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Abstract. The notion of matroid has been generalized to Coxeter matroid by Gelfand and Serganova. To each
pair(W, P) consisting of a finite irreducible Coxeter groupW and parabolic subgroupP is associated a collection
of objects called Coxeter matroids. The (ordinary) matroids are a special case, the caseW= An (isomorphic to
the symmetric group Symn+1) and P a maximal parabolic subgroup. The main result of this paper is that for
Coxeter matroids, just as for ordinary matroids, the greedy algorithm provides a solution to a naturally associated
combinatorial optimization problem. Indeed, in many important cases, Coxeter matroids are characterized by this
property. This result generalizes the classical Rado-Edmonds and Gale theorems.

A corollary of our theorem is that, for Coxeter matroidsL, the greedy algorithm solves theL-assignment
problem. LetW be a finite group acting as linear transformations on a Euclidean spaceE, and let

fξ,η(w) = 〈wξ, η〉 for ξ, η ∈ E, w ∈ W.

TheL-assignment problem is to minimize the functionfξ,η on a given subsetL ⊆ W.
An important tool in proving the greedy result is a bijection between the setW/P of left cosets and a “concrete”

collectionA of tuples of subsets of a certain partially ordered set. If a pair of elements ofW are related in
the Bruhat order, then the corresponding elements ofA are related in the Gale (greedy) order. Indeed, in many
important cases, the Bruhat order onW is isomorphic to the Gale order onA. This bijection has an important
implication for Coxeter matroids. It providesbasesandindependent setsfor a Coxeter matroid, these notions not
being inherent in the definition.
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1. Introduction

Perhaps the best known algorithm in combinatorial optimization is the greedy algorithm.
The classical MAXIMAL (MINIMAL) SPANNNING TREE problem, for example, is
solved by the greedy algorithm: Given a finite graphG with weights on the edges, find
a spanning tree ofG with maximum (minimum) total weight. At each step in the greedy
algorithm that solves this problem, there is set of edgesT comprising the partial tree; an
edgee of maximum weight among the edges not inT (the greedy choice) is added toT so
long asT + e contains no cycle.

A natural context in which to place the greedy algorithm is that of a matroid. Consider
a pair(X, I) consisting of a finite setX together with a nonempty collectionI of subsets
of X, called independent sets, closed under inclusion. There is a natural combinatorial
optimization problem associated with this pair.

Optimization Problem. Given a weight functionφ : X → R, find an independent set that
has the greatest total weight.
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Thegreedy algorithmfor this problem is simply:

I = ∅
while X 6= ∅ do

remove an elementx ∈ X of largest weight
if I + x ∈ I then I = I + x

In the spanning tree problem, the setX consists of the set of edges ofG and the independent
sets are the acyclic subsets of edges.

It is well known that the following statements are equivalent for a pairM = (X, I). Here
B denotes the set of bases ofM , abasisbeing a maximal independent set.

(1) M is a matroid.
(2) The greedy algorithm correctly solves the combinatorial optimization problem associ-

ated withM for any positive weight functionφ : X→ R.
(3) Every basis has the same cardinality and, for every linear ordering< on X, there exists

a B ∈ B such that for anyB′ ∈ B, if we write B = (b1, b2, . . . ,bk) and B′ =
(b′1, b′2, . . . ,b

′
k) with the elements ofB andB′ both in increasing order, thenbi ≥ b′i

for all i .

The componentwise ordering of bases given in statement (3) is calledGale ordering[8],
and it is a main concern of this paper.

The primary purpose of this paper is to place the greedy algorithm into a natural setting
broader than that of matroids, into the setting of Coxeter matroids. The notion of matroid
has been generalized to Coxeter matroid by Gelfand and Serganova [10, 11]. To each
pair (W, P) consisting of a finite irreducible Coxeter groupW and parabolic subgroup
P is associated a collection of objects called Coxeter matroids. The (ordinary) matroids
are a special case, the caseW= An (isomorphic to the symmetric group Symn+1) and
P a maximal parabolic subgroup. The other Coxeter matroids provide new families of
interesting combinatorial structures analogous to the ordinary matroids. There has been a
flurry of research in the area of Coxeter matroids; in particular there are several relevant
articles in a recent issue of the journal Annals of Combinatorics (1, 1998), and a book by
Borovik and White [3] is forthcoming.

The main result of this paper, Theorem 3 of Section 5, states that for Coxeter matroids,
just as for ordinary matroids, the greedy algorithm furnishes a correct solution to a naturally
associated combinatorial optimization problem. Indeed in many important cases, Coxeter
matroids are characterized by the greedy algorithm furnishing a correct solution to the
naturally associated combinatorial optimization problem. After the completion of the first
draft of this paper, the preprint in Russian by Serganova and Zelevinsky [16] came to our
attention. That paper deals with connections between a greedy algorithm and the classical
Weyl groups. This paper generalizes and extends those results.

The organization of the paper is as follows. Section 2 gives basic definitions related to
Coxeter groups and Bruhat order. Also in that section is information about the geometric
interpretation of a Coxeter group in terms of its Coxeter complex. This allows for geometric
insight into the mainly algebraic constructions used in the paper.
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The main result of Section 3 (Theorem 1) basically states that Bruhat order is Gale
(greedy) order. For a given parabolic subgroupP of a Coxeter groupW, the collection
W/P of left cosets can be represented as a concrete setA of tuples of a fixed partially
ordered set. Each element(B1, . . . , Bm) ofA is called anadmissible set. If P is a maximal
parabolic subgroup ofW, thenm = 1 and an admissible set is a single setB. If a pair
of elements ofW/P are related in the Bruhat order, then the corresponding elements of
A are related in the Gale order. Indeed, in important cases, the Bruhat order onW/P is
isomorphic to the Gale order onA.

For a given parabolic subgroupP of a Coxeter groupW, the notion ofadmissible function
f : W/P→ R is defined in Section 4. The combinatorial optimization problem associated
with the pair(W, P) is, given a subsetL ⊂ W/P and an admissible functionf , find an
element ofL that maximizesf .

The concept ofCoxeter matroid Mis defined in Section 5 and is endowed with a collection
B(M) of bases, each basis being an admissible set. This allows for the investigation of
Coxeter matroids in terms of its bases, basis being a concept not inherent in the definition
of Coxeter matroid. Section 5 also contains the main result on Coxeter matroids and the
greedy algorithm.

An application of the main theorem to theL-assignment problem is contained in Section
6. It provides a greedy algorithm to solve theL-assignment problem whenL is a Coxeter
matroid. Every finite Coxeter groupW can be realized as a reflection group in some
Euclidean spaceE of dimension equal to the rank ofW. Consider a finite groupW acting
as linear transformations on a Euclidean spaceE, and let

fξ,η(w) = 〈wξ, η〉 for ξ, η ∈ E, w ∈ W.

TheL-assignment problem is to minimize the functionfξ,η on a given subsetL ⊆ W.

2. Coxeter systems and Bruhat order

Let (W, S) be a finite Coxeter system of rankn. This means thatW is a finite group with
the setSconsisting ofn generators and with the presentation

〈s ∈ S | (ss′)mss′ = 1〉,

wheremss′ is the order ofss′, andmss= 1 (hence each generator is an involution). The group
W is called aCoxeter group. Thediagramof (W, S) is the graph where each generator is
represented by a node, and nodess ands′ are joined by an edge labeledmss′ whenever
mss′ ≥ 3. By convention, the label is omitted ifmss′ = 3. A Coxeter system isirreducible
if its diagram is a connected graph. A reducible Coxeter group is the direct product of the
Coxeter groups corresponding to the connected components of its diagram. Finite irreducible
Coxeter groups have been completely classified and are usually denoted byAn (n ≥ 1),
Bn(= Cn) (n ≥ 2), Dn (n ≥ 4), E6, E7, E8, F4,G2, H3, H4, and I2(m) (m ≥ 5, m 6= 6),
the subscript denoting the rank. The diagram of each of these groups is given in figure 1.

A reflectionin W is a conjugate of some element ofS. Let T = T(W) denote the set
of all reflections inW. Every finite Coxeter groupW can be realized as a reflection group
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Figure 1. Irreducible finite reflection groups.

in some Euclidean spaceE of dimension equal to the rank ofW. In this realization, each
element ofT corresponds to the orthogonal reflection through a hyperplane inE containing
the origin. Each of the irreducible Coxeter groups listed above, exceptDn, E6, E7, andE8,
is the symmetry group of a regular convex polytope. The groupAn is isomorphic to the
symmetric group Symn+1, the setSof generators consisting of the adjacent transpositions
(i, i + 1), i = 1, 2, . . . ,n.

For a finite Coxeter system(W, S), let 6 denote the set of all reflecting hyperplanes
in E. Let E′ = E\∪H∈6 H . The connected components ofE′ are calledchambers. For
any chamber0, its closure0̄ is a simplicial cone inE. These simplicial cones and all their
faces form a simplicial fan called theCoxeter complexand denoted1 := 1(W, S). It is
known thatW acts simply transitively on the set of chambers. To identify the elements
of W with chambers, we choose a fundamental chamber00 whose facets (i.e., faces of
codimension one) are on reflecting hyperplanes for the simple reflectionss ∈ S; then the
bijective correspondence betweenW and the set of chambers is given byw 7→ w(00).

Every subsetJ ⊂ S gives rise to a (standard)parabolic subgroup WJ generated byJ.
The maximal parabolic subgroupsWS−{s} will be of special importance for us, and we will
use the shorthandPs = WS−{s} for s ∈ S. If P = WJ is a parabolic subgroup, we denote
by00(P) the set of points in̄00 whose stabilizer inW is exactlyP. The closure00(P) is a
face of the simplicial conē00, and the correspondenceP 7→ 00(P) is a bijection between
the set of parabolic subgroups ofW and the set of faces of̄00. Using the action ofW, we
obtain the following well known description of the faces of the Coxeter complex [12].
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Proposition 1 Let (W, S) be a finite Coxeter system. The correspondence

wP 7→ w(00(P))

is an inclusion reversing bijection between the union of left coset spaces∪W/P modulo all
parabolic subgroups and the collection of all faces of1(W, S). Two facesw(00(P)) and
w′(00(P′)) are contained in the same chamber of1 if and only ifwP ∩ w′P′ 6= ∅.

In the case thatW is the symmetry group of a regular polytopeQ := Q(W), the Coxeter
complex is essentially the barycentric subdivision of the boundary complex ofQ. Two
facesq andq′ of Q are calledincident if either q ⊂ q′ or q′ ⊂ q. The last statement
in Proposition 1 implies that two faces ofQ are incident if and only if the corresponding
cosets have nonempty intersection.

We give two equivalent definitions of the Bruhat order on a Coxeter group; for a proof of
the equivalence see e.g., [7]. We will use the notationu º w for the Bruhat order. For
w ∈ W a factorizationw = s1s2 · · · sk into the product of simple reflections is called
reducedif it is shortest possible. Letl (w) denote the lengthk of a reduced factorization
of w.

Definition 1 Defineu º v if there exists a sequencev = u0, u1, . . . ,um = u such that
ui = ti ui−1 for some reflectionti ∈ T(W), andl (ui ) > l (ui−1) for i = 1, 2 . . . ,m.

Definition 2 If u = s1s2 · · · sk is a reduced factorization, thenu º v if and only if there
exist indices 1≤ i1 < · · · < i j ≤ k such thatv = si1 · · · si j .

The Bruhat order can be also defined on the left coset spaceW/P for any parabolic
subgroupP of G. Again we give two definitions.

Definition 3 Define Bruhat order onW/P by ū º v̄ if there exists au ∈ ū andv ∈ v̄
such thatu º v.

It is known (see e.g., [12]) that any cosetū ∈ W/P has a unique representative of minimal
length, denoted̄umin.

Definition 4 We haveū º v̄ in the Bruhat order onW/P if and only if ūmin º v̄min.

We will associate with eachw ∈ W a shifted version of the Bruhat order onW/P, which
will be called thew-Bruhat order and denotedºw.

Definition 5 Defineū ºw v̄ in thew-Bruhat orderon W/P if w−1ū º w−1v̄.

The Bruhat orders for many particular choices ofW andP have been explicitly worked
out [14]. It is instructive to keep in mind the following three classical examples, where
W is of the typeAn, Cn or Dn, andP = P1 := WS−{s} is the special maximal parabolic
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subgroup for which the simple reflections corresponds to the leftmost node in the Coxeter
diagram ofW in figure 1.

Example 1 (ordinary case) The groupW= An is the symmetric group Symn+1, the set
S= {s1, . . . , sn} of generators consisting of the adjacent transpositionssi = (i, i + 1), i =
1, . . . ,n. The parabolic subgroupP1 is the stabilizer inW of the element 1∈ [1, n+ 1] :=
{1, . . . ,n+ 1}, soW/P1 is identified with [1, n+ 1] viawP1 7→ w(1). Under this identi-
fication, the Bruhat order onW/P1 becomes the linear order on [1, n+ 1] given by

1≺ 2≺ · · · ≺ n+ 1.

The groupAn is also isomorphic to the symmetry group of the regularn-simplex. Geomet-
rically W/P1 corresponds, under the bijection of Proposition 1, to the set of vertices of the
regularn-simplex.

Example 2 (symplectic case) The groupW=Cn can be identified with the subgroup
of the symmetric group Sym2n consisting of all permutations that commute with the
longest permutationw0 ∈ S2n. It is convenient to denote by [1, n] ∪ [1, n]∗ = {1, . . . ,n,
1∗, . . . ,n∗} the set of indices permuted by Sym2n, and to realizew0 as the permutation
i 7→ i ∗ 7→ i, i ∈ [1, n]. The standard choice ofS = {s1, . . . , sn} is then the following:
si = (i, i + 1)(i ∗, (i + 1)∗) for i = 1, . . . ,n − 1, andsn = (n, n∗). As in the previous
example,P1 is the stabilizer inW of the element 1∈ [1, n] ∪ [1, n]∗, soW/P1 is identified
with [1, n] ∪ [1, n]∗ viawP1 7→ w(1). Under this identification, the Bruhat order onW/P1

becomes the linear order on [1, n] ∪ [1, n]∗ given by

1≺ 2 · · · ≺ n− 1≺ n ≺ n∗ ≺ (n− 1)∗ ≺ · · · ≺ 2∗ ≺ 1∗.

The groupCn is also isomorphic to the symmetry group of the regularn-dimensional cross
polytope (general octahedron). GeometricallyW/P1 corresponds, under the bijection of
Proposition 1, to the set of vertices of the regularn-dimensional cross polytope. With the
notation above, verticesi andi ∗ are antipodal.

Example 3 (even orthogonal case) The groupW= Dn can be identified with the sub-
group of even permutations in the Coxeter groupCn realized as in the previous example.
The setS = {s1, . . . , sn} then consists of the elementssi = (i, i + 1)(i ∗, (i + 1)∗) for
i = 1, . . . ,n− 1, andsn = (n− 1, n∗)(n, (n− 1)∗). As in the first two examples,P1 is the
stabilizer inW of the element 1∈ [1, n] ∪ [1, n]∗, soW/P1 is identified with [1, n] ∪ [1, n]∗

viawP1 7→ w(1). However, the Bruhat order onW/P1 is no longer linear; it is given by

n
1≺ 2≺ · · ·n− 1≺ ≺ (n− 1)∗ ≺ · · · ≺ 2∗ ≺ 1∗.

n∗

Returning to a general Coxeter groupW and a parabolic subgroupP, regardW as a
reflection group in Euclidean spaceEwith the usual inner product〈ξ, η〉. Fix anyδ ∈ 00(P).
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Since, by definition, the stabilizer ofδ in W is P, we can unambiguously define the point
ūδ := ū(δ) ∈ E for any ū ∈ W/P. The following proposition is given in [15] as a
consequence of the definition of Bruhat order.

Proposition 2 If ū Â v̄ in the Bruhat order on W/P, then〈ūδ, η〉 < 〈v̄δ, η〉 for any
η ∈ 00 .

3. The relation between Bruhat order and Gale order

Let (W, S) be a finite, irreducible, rankn Coxeter system andP = WJ a parabolic subgroup
in W (recall thatP is generated by a subsetJ ⊂ S). We will provide a “concrete” realization
of the Bruhat order onW/P by encoding the elements ofW/P as appropriate tuples of
subsets. To do this, some terminology and notation are needed.

For a finite setX, we denote by 2X the set of all subsets ofX. If I is another finite
set, denote by(2X)I the set ofI -tuples of subsets ofX; that is,(2X)I consists of families
A = (Ai )i∈I of subsets ofX indexed byI . Suppose now thatX is a poset, i.e., is equipped
with a partial order which we write simply asa ≥ b. We introduce the correspondingGale
orderon (2X)I as follows.

Definition 6 If A = (Ai ) andB = (Bi ) are twoI -tuples of subsets inX then A ≥ B in
the Gale order if, for everyi ∈ I , there exists a bijectionfi : Ai → Bi such thata ≥ fi (a)
for anya ∈ Ai .

In particular, if twoI -tuplesA = (Ai ) andB = (Bi ) are comparable in the Gale order then
Ai andBi have the same cardinality for anyi ∈ I .

Returning to the Bruhat order onW/P for P = WJ , we will construct, for any proper
parabolic subgroupQ in W, an embedding

B = BQ
J : W/P→ (2W/Q)S−J .

For any coset̄v ∈W/P and anyi ∈ S− J, denote bȳv(i ) ∈ W/Pi the unique coset modulo
the maximal parabolic subgroupPi that contains̄v.

Definition 7 Forv̄ ∈ W/P, theQ-basisof v̄ is an(S−J)-tupleB(v̄) :=BQ
J (v̄)= (Bi )i∈S−J

of subsets ofW/Q given by

Bi = {ū ∈ W/Q | ū ∩ v̄(i ) 6= ∅}.

The rationale for the terminology “basis” will become clear in Section 5. Note that, ifP is
maximal, then theQ-basis ofv̄ ∈ W/P consists of the single set

B = {ū ∈ W/Q | ū ∩ v̄ 6= ∅}.

In this casēv corresponds to a vertex in the Coxeter complex1(W, S), andB(v̄) consists
of the faces corresponding (by Proposition 1) to the cosets inW/Q that lie in a common
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chamber with this vertex. In the case thatW is the symmetry group of a regular polytope
andQ is also maximal, the cosetv̄ corresponds to a faceσ of a certain dimension, sayj ,
andB(v̄) is the set of all faces of another dimension, sayk, incident withσ .

Not every member of(2W/Q)S−J can appear as aQ-basis of some element ofW/P.
Those that can are calledQ-admissible, and the set ofQ-admissibletuples forW/P will
be denotedA(P, Q). If Q = P1, the maximal parabolic subgroup corresponding to the
first node in the Coxeter diagram, then the notation will be simplyA(P).

Definition 8

A(P, Q) = BQ
J (W/P)

A(P) = BP1
J (W/P)

Since the individual elements inA(P, Q) lie in W/Q andW/Q is a poset with respect to
Bruhat order,A(P, Q) is itself a poset with respect to the corresponding Gale order given
in Definition 6.

The following examples are a continuation of the three examples in the previous section.

Example 1 (ordinary case) ConsiderW = An as the symmetric group Symn+1. The
parabolic subgroupPk := WS−{sk} is the setwise stabilizer inW of {1, 2, . . . , k}. To
determine theP1-admissible sets, note that ifū ∈ W/Pk andv̄ ∈ W/P1, thenū ∩ v̄ 6= ∅ if
and only ifv(1) ∈ {u(1), . . . ,u(k)}. Since{u(1), . . . ,u(k)} can be anyk-element subset
of [n+ 1], the P1-admissible sets are all thek-subsets of [n+ 1].

A(Pk) =
(

[n+ 1]

k

)
Geometrically, the admissible sets are (the vertex sets of) the(k− 1)-dimensional faces of
the regularn-simplex. The Bruhat order onP1, as given in Example 1 of Section 2, induces
the Gale order onA(Pk). For example, withn = 4, k = 3 we have 2 3 5> 1 2 5 in the
Gale order. (As is common in the matroid literature{2, 3, 5} is simply denoted 2 3 5.)

Example 2 (symplectic case) If W = Cn, an analysis similar to that in Example 1
indicates that

A(Pk) =
{
α ∈

(
[n] ∪ [n]∗

k

)∣∣∣∣ both i andi ∗ cannot appear simultaneously inα

}
.

For example, withn = 4, k = 3, the set 1 2 4∗ is admissible but 1 2 2∗ is not. Geometrically,
the admissible sets are (the vertex sets of) the regular(k−1)-dimensional faces of the regular
n-dimensional cross polytope, where a vertex and antipodal vertex pair are denoted by a
number and its star. The Bruhat order onP1 as given in Example 2 of Section 2 induces
the Gale order onA(Pk). For example, withn = 4, k = 3 we have 1∗ 2 3∗ > 1 2∗ 4 in the
Gale order because 1∗ Â 2∗, 3∗ Â 4, 2Â 1.
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Example 3 (orthogonal case) If W = Dn andk ≤ n− 2, then, just as in theCn case,

A(Pk) =
{
α ∈

(
[n] ∪ [n]∗

k

) ∣∣∣∣ both i andi ∗cannot appear simultaneously inα

}
.

However,A(Pn−1) consists of all sets in ([n]∪[n]∗
n ) such that bothi and i ∗ cannot appear

simultaneously and there are an even number of starred elements. SimilarlyA(Pn) con-
sists of all sets in ([n]∪[n]∗

n ) such that bothi andi ∗ cannot appear simultaneously and there
are an odd number of starred elements. The Bruhat order onP1 as given in Example 3 of
Section 2 induces the Gale order onA(Pk). For example, withn = 4, k = 3 we have
1∗ 2 3∗ 4> 1 2∗ 3 4∗ in the Gale order because 1∗ Â 2∗, 3∗ Â 4∗, 4Â 3, 2Â 1.

A mapping f from one poset to another is calledmonotoneif u ≥ v implies f (u) ≥ f (v)
for all u, v. A bijection f for which both f and f −1 are monotone is called anisomorphism.

Theorem 1 Let (W, S) be a finite, irreducible Coxeter system and P and Q parabolic
subgroups. The Q-basis map

B : W/P→ A(P, Q)

v̄ 7→ B(v̄)

is a monotone bijection from the set W/P with respect to Bruhat order to the setA(P, Q)
with respect to Gale order. Moreover, B is an isomorphism if the Bruhat order on W/Q is
linear.

Proof: It is surjective by definition of admissible. LetP = WJ . Recall the notation for
a maximal parabolic subgroupPj = WS−{ j }. Injectivity follows from the following known
properties of Coxeter groups [17].

(i) ∩ j /∈J Pj = WJ .
(ii) If two elements inW/Pj have the sameQ-basis, then they coincide.

Statement (i) says thatv̄ ∈ W/P is determined by{vPj | j /∈ J}, and statement (ii) says
thatvPj is determined by itsQ-basis.

Concerning the monotone property and isomorphism there are three things to prove.

(1) vPJ º u PJ ⇔ vPj º u Pj for all j /∈ J.
(2) vPj º u Pj ⇒ B(vPj ) ≥ B(u Pj ) for each j /∈ J.
(3) If the Bruhat order onW/Q is linear, thenB(vPj ) ≥ B(u Pj )⇒ vPj º u Pj for each

j /∈ J.

Statement (1) is Lemma 3.6 in Deodhar [7]. The proof there applies to our situation without
change.

In the following proof of statement (2), we will use Definition 4 (Section 2) of Bruhat
order. ForJ ⊆ [n], let WJ = {w ∈ W | l (ws) = l (w)+1 for all s ∈ J}. This is the set of
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all minimal representatives of cosets inW/P. It is well known [12] that for anyw ∈ W we
havew = wJwJ wherewJ ∈ WJ andwJ ∈ WJ , and this expression is unique. Moreover,
l (w) = l (wJ)+ l (wJ).

Assume thatvPj º u Pj and letv̄min andūmin be the minimum elements invPj andu Pj ,
respectively. The mappingφ : v̄minx 7→ ūminx, x ∈ Pj , is a bijection betweenvPj and
u Pj such thatv̄minx º φ(v̄minx). Then the mappinĝφ : yQ 7→ φ(y)Q induces a well
defined bijection betweenB(vPj ) andB(u Pj ) such thatyQ º φ̂(yQ). But this is exactly
Gale orderB(vPj ) ≥ B(u Pj ). Thus statement (2) is proved.

Concerning the proof of statement (3), assume that the Bruhat order onW/Q is linear. To
prove thatB is an isomorphism we must show that ifB(vPj ) ≥ B(u Pj ) thenvPj º u Pj .
This requires some preliminary properties of Bruhat order:

(a) Property Z(s, w1, w2): If w1, w2 ∈ W ands ∈ Ssatisfyl (w1) º l (sw1) andl (w2) º
l (sw2), thenw2 º w1⇔ w2 º sw1⇔ sw2 º sw1.

(b) If w ∈ WJ ands ∈ Ssatisfyl (w) º l (sw), thensw ∈ WJ .
(c) If w ∈ W ands ∈ SsatisfywPj Â swPj , thenw Â sw.

Properties (a) and (b) are in [7]. Concerning (c), ifw̄min is the minimum element ofwPj ,
thenw̄min Â sw̄min becausesw̄min ∈ swPj , so thatsw̄min Â w̄min is impossible. By property
(b) we havesw̄min ∈ WJ , whereJ = [n]\{ j }. The decomposition of any element ofW
into a product of elements ofWJ andWJ (discussed above), implies thatw Â sw. Thus
property (c) is proved.

Let B(vPj ) = {v1Q, . . . , vmQ} andB(u Pj ) = {u1Q, . . . ,umQ}. Because we are
assuming thatB(vPj ) ≥ B(u Pj ), we havevi Q º ui Q for i = 1, . . . ,m. Let v̄min

be the minimum element ofvPj and ūmin the minimum element ofu Pj . The proof of
statement (3) now proceeds by induction on the length ofv̄min. If l (v̄min) = 0, thenv̄min

is the identity 1. Consequently, the minimum elements in the cosetsv1Q, . . . , vmQ are all
elements ofPj . By Definition 2 of Bruhat order, the minimum elements ofu1Q, . . . ,umQ
must be subwords of the minimal elements ofv1Q, . . . , vmQ, hence also elements ofPj .
ThereforeB(vPj ) = B(u Pj ). By the injectivity of the mappingB, we havevPj = u Pj ;
the first instance in the induction is done. Now assume thatl (v̄min) ≥ 1. Chooses ∈ S
such that̄vmin Â sv̄min. The proof is now divided into three cases.

Case 1. ūmin Â sūmin. In this case we claim thatB(svPj ) ≥ B(su Pj ); more precisely
we claim thatsvi Q º sui Q for all i . By the induction hypothesis, this would imply
thatsvPj º su Pj . By property (b),sv̄min andsūmin are the minimum elements ofsvPj

andsu Pj , respectively. Thereforesv̄min º sūmin. By propertyZ(s, ūmin, v̄min), we have
v̄min º ūmin, and hence the desired resultvPj º u Pj .

To prove the claim for Case 1, fix an indexi . Let v′ andu′ be elements ofvi Q ∩ vPj

andui Q ∩ u Pj , respectively. Then̄vmin Â sv̄min implies thatv′Pj Â sv′Pj since both
v̄min andsv̄min are minimum elements. This implies, by property (c), thatv′ Â sv′, which
in turn implies thatv′Q º sv′Q. Similarly ūmin Â sūmin implies thatu′Q º su′Q. If
v′′ andu′′ are the minimum elements ofv′Q andu′Q, resp., then clearlyv′Q º u′Q
implies thatv′′ º u′′. Also u′′Q º su′′Q impliesu′′ º su′′ unlessu′′Q = su′′Q and
v′′Q º sv′′Q impliesv′′ º sv′′ unlessv′′Q = sv′′Q. Assuming the cases of equality do
not occur, propertyZ(s, u′′, v′′) implies thatsv′′ º su′′, i.e.,svi Q º sui Q.
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Now consider the cases of equality above. First, ifv′′Q = sv′′Q thensv′Q = v′Q º
u′Q º su′Q, and we are done. Second, ifu′′Q = su′′Q andv′′Q Â sv′′Q then by
previous argumentssv′′ is the mimimum element ofsv′Q. Sincev′′Q Â sv′′Q we have
v′′ Â sv′′. If u′′ Â su′′ the argument in the paragraph above works, but ifsu′′ Â u′′

then letw = su′′ andsw = u′′ so thatw Â sw. Now v′′ º u′′ implies thatv′′ º sw.
By property Z(s, v′′, w) we have thatv′′ º sw implies sv′′ º sw = u′′. Therefore
sv′′Q º u′′Q = su′′Q. (Note that the argument used in this paragraph will be referred
to in Cases 2 and 3.)

Case 2. s̄umin Â ūmin andsu Pj Â u Pj . In this case we claim thatB(svPj ) ≥ B(u Pj );
more particularly we claim thatsvi Q º ui Q for all i . By the induction hypothesis applied
to sv̄min, we havesvPj º u Pj , which implies, by property (b), thatsvmin º umin. By
propertyZ(s, sūmin, v̄min), we havēvmin º ūmin, and hence the desired resultvPj º u Pj .

To prove the claim for Case 2, fix an indexi . With the same notation as in Case 1,
this inequality implies thatsu′ Â u′ which implies thatsu′′Q º u′′Q which in turn
implies thatsu′′ Â u′′ unlesssu′′Q = u′′Q. If su′′ Â u′′, then the same arguments
as in Case 1 can be used to prove the claim for Case 2, thatsvi Q º ui Q. Moreover,
su′′Q = u′′Q is impossible becauseu′′ Â su′′ implies, by property (b), thatsu′′ is the
minimum element forsu′′Q, and, sinceu′′ is the minimum foru′′Q, this would imply that
u′′Q Â su′′Q.

Case 3. s̄umin Â ūmin andsu Pj = u Pj . We claim thatB(svPj ) ≥ B(u Pj ). By the
induction hypothesis, we havesvPj º u Pj , which impliesvPj º u Pj exactly as in
Case 2.

To prove the claim for Case 3, consider any pairui Q anduk Q of cosets inB(u Pj )

whereuk Q= sui Q. (It is possible thatui Q= uk Q.) Note that such pairs form a partition
of the setB(u Pj ). Our intention is to show that each pair{svi Q, svk Q} is greater than
or equal to{ui Q, uk Q} in the Gale order. In other words, eithersvi Q º ui Q and
svk Q º uk Q or svi Q º uk Q andsvk Q º ui Q.

Let u′′ andu′′s be the minimum elements ofui Q andsui Q, respectively. Ifsu′′ Â u′′

andsu′′s Â u′′s, then, by the argument of Case 2 (and also Case 1),svi Q º ui Q and
svk Q º uk Q.

It remains to deal with the possibility that eitheru′′ Â su′′ oru′′s Â su′′s. Without loss of
generality assume thatu′′ Â su′′. Since, by property (b),su′′ must be a minimal element
in its coset moduloQ, and, sincesu Pj = u Pj , bothu′′ andsu′′ represent elements of
B(u Pj ). Letw= su′′ andsw= u′′ and letzi º sw andzk º w, be the minimal elements
of the cosetsvi Q andvk Q in B(vPj ) that, by assumption, dominateui Q= swQ and
uk Q=wQ resp., in the Bruhat order. Sincesw Â w, correspondinglyzi Â zk. Also
sincesw Â w it follows, as in Case 2, thatsvk Q= uk Q. If it is also true thatsvi Q º ui Q,
then the proof is complete. Assume that it is not the case thatszi Q= svi Q º ui Q= swQ.
Here is where we use the linearity of the Bruhat order onW/Q. Becausezi º sw we
havezi Q º swQ and by the linearity we haveswQÂ szi Q. These two inequalities
imply zi Â szi . But zi º sw Â szi implies, becausezi coversszi in the Bruhat
order (see [12]), thatzi = sw. Moreover,sw= zi Â zkºw implies thatzk=w. Then
svi Q= szi Q=wQ= su′′Q= uk Q andsvk Q= szk Q= swQ= u′′Q= ui Q. Thus the
pair {svi Q, svk Q} is equal to{ui Q, uk Q} in the Gale order, and we are done. 2
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Figure 2. Gale order onA(P) is the Bruhat order on Sym3.

Example 4 As an example of a collection of admissible sets with respect to a non-maximal
parabolic subgroup, consider the caseW= A2 ≈ Sym3 and the trivial parabolic subgroup
P=W∅. ThenW/P=W. The bijection betweenA2 andA(P) is explicitly indicated as
follows, whereS={s1, s2} is the canonical set of generators of Sym3.

B(id) = B(123) = (1, 1 2), B(s1) = B(213)= (2, 1 2),
B(s2) = B(132) = (1, 1 3), B(s2s1) = B(312)= (3, 1 3),
B(s1s2) = B(231) = (2, 2 3), B(s1s2s1) = B(321)= (3, 2 3).

According to Theorem 1, the symmetric group Sym3 is isomorphic toA(P). The Hasse
diagram ofA(P)with respect to the Gale order is given in figure 2, which is, by Theorem 1,
also the Hasse diagram of the Bruhat order on Sym3. Recall that, for the symmetric group,
a permutationπ covers a permutationσ in the Bruhat order ifπ is obtained fromσ by an
inversion that interchangesσ(i ) andσ( j ) for somei < j with σ(i ) < σ( j ).

Example 5 The Hasse diagram below shows the Bruhat order on the 20 elements ofW/P3,
whereW= H3, the symmetry group of the icosahedron. Using the bijection of Theorem 1,
the elements ofW/P3 have been labeled by theirQ-bases inA(P3), whereQ= P1. The
Bruhat order onW/Q in this case is not linear:

6
1≺ 2≺ 3≺ 4≺ 5≺ ≺ 5∗ ≺ 4∗ ≺ 3∗ ≺ 2∗ ≺ 1∗.

6∗

(The∗ denotes the antopodal vertex if the elements ofW/Q are viewed, via Proposition 1,
as the 12 vertices of the icosahedron.) Nevertheless, it is easy to check that figure 3 is
also the Hasse diagram for the Gale order onA(P3). SoH3/P3 andA(P3) are isomorphic
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Figure 3. Gale order onA(P) is Bruhat order onH3/P.

posets, although Theorem 1 only guarantees that there is a monotone bijection fromH3/P3

to A(P3). The next remark shows that it is not always the case that the Bruhat order on
W/P is the Gale order onA(P, Q).

Remark The basis mapB of Theorem 1 is not, in general, a poset isomorphism. For
example, consider the orthogonal case (Example 3 in Sections 2 and 3) whereW= D4. Let
P= P2 and Q= P1 (node 2 is the node of degree 3 in the Coxeter diagram of figure 1).
The Bruhat order onW/Q is not a linear order:

4
1≺ 2≺ 3≺ ≺ 3∗ ≺ 2∗ ≺ 1∗.

4∗
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The basis mapB is a bijection betweenW/P and all two elements subsets ofW/Q not
consisting of an element and its star. Consider the two cosetsu P andvP, whereu and
v are expressed in terms of standard generators:u= s2s1s4s2 andv= s4s2s1s3s2. Both u
andv are minimal representatives of their respective cosets, and they are incomparable in
the Bruhat order onW; henceu P andvP are incomparable in the Bruhat order onW/P.
On the other handB(u P)= 3 4 andB(vP)= 4 3∗. But 3 4 is less than 4 3∗ in the Gale
order.

4. Admissible orders and admissible functions

Let (W, S) be a Coxeter system,P and Q parabolic subgroups, andA(P, Q) the cor-
responding collection of admissible sets. Aweight functionφ : W/Q → R is said to
be compatiblewith the Gale order onW/Q if v̄ Â ū implies thatφ(v̄) > φ(ū) for any
ū, v̄ ∈ W/Q. A function f : A(P, Q)→ R is called aQ-linear functionif it is of the form

f (B)=
m∑

i=1

ci

∑
b∈Bi

φ(b),

whereB= (B1, B2, . . . , Bm) andφ is compatible with the Gale order onW/Q andci > 0
for all i . If ci = 1 for all i , then f (B) is simply thetotal weight, the sum of the weights of
all the entries inB, counting multiplicity. In particular, ifP is maximal, thenB is a single
set and

f (B)=
∑
b∈B

φ(b)

is (up to a positive constant) the total weight ofB.
Define anadmissible orderon the setW/Q of cosets as aw-Bruhat order for some

w ∈ W. An admissible weighton W/Q is a real valued functionφ : W/Q → R that is
compatible with some admissible order. AQ-admissible function f: A(P, Q)→ R is a
Q-linear function

f (B)=
m∑

i=1

ci

∑
b∈Bi

φ(b),

whereφ is an admissible weight onW/Q.
In light of the bijectionB : W/P → A(P, Q) of Theorem 1, it is appropriate to define

a function f : W/P → R to be aQ-admissible functionif the corresponding function
f̂ :A(P, Q)→ R defined by f̂ (A)= f (B−1(A)) is Q-admissible. We will usually make
no distinction betweenf and f̂ .

Given parabolic subgroupsP andQ, there is a naturally associated combinatorial opti-
mization problem that is the main topic of the remaining sections of this paper.
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Optimization Problem. Given a subsetL ⊂A(P, Q) and a Q-admissible function
f : A(P, Q)→ R, find an element ofL that maximizesf .

Example 1 (ordinary case) If W= An andQ= P1, then recall thatW/Q= [n+ 1] and
the Bruhat order onW/Q is 1≺ 2 ≺ · · · ≺ n+ 1. If w ∈ W then, by definition,i ≺ j in
thew-Bruhat order onW/Q if and only ifw−1(i ) ≺ w−1( j ) in the Bruhat order onW/Q.
Letting w range over all the elements ofW (all permutations of [n + 1]), we conclude
that an admissible order isany linear order on the set [n+ 1]. An admissible weightφ is
therefore any weight function. Considering the case of a maximal parabolic subgroupPk,
a Q-admissible functionf : A(Pk)→ R is of the form

f (B)=
k∑

i=1

φ(bi ),

whereB={b1, . . . ,bk}.

Example 2 (symplectic case) If W=Cn andQ= P1, then recall thatW/Q= [n] ∪ [n]∗

and the Bruhat order onW/Q is

1≺ 2 · · · ≺ n− 1≺ n ≺ n∗ ≺ (n− 1)∗ ≺ · · · ≺ 2∗ ≺ 1∗.

Because the setS={s1, . . . , sn} of generators ofCn is of the formsi = (i, i +1)(i ∗, (i +1)∗)
for i = 1, . . . ,n− 1, andsn= (n, n∗), an admissible order is any linear order on [n] ∪ [n]∗

of the form

i1 ≺ i2 ≺ · · · i n ≺ i ∗n ≺ i ∗n−1 ≺ · · · i ∗1,

where the firstn elements are starred or unstarred andi ∗∗ = i . Consequently the admis-
sible weight functions include all weightsφ such thatφ(i ∗)=−φ(i ) for eachi ∈ [n]. A
Q-admissible functionf : A(Pk)→ R has the same form as in Example 1.

Example 3 (orthogonal case) Likewise, if W= Dn, an admissible order is any order on
[n] ∪ [n]∗ of the form:

i n

i1 ≺ i2 ≺ · · · i n−1 ≺ ≺ i ∗n−1 ≺ · · · ≺ i ∗2 ≺ i ∗1 .
i ∗n

wherei1 throughi n are starred or unstarred andi ∗∗ = i . The admissible weight functions
in the orthogonal case are exactly the same as the admissible weight functions in the sym-
plectic case, because a weight function must be compatible with the ordering.

The last result in this section is that a particular function, that will be needed in the
next section, is admissible. Consider the realization of a rankn Coxeter groupW as a
reflection group inn-dimensional Euclidean space. With the notation of Section 2, set
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E′ =E\∪H∈6 H , where6 is the set of all reflecting hyperplanes. Call a vectorregular if
it lies in E′. Let P be a parabolic subgroup ofW. Recall that ifξ ∈ 00(P), thenw(ξ)
depends only on the coset ofw in W/P.

Theorem 2 Let P and Q be parabolic subgroups of W. Ifξ ∈ 00(P) andη is regular,
then

fξ,η : W/P→ R
(1)

fξ,η(w)=−〈wξ, η〉.

is a Q-admissible function.

Proof: Fix ζ ∈00(Q). Thenw(ζ ) depends only on the left coset ofQ to whichw belongs.
With w̄ ∈ W/Q, define

φ(w̄)=−〈wζ, η〉. (2)

It follows from Proposition 2 that, ifη is regular, then this functionφ : W/Q → R is an
admissible weight function. It is admissible because it is compatible with thew0-Bruhat
order, wherew0 is the unique element ofW such thatw−1

0 η ∈ 00.
Choose one nonzero vector on each of the 1-dimensional faces of00(P). Denote these

by ξ1, . . . , ξm. Then

ξ =
m∑

i=1

ci ξi , (3)

whereci > 0 for all i . For eachi let Pi denote the maximum parabolic subgroup cor-
responding to the faceξi under the correspondence of Proposition 1; soP ⊆ Pi . Let
Pi /Q={ū1, . . . ūt }; this is a Q-basis forPi . Further letα= ∑i ui (ζ ) and letv be an
arbitrary element ofPi . Thenv(α)= ∑i vui (ζ )=

∑
i ui (ζ )=α. This implies thatα is

fixed by allv ∈ Pi , and thereforeα= ki ξi for some constantki :

ki ξi =
t∑

j=1

u j (ζ ). (4)

The constantki is positive for the following reason. First〈ζ, ξi 〉 > 0 since the two vectors
lie in the same closed chamber0̄0. Similarly 〈u j ζ, ξi 〉> 0 becauseu j holds ξi fixed
and henceu j (ζ ) andξi lie in the same closed chamber. Now, by statement (4) we have
ki 〈ξi , ξi 〉= 〈ki ξi , ξi 〉=

∑t
j=1 〈u j (ζ ), ξi 〉, which implies thatki > 0.

From (1)–(4) we have

fξ,η(w̄)=
m∑

i=1

ci

ki

t∑
j=1

φ(wū j ).
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If the Q-basis forw̄ is B= (B1, B2, . . . , Bm), then, by the definition ofQ-basis,{wū | u ∈
Pi /Q}= Bi , and hence

fξ,η(w̄)=
m∑

i=1

ci

ki

∑
b∈Bi

φ(b),

which shows thatfξ,η is a Q-admissible function becauseφ is an admissible weight
function. 2

5. Coxeter matroids

Following [10] and [11], we associate to each finite, irreducible Coxeter groupW and
parabolic subgroupP objects called Coxeter matroids. Let(W, S) be a finite, irreducible
Coxeter system andP a parabolic subgroup ofW. A subsetM ⊆ W/P is called aCoxeter
matroid (for W and P) if, for eachw ∈ W, there is a unique maximum element inM
with respect to thew-Bruhat order. In other words, there is an elementu P ∈ M such that
w−1u P º w−1vP for all vP ∈ M .

An ordinary matroid (of rankk) is a special case of a Coxeter matroid, the case where
W= An andP is the maximal parabolic subgroupPk. Why this is so will become apparent
later in this section. The Coxeter matroids associated with the families of Coxeter groups
Bn/Cn andDn have been termedsymplectic matroidsandorthogonal matroids, respectively,
by Borovik, Gelfand and White [2].

If Q is also a parabolic subgroup ofW, recall thatB : W/P→ A(P, Q) is theQ-basis
map of Theorem 1 that assigns to each element ofW/P its Q-basis. The set of elements
B(M) plays an analogous role for a Coxeter matroidM as the set of bases do for an ordinary
matroid. Of course this set of bases depends on the choice ofQ. The choiceQ= P1, the
maximal parabolic subgroup corresponding to the first node in the Coxeter diagram, is
especially appealing because of the simple structure of the Bruhat order onW/Q, in many
cases a linear order. IfB= (B1, B2, . . . , Bm) is theQ-basis for some element ofW/P and
Ai ⊆ Bi for eachi , thenA= (A1, A2, . . . , Am) is called aQ-independent set. The number
of setsAi to which an elementx ∈ W/Q belongs is called themultiplicity of x in A. If
L ⊂ W/P, denote byI(L) the collection ofQ-independent sets of elements inL.

Recall the optimization problem introduced in the previous section.

Optimization Problem. Given a subsetL ⊂W/P and aQ-admissible functionf : W/P
→R, find an element ofL that maximizesf .

Theorem 3 below states that, ifL is a Coxeter matroid, then there is a natural greedy algo-
rithm that correctly solves the optimization problem. Indeed, if the Bruhat order onW/Q
is a linear order, then the Coxeter matroids are characterized by the property that the greedy
algorithm solves this optimization problem. The greedy algorithm proceeds in terms of the
Q-bases for the elements ofL rather than the cosets themselves. The algorithm returns the
Q-basis for the element ofL that maximizesf . Recall that, sincef is Q-admissible, there
is a correesponding admissible weight function onW/Q.
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Greedy Algorithm.

initialize I = (A1, . . . , Am) to (∅, . . . ,∅).
initialize X to W/Q.
while

there exists anx ∈ X and anI ′ = (A′1, . . . , A′m) ∈ I(L) such that I ′ 6= I and, for
eachi , eitherA′i = Ai or A′i = Ai ∪ {x},

do
From all such pairs(x, I ′) choose the one(s) for whichx has largest weight. From
all the pairs above choose one(x, I ′) for which x has largest multiplicity inI ′.
ReplaceI by I ′.
Removex from X.

Note that ifP is maximal inW, then there is no multiplicity of entries inI ′ becauseI ′

consists of a single set. In this case the Greedy Algorithm takes the simple form given in
Section 1.

Example Consider the caseW= A2 with P the trivial parabolic subgroup. The Bruhat
order onW=W/P is shown in figure 2 in terms of theP1-bases. Take as admissible
weightφ(1)= 1;φ(2)= 3;φ(3)= 4 and as admissible functionf (w)=φ(a) + φ(b1) +
φ(b2), where ({a}, {b1, b2}) is the basis ofw. Let L be the Coxeter matroid with
bases{(2, 23), (2, 12), (1, 13), (1, 12)}. The greedy algorithm maximizesf in two
steps:

I = ∅
I = (·, 3)
I = (2, 23).

On the other handL ={(3, 13), (2, 23)} is not a Coxeter matroid. Using the same admissible
function, the greedy algorithm returns(3, 13), although f (3, 13)= 9< 10= f (2, 23).

For parabolic subgroupsP andQ of a Coxeter groupW, thew-Gale order on the col-
lectionA(P, Q) of admissible sets is defined in an analogous manner as the Gale order on
A(P, Q). Consider the posetW/Q with respect tow-Bruhat order. Since the individual
entries inA(P, Q) lie in this poset,A(P, Q) is itself a poset with respect to the corre-
sponding Gale order given in Definition 6. This Gale order is called thew-Gale orderon
A(P, Q). If L ⊂A(P, Q) andw ∈W, thenB ∈ L is said to be aw-Gale maximumelement
of L if B ºw A for all A ∈ L with respect to thew-Gale order.

Theorem 3 Let L ⊆ W/P, where P is a parabolic subgroup of the finite, irreducible, rank
n Coxeter group W. Let Q also be a parabolic subgroup of W. The following statements
are equivalent.
(1) L is a Coxeter matroid.
(2) The setB(L) of Q-bases has aw-Gale maximum for everyw ∈ W.
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(3) Every Q-admissible function f: W/P→ R attains a unique maximum on L.
Moreover any of the statements(1), (2) or (3) implies(4), and statement(4) implies
statements(1), (2) and(3) if the Bruhat order on W/Q is a linear order.

(4) The greedy algorithm solves the optimization problem for any Q-admissible function
f : W/P→ R.

Proof: (1)⇒ (2). Assume thatL is a Coxeter matroid andB(L) its set ofQ-bases. Given
w ∈ W, let v̄ ∈ L be the unique maximum inL with respect to thew-Bruhat order. Thus
w−1v º w−1u for all u ∈ W. By Theorem 1, this implies thatB(w−1v) ≥ B(w−1u),
which, in turn, implies thatB(v̄) ≥w B(v̄).
(2)⇒ (3). Consider anyQ-admissible functionf : W/P→ R. Then f has the form

f (v̄)=
m∑

i=1

ci

∑
b∈Bi

φ(b),

where(B1, B2, . . . , Bm)=B(v̄) is theQ-basis ofv̄, ci > 0 for all i , andφ is a weight func-
tion compatible with thew-Bruhat order onW/Q for somew ∈ W. Let(A1, A2, . . . , Am) =
B(v̄0) be thew-Gale maximumQ-basis inB(L), and let(B1, B2, . . . , Bm) be any other
Q-basis inB(L). Then, for eachi , the elements ofAi ={ai j } and Bi ={bi j } can be ar-
ranged so thatai j ºw bi j . For at least one pair(i0, j0) the above inequality is strict. By
the compatibility ofφ, we haveφ(ai j ) ≥ φ(bi j ) for all i, j andφ(ai0 j0) > φ(bi0 j0). Hence
the function f attains a unique maximum onB(L) at (A1, A2, . . . , Am) and hence, by the
bijection of Theorem 1, a unique maximum atv̄0 on L.
(2)⇒ (4). By the paragraph above, the solution to the optimization problem is the

Gale maximum(A1, A2, . . . , Am). We claim that the greedy algorithm finds this Gale
maximum. To see this, replace each element(B1, B2, . . . , Bm) of B(L) by the multisetB
that is the concatenation of the sets in(B1, B2, . . . , Bm). (For example, replace(1, 12) by
(112).) Call the resulting collectionB′(L). An independent set inB(L) can be considered
as just a multisubset of such a multiset inB′(L). Since(A1, A2, . . . , Am) is the unique
w-Gale maximum ofB(L), it is easy to check that its concatenationA is the uniquew-Gale
maximum ofB′(L). So, to simplify the exposition we now consider the greedy algorithm
onB′(L) instead of onB(L).

To prove the claim letA={a1, . . . ,ak} be thew-Gale maximum, and assume that the
greedy algorithm has outputB={b1, . . . ,bj }, j ≤ k, on termination. BecauseA is the
w-Gale maximum, the elements ofA andB can be assumed ordered such thatai º bi , i =
1, . . . , j and such that, in the greedy algorithm,b1 is chosen beforeb2 is chosen beforeb3,
etc. (In case of a repeated entry, they are assumed chosen consecutively. For simplicity we
denoteºw byº.) Because the algorithm is greedy, it must be the case thatφ(b1) ≥ φ(a1). If
a1 Â b1, then, by compatibility,φ(a1) > φ(b1), a contradiction. Becausea1 º b1 we have
a1= b1. Proceeding by induction, assume thatai = bi for i = 1, . . . ,m−1< j . The same
argument just used implies thatam= bm. Thereforeai = bi , i = 1, . . . , j . Also j = k;
otherwise the greedy algorithm could continue by choosing, for example,bj+1=aj+1.
(3)⇒ (1). Assume thatL is not a Coxeter matroid. To provide aQ-admissible function

f which does not have a unique maximum onL, fix ξ ∈ 00(P). Part (4) of Theorem 3
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in [15] states that ifL is not a Coxeter matroid, then there exists a regularη such that
f (w̄)= −〈wξ, η〉 attains its maximum (or minimum) onL on at least two points. But, by
Theorem 2 of Section 4, this functionf is Q-admissible.
(4)⇒ (1). Assume thatL is not a Coxeter matroid. By the paragraph above, there is a

Q-admissible function

f (w̄)=
m∑

i=1

ci

∑
d∈Di

φ(d),

where(D1, D2, . . . , Dm) is the Q-basis ofw̄ andφ is a Q-admissible weight, and such
that f has at least two maxima onL. Assume that the greedy algorithm returns an element
ū ∈ L and that̄v 6= ū is one of the maxima off onL. Let(B1, . . . , Bm) be theQ-basis ofū
and(A1, . . . , Am) theQ-basis ofv̄. It is impossible that

∑
b∈Bi

φ(b) ≥∑a∈Ai
φ(a) for all

i with at least one inequality strict becauseQ-basis(A1, . . . , Am) is maximal. Therefore
there are just two cases.

Case 1. If there exists aj such that
∑

a∈Aj
φ(a) >

∑
b∈Bj

φ(b), then consider theQ-
admissible function defined by

f̄ (w̄)=
m∑

i=1

c̄i

∑
b∈Di

φ(d),

wherec̄j = 1 andc̄i is sufficiently small fori 6= j so that f̄ (v̄) > f̄ (ū). The greedy
algorithm findsū, which cannot be the maximum of this admissiblef̄ on L. Hence the
greedy algorithm fails.

Case 2. Assume that
∑

a∈Ai
φ(a)= ∑b∈Bi

φ(b) for all i . Sinceū 6= v̄, the Q-bases of
ū and v̄ are also unequal, and hence there exists aj and ana ∈ Aj such thata /∈ Bj .
Consider the weight̄φ on W/Q defined byφ̄(α)=φ(α) for all α 6= a, andφ̄(a)=φ(a)
+ ε, whereε is sufficiently small so that̄φ remains admissible and so that the greedy
algorithm applied tōφ chooses elements in the same order as the greedy algorithm applied
to φ. Note that, if some other element has exactly the same weight asa, then, no matter
how smallε is chosen, it may not be possible to satisfy this last condition. Here is
where the linearity of the Bruhat order onW/Q is used. Sinceφ is compatible with
this Bruhat order, no two distinct elements can have the same weight. Now consider the
Q-admissible function defined by

f̄ (w̄)=
m∑

i=1

c̄i

∑
b∈Di

φ̄(d),

wherec̄j = cj . If c̄i , i 6= j , is sufficiently small andε is sufficiently small, then it re-
mains the case that̄f (v̄) > f̄ (ū). Again the greedy algorithm fails for thisQ-admissible
function f̄ on L. 2



THE GREEDY ALGORITHM AND COXETER MATROIDS 175

Remark In general, it is not true that statement (4) implies statements (1–3) in Theorem 3.
As a simple example, consider the orthogonal case whereW= D4 (see Example 3 in
Sections 2 and 3). LetP= Q= P1. Then there are eight admissible sets corresponding to
the eight elements ofW/P, each admissible set consisting of a single element: 1≺ 2 ≺
3 ≺ 4, 4∗ ≺ 3∗ ≺ 2∗ ≺ 1∗. Note that the Bruhat order onW/Q is not linear; in particular
4 and 4∗ are incomparable. AQ-admissible function is simply a weight functionφ on the
setA={1, 2, 3, 4, 4∗, 3∗, 2∗, 1∗} satisfying the required compatibility condition. Now let
L ={4, 4∗}; clearly L is not an orthogonal matroid because, as mentioned, 4 and 4∗ are
incomparable in the Bruhat order onW/P. On the other hand, for any functionφ : A→ R,
the greedy algorithm will surely pick an element from the two in the set{4, 4∗} for which
φ attains a maximum.

It is worthwhile considering some particular Coxeter matroids and the corresponding
optimization problems. In all these examples, we takeQ= P1.

Ordinary matroids. Let W= An and letPk be the maximal parabolic subgroup generated
by 〈si | i 6= k〉. Then, according to Theorem 3 and the definition of matroid in Section
1, a Coxeter matroidM ⊆ W/Pk is an ordinary rankk matroid, each basisB being a
k-element subset of [n+ 1]. The relevant objective function, whose maximum is found
by the greedy algorithm, is∑

b∈B

φ(b),

whereφ is any function on [n+ 1] taking distinct values. For ordinary matroids the op-
timization problem and the corresponding greedy algorithm are essentially the classical
ones discussed in Section 1. As stated in the introduction the optimization problem seeks
a maximum independent set; in this section the optimization problem seeks a maximum
basis. If all weights are positive, then the two problems coincide.

Flag matroids. Let W= An and let P be an arbitrary parabolic subgroup generated by
〈si | i 6= i1, i2, . . . , im〉. Then an admissible set is of the formB= (B1, B2, . . . , Bm),
whereB1 ⊂ B2 ⊂ · · · ⊂ Bm and|Bj | = i j for eachj . Letting A1= B1 andAi = Bi \Bi−1

for i > 1, the relevant objective function takes the form

m∑
i=1

ci

∑
a∈Ai

φ(a),

wherec1 > c2 > · · · > cm > 0. The terminologyflag matroidfor a such a Coxeter
matroidM ⊂ W/P appears in [3], where the characterization below is given. IfB is the
set of bases, each basis of the formB= (B1, B2, . . . , Bm), letBi ={Bi | B ∈ B}.

Theorem 4 B is the set of bases of a flag matroid M if and only ifBi is the set of bases
of an ordinary matroid Mi and each closed set in Mi is closed in Mi+1.
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Gauss greedoids. As a special case of the previous example, consider the flag matroids
wherei1 = 1, i2 = 2, . . . , im=m. Then, with notation as above,|Ai | =1; sayAi ={ai }
for i = 1, . . . ,m. In this case the objective function reduces to

m∑
i=1

ciφ(ai ),

wherec1 > c2 > · · · > cm > 0. Note that itm= n, i.e. the parabolic subgroupP is triv-
ial andW/P= An thena1a2 · · ·anan+1, (the remaining elementan+1 of [n+ 1] is tacked
on at the end) is a permutation of [n + 1]. This gives the isomorphismAn ≈ Symn+1.
These special flag matroids were introduced as Gauss greedoids because they are gree-
doids with a connection to the Gaussian elimination process [13]. In general, greedoids
are not a special case of Coxeter matroids, the relevant objection function for a greedoid
being a generalized bottleneck function rather than a linear function.

Symplectic matroids. Let W=Cn and letP = Pk, the maximal parabolic subgroup gener-
ated by〈si | i 6= k〉. A Coxeter matroid in this case is called a rankk symplectic matroid
[2]. The terminology comes from the fact that some of these Coxeter matroids can be
constructed from the totally isotropic subspaces of a symplectic space. TheQ-admissible
functions are discussed in Section 4. The admissible sets arek-element subsetsB of
[n] ∪ [n]∗ with the property thatB ∩ B∗ =∅. The relevant objective function is∑

b∈B

φ(b),

whereφ is any function on [n] ∪ [n]∗ that takes distinct values and such thatφ(b∗)=
− φ(b).

Lagrangian matroids. WhenW=Cn andP = Pn we have a special case of a symplectic
matroid, the rankn case. These matroids were first introduced as symmetric matroids
by A. Bouchet [6] outside the context of Coxeter matroids. They are referred to as
Lagrangian (symplectic) matroids in [2]. Bouchet gives several characterizations of these
matroids in addition to the characterization in terms of the greedy algorithm.

6. TheL-assignment problem

In this section the theory in Section 5 is applied to theL-assignment problem. LetW be a
finite group acting as linear transformations on a Euclidean spaceE, and let

fξ,η(w) = 〈wξ, η〉 for ξ, η ∈ E, w ∈ W.

TheL-assignment problemis to minimize the functionfξ,η on a given subsetL ⊆ W. In
[1], it was shown that theL-assignment problem forW = An is, in general,NP-hard. The
same is probably true for the other infinite families of Coxeter groups. Corollary 1 below,
however, states that for Coxeter matroids, the greedy algorithm of Section 5 correctly solves
theL-assignment problem.

Assume that a rankn Coxeter groupW is acting as a reflection group on Euclidean space
E of dimensionn. Let η ∈ E be regular andξ 6= 0. Recall thatP=StabW ξ is a parabolic



THE GREEDY ALGORITHM AND COXETER MATROIDS 177

subgroup ofW and, without loss of generality, can be considered a standard parabolic
subgroup. Moreover,fξ,η is constant on each left cosetwP. Therefore fξ,η is actually a
function on the setW/P of left cosets. LetL ⊆ W/P. TheL-assignment problem is then
to find anoptimumw̄0∈ L with respect to the pair(ξ, η):

f (w0) = min
w̄∈L

fξ,η(w).

For L ⊆ W/P denote by1ξ,L the convex hull of the setLξ = {wξ | w̄ ∈ L}. The
L-assignments problem is equivalent to the problem of finding a vertexξ0 of the convex
polytope1ξ,L for which the linear functionϕη(ξ) = 〈ξ, η〉 achieves a minimum.

Given a parabolic subgroupQ andζ ∈ 00(Q), recall from Proposition 2 that the function

φQ : W/Q→ R
φQ(w̄)= −〈wζ, η〉

is an admissible weight function. The greedy algorithm of the previous section applies to
theL-assignment problem as follows.

Corollary 1 Let W be a finite, irreducible, rank n Coxeter group acting on n-dimensional
Euclidean spaceE. Let η, ξ ∈ E with ξ 6= 0 andη regular, and let P be the parabolic
subgroup StabW ξ . If L ⊆ W/P is a Coxeter matroid, then the L-assignment problem for
fξ,η has a unique solution. Moreover, if Q is also a parabolic subgroup, then the greedy
algorithm applied to the weight functionφQ correctly finds the optimum for every such
function fξ,η.

Proof: By Theorem 2 the function− fξ,η is Q-admissible. Therefore, by Theorem 3, ifL
is a Coxeter matroid, then− fξ,η has a unique maximum and hencefξ,η a unique minimum.
Also by Theorem 3, the greedy algorithm correctly maximizes− fξ,η, hence minimizes
fξ,η. 2
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