Gale ordetdy#;). SoHs/Ps; and. A(Ps) are isomorphic
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21

1*2*3*
1*2*4*
1*3*5*
1*4*6* 2*'3*6
1*5*6* 2*4*5
3*5%4 2*65
4*6*3 3*64
4*53
651
641
531
4
3

5*6*2
5*42
6*32
21

Figure 3 Gale order ond(P) is Bruhat order orHz/P.

posets, although Theorem 1 only guarantees that there is a monotone bijectidtgftBsn
to A(P3). The next remark shows that it is not always the case that the Bruhat order on
W/P is the Gale order ol (P, Q).

Remark The basis ma8 of Theorem 1 is not, in general, a poset isomorphism. For
example, consider the orthogonal case (Example 3 in Sections 2 and 3)Whei#,. Let

P =P, and Q = P; (node 2 is the node of degree 3 in the Coxeter diagram of figure 1).
The Bruhat order oiV/Q is not a linear order:

4
1<2<3< < 3 <2 < 1",
4*
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The basis maB is a bijection betweeiV/P and all two elements subsets \bf/ Q not
consisting of an element and its star. Consider the two cegetandvP, whereu and

v are expressed in terms of standard generaoess,;s;94S, andv = $4$,553S,. Bothu

andv are minimal representatives of their respective cosets, and they are incomparable in
the Bruhat order oWV; henceu P andv P are incomparable in the Bruhat order dfy P.

On the other han@®(uP) =3 4 andB(vP)=4 3*. But 3 4 is less than 4*3n the Gale

order.

4. Admissible orders and admissible functions

Let (W, S) be a Coxeter systen? and Q parabolic subgroups, and(P, Q) the cor-
responding collection of admissible sets. weight functiong : W/Q — R is said to
be compatiblewith the Gale order oW/Q if ¥ > U implies that¢ (v) > ¢ () for any
0, v € W/Q. Afunction f : A(P, Q) — Ris called aQ-linear functionif it is of the form

m

fB)=) ¢ ob),

i=1 be Bi

whereB = (By, By, ..., By) and¢ is compatible with the Gale order &/ Q andc; > 0
foralli. If ¢ =1 foralli, then f (B) is simply thetotal weight the sum of the weights of
all the entries irB, counting multiplicity. In particular, ifP is maximal, therB is a single
set and

f(B)=)_ ¢(b)

beB

is (up to a positive constant) the total weightef

Define anadmissible orderon the setW/Q of cosets as av-Bruhat order for some
w € W. An admissible weighon W/Q is a real valued functiop : W/Q — R that is
compatible with some admissible order.@xadmissible function f A(P, Q) — Ris a
Q-linear function

m

fB)=) c ) ¢,

i=1 be Bi

whereg is an admissible weight oW/ Q.

In light of the bijection5 : W/P — A(P, Q) of Theorem 1, it is appropriate to define
a function f : W/P — R to be aQ-admissible functionf the corresponding function
f: AP, Q) — R defined byfA(A) = f(B~1(A)) is Q-admissible. We will usually make
no distinction betweerf and f.

Given parabolic subgroud® and Q, there is a naturally associated combinatorial opti-
mization problem that is the main topic of the remaining sections of this paper.
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Optimization Problem. Given a subsetl c A(P, Q) and a Q-admissible function
f . AP, Q) — R, find an element of that maximizesf .

Example 1 (ordinary case) If W= A, andQ = Py, then recall thaw/Q =[n + 1] and
the Bruhat order oWW/Qis1 <2 < --- <n+ 1. If w € W then, by definitionj < j in
thew-Bruhat order oW/ Q if and only if w=2(i) < w=1(j) in the Bruhat order oiV/Q.
Letting w range over all the elements ¥ (all permutations ofni + 1]), we conclude
that an admissible order &y linear order on the seh[+ 1]. An admissible weigh$ is
therefore any weight function. Considering the case of a maximal parabolic subgroup
a Q-admissible functionf : A(Py) — R is of the form

k
f(B)=) o),
i=1

whereB={b,, ..., by}.

Example 2 (symplectic case) If W =C,, andQ = P4, then recall thaWW/Q = [n] U [n]*
and the Bruhat order ow/Q is

1<2.--.<n—=1<n<n*<nN-L*"<... <2 <1

Becausethe s&={si, ..., s,} of generators o€, is of the forms = (i, i +1)(i*, (i +1)*)

fori=1,...,n—1, ands, = (n, n*), an admissible order is any linear order oh [n]*
of the form
i1 <ipg<-ip=<if<ip_g<---i7,

where the firsn elements are starred or unstarred &fid=i. Consequently the admis-
sible weight functions include all weighis such thatp (i*) = —¢ (i) for eachi € [n]. A
Q-admissible functionf : A(P¢) — R has the same form as in Example 1.

Example 3 (orthogonal case) Likewise, if W = D,,, an admissible order is any order on
[n] U [n]* of the form:

in
i1 <ipg<--ipm1 < <if g <---<i3<if.
in
wherei; throughi, are starred or unstarred aifd =i. The admissible weight functions
in the orthogonal case are exactly the same as the admissible weight functions in the sym-
plectic case, because a weight function must be compatible with the ordering.

The last result in this section is that a particular function, that will be needed in the
next section, is admissible. Consider the realization of a rai@oxeter groupW as a
reflection group inn-dimensional Euclidean space. With the notation of Section 2, set
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E’'=E\Uncx H, whereX is the set of all reflecting hyperplanes. Call a vectgular if
it lies in E’. Let P be a parabolic subgroup &Y. Recall that ifs € I'o(P), thenw(§)
depends only on the cosetwofin W/P.

Theorem 2 Let P and Q be parabolic subgroups of W £I€ 'o(P) andy is regular,
then

fe,:W/P — R

@
fe.n(w) =—(wé, n).

is a Q-admissible function.

Proof: Fix¢ € I'o(Q). Thenw(¢) depends only on the left coset@fto whichw belongs.
With w € W/Q, define

¢ (w) =—(we, n). &)

It follows from Proposition 2 that, if is regular, then this functiop: W/Q — R is an
admissible weight function. It is admissible because it is compatible withwghBruhat
order, wherawy is the unique element &/ such thatwgln e Io.

Choose one nonzero vector on each of the 1-dimensional fadgg®@j. Denote these
byé&i,...,&m Then

£=) cé&, ®)
=1

wherec; > O for alli. For eachi let B, denote the maximum parabolic subgroup cor-
responding to the facg under the correspondence of Proposition 1;Psac P,. Let

P /Q={01,...0}; this is aQ-basis forR. Further lete = >, uj(¢) and letv be an
arbitrary element oR. Thenv(a) = >, vui({) = Y Ui (¢) = . This implies thatx is
fixed by allv € P, and thereforer = k; & for some constark;:

t
k&= uj(). @
j=1

The constank; is positive for the following reason. Firét, &) > 0 since the two vectors
lie in the same closed chambEp. Similarly (uj¢, &) >0 becauseu; holds & fixed
and hencau;(¢) andg; lie in the same closed chamber. Now, by statement (4) we have
ki€, &) =(ki&, &)= Y|, (Uj(¢), &), which implies that; > 0.
From (1)—(4) we have
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If the Q-basis forw is B=(By, By, ..., Bm), then, by the definition oQ-basis{wl | u €
P,/Q} = B;, and hence

m C
— (

fep(@)=Y " X > o).
i

=1 beB;

which shows thatf; , is a Q-admissible function becausg is an admissible weight
function. O

5. Coxeter matroids

Following [10] and [11], we associate to each finite, irreducible Coxeter gWuand
parabolic subgrou® objects called Coxeter matroids. L@, S) be a finite, irreducible
Coxeter system anB a parabolic subgroup &¥. A subsetM C W/ P is called aCoxeter
matroid (for W and P) if, for eachw € W, there is a unique maximum element lif
with respect to thev-Bruhat order. In other words, there is an elemeRte M such that
w luP > wlyP forall vP € M.

An ordinary matroid (of rank) is a special case of a Coxeter matroid, the case where
W = A, andP is the maximal parabolic subgrotfy. Why this is so will become apparent
later in this section. The Coxeter matroids associated with the families of Coxeter groups
B,/ C, andD, have been termesymplectic matroidandorthogonal matroidsrespectively,
by Borovik, Gelfand and White [2].

If Qis also a parabolic subgroup @, recall thatB: W/P — A(P, Q) is the Q-basis
map of Theorem 1 that assigns to each elemeMpP its Q-basis. The set of elements
B(M) plays an analogous role for a Coxeter matidics the set of bases do for an ordinary
matroid. Of course this set of bases depends on the choi@Qe dhe choiceQ = Py, the
maximal parabolic subgroup corresponding to the first node in the Coxeter diagram, is
especially appealing because of the simple structure of the Bruhat ordléf @nin many
cases alinear order. B=(By, By, ..., By) is theQ-basis for some element &//P and
A C B; for eachi, thenA= (A, A, ..., Ap) is called aQ-independent sefThe number
of setsA; to which an elemenx € W/Q belongs is called thenultiplicity of x in A. If
L ¢ W/P, denote byZ (L) the collection ofQ-independent sets of elementslin

Recall the optimization problem introduced in the previous section.

Optimization Problem. Given a subset c W/P and aQ-admissible functionf : W/P
— R, find an element of that maximizesf.

Theorem 3 below states thatlifis a Coxeter matroid, then there is a natural greedy algo-
rithm that correctly solves the optimization problem. Indeed, if the Bruhat ordgv 6@
is a linear order, then the Coxeter matroids are characterized by the property that the greedy
algorithm solves this optimization problem. The greedy algorithm proceeds in terms of the
Q-bases for the elements bfrather than the cosets themselves. The algorithm returns the
Q-basis for the element df that maximizesf. Recall that, sincd is Q-admissible, there
is a correesponding admissible weight functiongnQ.
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Greedy Algorithm.

initialize | = (A, ..., Am)to @, ..., 0.

initialize X to W/Q.

while
there exists am € X and anl’= (A}, ..., A,) €Z(L)suchthatl’# | and, for
eachi, eitherAl = A or Al = A U {x},

do
From all such pairg(x, |") choose the one(s) for whichhas largest weight. From
all the pairs above choose ofie 1) for which x has largest multiplicity ifl ’.
Replacel by I'.
Removex from X.

Note that if P is maximal inW, then there is no multiplicity of entries i becausd’
consists of a single set. In this case the Greedy Algorithm takes the simple form given in
Section 1.

Example Consider the cas#/ = A, with P the trivial parabolic subgroup. The Bruhat
order onW =W/P is shown in figure 2 in terms of th&;-bases. Take as admissible
weight¢ (1) =1; ¢(2) = 3; ¢(3) =4 and as admissible functioh(w) =¢(a) + ¢(by) +
¢(by), where ({a}, {by, by}) is the basis ofw. Let L be the Coxeter matroid with
bases{(2, 23), (2,12, (1,13), (1, 12)}. The greedy algorithm maximize$ in two
steps:

| =0
| = (3
| = (2,293.

Onthe otherhand ={(3, 13), (2, 23)} is nota Coxeter matroid. Using the same admissible
function, the greedy algorithm retur@3, 13), althoughf (3,13) =9 < 10= f (2, 23).

For parabolic subgroupB and Q of a Coxeter groupV, the w-Gale order on the col-
lection A(P, Q) of admissible sets is defined in an analogous manner as the Gale order on
A(P, Q). Consider the pos&V//Q with respect taw-Bruhat order. Since the individual
entries inA(P, Q) lie in this poset,A(P, Q) is itself a poset with respect to the corre-
sponding Gale order given in Definition 6. This Gale order is calledu#th@&ale orderon
AP, Q). If L c A(P, Q) andw € W, thenB ¢ L is said to be av-Gale maximurelement
of L if B >, Aforall A e L with respect to thev-Gale order.

Theorem3 LetL € W/P,where P isaparabolic subgroup of the finiteeducible rank

n Coxeter group W. Let Q also be a parabolic subgroup of W. The following statements
are equivalent.

(1) L is a Coxeter matroid.

(2) The set3(L) of Q-bases has a-Gale maximum for every € W.
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(3) Every Q-admissible function fW/P — R attains a unique maximum on L.
Moreover any of the statemen(y), (2) or (3) implies(4), and statement4) implies
statementsl), (2) and (3) if the Bruhat order on WQ is a linear order.

(4) The greedy algorithm solves the optimization problem for any Q-admissible function
f:W/P— R.

Proof: (1) = (2). Assume thatk is a Coxeter matroid ani(L) its set ofQ-bases. Given
w € W, letv € L be the uniqgue maximum ib with respect to thev-Bruhat order. Thus
w1y > w-lu for all u € W. By Theorem 1, this implies thdf(w—1v) > B(w~1u),
which, in turn, implies thaB(v) >,, B(v).

(2) = (3). Consider anyQ-admissible functionf : W/P — R. Thenf has the form

f)=) c )y o),

i=1 be Bi

where(By, By, ..., Bn) = B(v) is theQ-basis ofv, ¢, > 0 for alli, andg is a weight func-
tion compatible with thev-Bruhat order oW/ Q forsomew € W. Let(A, Az, ..., Am) =
B(vg) be thew-Gale maximumQ-basis inB(L), and let(By, By, ..., By) be any other
Q-basis inB(L). Then, for each, the elements of = {g;} and B; = {l;;} can be ar-
ranged so thad;; >, bj;. For at least one paiio, jo) the above inequality is strict. By
the compatibility ofg, we havep (a;j) > ¢ (by;) for all i, j ande (a,j,) > ¢ (bi,j,). Hence
the functionf attains a unique maximum ds(L) at (A, Ay, ..., An) and hence, by the
bijection of Theorem 1, a unique maximumigton L.

(2) = (4). By the paragraph above, the solution to the optimization problem is the
Gale maximum(Ag, Ay, ..., An). We claim that the greedy algorithm finds this Gale
maximum. To see this, replace each elem@at B, ..., By,) of B(L) by the multisetB
that is the concatenation of the setg B, By, ..., By). (For example, replacg, 12) by
(112.) Call the resulting collectio#8’(L). An independent set i8(L) can be considered
as just a multisubset of such a multisetBf(L). Since(Aq, Az, ..., An) is the unique
w-Gale maximum of3(L), itis easy to check that its concatenatifis the uniquev-Gale
maximum of3’(L). So, to simplify the exposition we now consider the greedy algorithm
onB'(L) instead of orB(L).

To prove the claim leA={ay, ..., a} be thew-Gale maximum, and assume that the
greedy algorithm has outpl = {by, ..., b;}, ] < k, on termination. BecausA is the
w-Gale maximum, the elements AfandB can be assumed ordered such that b, i =
1, ..., j and such that, in the greedy algorithipa,is chosen beforb, is chosen beforbs,
etc. (In case of a repeated entry, they are assumed chosen consecutively. For simplicity we
denote-,, by >.) Because the algorithm s greedy, it must be the casethal > ¢ (a1). If
a; > by, then, by compatibilityg (a;) > ¢ (b;), a contradiction. Becausg > b; we have
a; = b;. Proceeding by induction, assume thatb; fori =1,...,m—1 < j. The same
argument just used implies that,=bn,. Thereforegj =b;,i = 1,..., . Also j = k;
otherwise the greedy algorithm could continue by choosing, for example=a; 1.

(3 = (1). Assume that is not a Coxeter matroid. To provide@admissible function
f which does not have a unique maximum lonfix § € I'o(P). Part (4) of Theorem 3
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in [15] states that ifL is not a Coxeter matroid, then there exists a regylauch that
f(w) = —(wé&, n) attains its maximum (or minimum) dn on at least two points. But, by
Theorem 2 of Section 4, this functiohis Q-admissible.

(4 = (1). Assume that is not a Coxeter matroid. By the paragraph above, there is a
Q-admissible function

fay=Y 6 Y ¢,

i=1 de Di

where(D,, Do, ..., Dp) is the Q-basis ofw and¢ is a Q-admissible weight, and such
that f has at least two maxima dn Assume that the greedy algorithm returns an element
U € L andthaty # G is one of the maxima of onL. Let(By, ..., By) be theQ-basis ofu
and(Ay, ..., Ay) the Q-basis ofv. Itisimpossible thad 'y g ¢(0) > >, 5 ¢(a) for all

i with at least one inequality strict becau@ebasis(Ay, ..., An) is maximal. Therefore
there are just two cases.

Case 1. If there exists aj such thatzaleAj ¢@) > ZbeBJ ¢ (b), then consider th&-
admissible function defined by

whereCj =1 andG; is sufficiently small fori # j so that f(v) > f(0). The greedy
algorithm findsii, which cannot be the maximum of this admissihlen L. Hence the
greedy algorithm fails.

Case 2. Assume thad ., #(@) = > ,.p ¢(0) foralli. Sinced # v, the Q-bases of
U andv are also unequal, and hence there exisisaad ana € A; such thata ¢ B;.
Consider the weighp on W/ Q defined byp (o) = ¢ () for all o # a, andp(a) = ¢(a)
+ €, wheree is sufficiently small so thap remains admissible and so that the greedy
algorithm applied tg chooses elements in the same order as the greedy algorithm applied
to ¢. Note that, if some other element has exactly the same weightthen, no matter
how smalle is chosen, it may not be possible to satisfy this last condition. Here is
where the linearity of the Bruhat order &/ Q is used. Since is compatible with
this Bruhat order, no two distinct elements can have the same weight. Now consider the
Q-admissible function defined by

fa)=>Y"c > ¢,
i=1

beD;

wherecj =c;. If G, i # j, is sufficiently small and is sufficiently small, then it re-
mains the case thdt(v) > f (U). Again the greedy algorithm fails for th{3-admissible
function f onL. 0
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Remark Ingeneral, itis not true that statement (4) implies statements (1-3) in Theorem 3.
As a simple example, consider the orthogonal case wiiére D, (see Example 3 in
Sections 2 and 3). Ld? = Q = P;. Then there are eight admissible sets corresponding to
the eight elements oV/P, each admissible set consisting of a single element A <

3 <4, 4% <3 < 2* < 1*. Note that the Bruhat order d%/Q is not linear; in particular

4 and 4 are incomparable. -admissible function is simply a weight functignon the
setA=1{1, 2, 3,4, 4%, 3*, 2*, 1*} satisfying the required compatibility condition. Now let

L ={4, 4*}; clearly L is not an orthogonal matroid because, as mentioned, 4 ‘aade4
incomparable in the Bruhat order B/ P. On the other hand, for any functign: A — R,

the greedy algorithm will surely pick an element from the two in the{4e4*} for which

¢ attains a maximum.

It is worthwhile considering some particular Coxeter matroids and the corresponding
optimization problems. In all these examples, we t@ke P;.

Ordinary matroids Let W = A, and letPy be the maximal parabolic subgroup generated
by (s |i # k). Then, according to Theorem 3 and the definition of matroid in Section
1, a Coxeter matroidM € W/Px is an ordinary ranlk matroid, each basiB being a
k-element subset ofh[+ 1]. The relevant objective function, whose maximum is found
by the greedy algorithm, is

Y o),

beB

whereg is any function onij + 1] taking distinct values. For ordinary matroids the op-
timization problem and the corresponding greedy algorithm are essentially the classical
ones discussed in Section 1. As stated in the introduction the optimization problem seeks
a maximum independent set; in this section the optimization problem seeks a maximum
basis. If all weights are positive, then the two problems coincide.

Flag matroids Let W= A, and letP be an arbitrary parabolic subgroup generated by
(S |1 # i1,z ...,im). Then an admissible set is of the forB= (B, By, ..., Bn),
whereB; C B, C --- C By and|Bj|=i; for eachj. Letting A; = B, andA = B\ Bj_;
fori > 1, the relevant objective function takes the form

Y6 ¢@,

i=1 achA

wherec; > ¢; > --- > ¢y > 0. The terminologyflag matroidfor a such a Coxeter
matroidM c W/P appears in [3], where the characterization below is givels. iff the
set of bases, each basis of the foBa= (By, By, ..., By), letBi ={B;j | B € B}.

Theorem 4 B is the set of bases of a flag matroid M if and onlifis the set of bases
of an ordinary matroid Mand each closed set in;Nk closed in M, ;.
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Gauss greedoidsAs a special case of the previous example, consider the flag matroids

wherei; = 1,i, = 2,...,im=m. Then, with notation as abovpd | = 1; sayA = {a}
fori =1,..., m. Inthis case the objective function reduces to
m
Y co@),
i=1

wherec; > ¢; > - -+ > ¢y, > 0. Note that itm = n, i.e. the parabolic subgroupis triv-
ialandW/P = A, thena;a, - - - ahan 1, (the remaining elemeiat, ;1 of [n + 1] is tacked

on at the end) is a permutation of § 1]. This gives the isomorphisrA, ~ Sym, ;.

These special flag matroids were introduced as Gauss greedoids because they are gree-
doids with a connection to the Gaussian elimination process [13]. In general, greedoids
are not a special case of Coxeter matroids, the relevant objection function for a greedoid
being a generalized bottleneck function rather than a linear function.

Symplectic matroidsLet W = C,, and letP = P, the maximal parabolic subgroup gener-
ated by(s | i # k). A Coxeter matroid in this case is called a rdnkymplectic matroid
[2]. The terminology comes from the fact that some of these Coxeter matroids can be
constructed from the totally isotropic subspaces of a symplectic spac€-Baenissible
functions are discussed in Section 4. The admissible setk-alement subsetB of
[n] U [n]* with the property thaB N B* = (. The relevant objective function is

Y o),

beB
where¢ is any function onfij U[n]* that takes distinct values and such thgb*) =
—¢(b).

Lagrangian matroids WhenW = C,, andP = P, we have a special case of a symplectic
matroid, the rank case. These matroids were first introduced as symmetric matroids
by A. Bouchet [6] outside the context of Coxeter matroids. They are referred to as
Lagrangian (symplectic) matroids in [2]. Bouchet gives several characterizations of these
matroids in addition to the characterization in terms of the greedy algorithm.

6. Thel-assignment problem

In this section the theory in Section 5 is applied to thassignment problem. L&V be a
finite group acting as linear transformations on a Euclidean dpaand let

fe,(w) = (wé,n) foré,nek, weW.

TheL-assignment problens to minimize the functionf; , on a given subsdt € W. In
[1], it was shown that th& -assignment problem fa = A, is, in generalNP-hard. The
same is probably true for the other infinite families of Coxeter groups. Corollary 1 below,
however, states that for Coxeter matroids, the greedy algorithm of Section 5 correctly solves
the L-assignment problem.

Assume that a rank Coxeter groupWV is acting as a reflection group on Euclidean space
E of dimensiom. Letn € E be regular ang # 0. Recall thatP = Stahy £ is a parabolic
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subgroup ofW and, without loss of generality, can be considered a standard parabolic
subgroup. Moreoverf; , is constant on each left cosetP. Thereforefe , is actually a
function on the setV/P of left cosets. Let. € W/P. ThelL-assignment problem is then

to find anoptimumwg € L with respect to the paig, »):

f(wO) = r_nln fS.ﬂ(w)-
wel

ForL € W/P denote byA | the convex hull of the seté = {w& | w € L}. The
L-assignments problem is equivalent to the problem of finding a végtex the convex
polytopeA¢ | for which the linear functio,(¢) = (£, n) achieves a minimum.

Given a parabolic subgroup and¢ € I'g(Q), recall from Proposition 2 that the function

$o:W/Q — R
po(w) = —(wg, n)

is an admissible weight function. The greedy algorithm of the previous section applies to
the L-assignment problem as follows.

Corollary1l LetW be afiniteirreducible rank n Coxeter group acting on n-dimensional
Euclidean spac&. Letn, & € E with & # 0 andn regular, and let P be the parabolic
subgroup Stal £. If L € W/P is a Coxeter matroidthen the L-assignment problem for
f¢ , has a unique solution. Moreoveif Q is also a parabolic subgroughen the greedy
algorithm applied to the weight functiopg correctly finds the optimum for every such
function ¢ ,,.

Proof: By Theorem 2 the functior f¢ , is Q-admissible. Therefore, by Theorem 3L.if
is a Coxeter matroid, then f; , has a unique maximum and henfgg, a unique minimum.
Also by Theorem 3, the greedy algorithm correctly maximizek ,, hence minimizes
fS’U' O

Acknowledgment

The many communications with Andrei Zelevinsky were immensely helpful in the prepa-
ration of this paper. | thank Alexandre Borovik for translation from a Russian preprint and
also Vera Serganova.

References

1. A.Barvinok and A. Vershik, “Convex hulls of orbits in the representations of finite groups and combinatorial
optimization,”Funct. Anal. Appl22(1988), 66—68.

2. A.V. Borovik, I.M. Gelfand, and N. White, “Symplectic matroidd,”Alg. Combin8 (1998), 235-252.

3. A.V. Borovik, I.M. Gelfand, and N. WhiteCoxeter MatroidsBirkhauser, Boston.

4. AV. Borovik, .M. Gelfand, A. Vince, and N. White, “The lattice of flats and its underlying flag matroid
polytope,”Annals of Combinatoric& (1998), 17-26.



178 VINCE

w0 ~NO U

10.

11.

12.

13.

14.

15.

16.

17

. A.V.Borovik and A. Vince, “An adjacency criterion for Coxeter matroids Alg. Combin9 (1999), 271-280.
. A. Bouchet, “Greedy algorithm and symmetric matroidgdth. Programming8 (1987), 147-159.

. V.V. Deodhar, “Some characterizations of Coxeter groupsseignments Matt32 (1986), 111-120.

. D. Gale, “Optimal assignments in an ordered set: An application of matroid théoBgmbinatorial Theory

4(1968), 1073-1082.

. .M. Gelfand, M. Goresky, R.D. MacPherson, and V.V. Serganova, “Combinatorial Geometries, convex

polyhedra, and Schubert cell&ydv. Math.63 (1987), 301-316.

I.M. Gelfand and V.V. Serganova, “On a general definition of a matroid and a greefoidét Math. Dokl.
35(1987), 6-10.

I.M. Gelfand and V.V. Serganova, “Combinatorial geometries and torus strata on homogeneous compact
manifolds,” Russian Math. Survey® (1987), 133-168; |.M. GelfandZollected Papers, Vol. lJISpringer-
Verlag, New York, 1989, pp. 926-958.

H. Hiller, Geometry of Coxeter GroupBitman, Boston 1982.

B. Korte, L. Lovasz, and R. Schrad@&reedoids Springer-Verlag, Berlin, 1991.

R. Proctor, “Bruhat lattices, plane partition generating functions, and minuscule represent&tions,"J.
Combinatoricsb (1984), 331-350.

V.V. Serganova, A. Vince, and A.V. Zelevinski, “A geometric characterization of Coxeter matraitsgls

of Combinatoricsl (1998), 173-181.

V. Serganova and A. Zelevinsky, “Combinatorial optimization on Weyl groups, greedy algorithms and gener-
alized matroids,” preprint, Scientific Council in Cybernetics, USSR Academy of Sciences, 1989.

. J. Tits A local approach to buildingsThe Geometric Vein (the Coxeter Festschrift), Springer, 1981.



