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Abstract. The glueing-construction described in this paper makes use of two generalized quadrangles with a
spread in each of them and yields a partial linear space with special properties. We study the conditions under
which glueing will give a near hexagon. These near hexagons satisfy the nice property that every two points at
distance 2 are contained in a quad. We characterize the class of the “glued near hexagons” and give examples,
some of which are new near hexagons.
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1. Definitions

An incidence structureis a tripleS = (P,L, I)withP (the point set) a nonempty set andL
(the set of lines) a (possibly empty) set and I a symmetric incidence relation between those
sets. Although the incidence relation is symmetric, we will write, in order not to overload
the notation, I⊆P ×L or even use “∈” as incidence relation. The incidence structures
which we will consider here are all finite. Ifx is a point, then0i (x) denotes the set of all
points at distancei from x (in the point graph). We will denote0(x) = 01(x).

1. An incidence structure is called apartial linear spaceif the following conditions are
satisfied.

(a) Every lineL ∈ L is incident with at least two points.
(b) Two different points are incident with at most one line.

A linear spaceis a partial linear space with the property that every two points are
collinear.

2. An incidence structure of points and lines isconnectedif its point graph is connected.
3. A connected partial linear space is calleddegenerateif there is a point incident with

exactly one line.
4. A near polygonS is a connected partial linear space satisfying the following conditions.

(a) The diameter of the point graph0 of S is finite.
(b) For every pointp and every lineL, there is a unique pointq on L, nearest top

(nearest with respect to the distanced(. , .) in 0).
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If d is the diameter of0 thenS is called a near 2d-gon. A near 0-gon has only one
point and no lines and a near 2-gon consists of one line with a number(≥2) of points
on it. The near quadrangles are just the generalized quadrangles. A generalized quad-
rangle (GQ for short) is called degenerate if there is a point incident with exactly
one line. The point-line dual of a nondegenerate GQ is again a nondegenerate GQ.
If a nondegenerate GQ is neither a grid nor a dual grid, then it must have an order
(s, t).

5. A GQ is calledbad when it is degenerate or when it is a nonsymmetrical dual grid;
otherwise it is called agoodGQ. If Q is a good GQ, then every point of it is incident
with the same number of lines, this number being denoted bytQ+ 1.

6. An ovoidof a generalized quadrangleQ is a setO of points such that every line ofQ is
incident with exactly one element ofO. If Q has order(s, t), then|O| =1+ st. A set
of 1+ st mutually noncollinear points ofQ is always an ovoid ofQ. The dual notion
is that of aspread. A spread is a set of lines ofQ such that every point is incident
with exactly one line of the set. For more details on generalized quadrangles, we refer
to [6].

7. The incidence structureS = (P,L, I) is calledaffineor embedded in the finite affine
spaceA if L is a set of lines ofA,P is the union of all members ofL and the incidence
relation is the one induced by that ofA. If A′ is the subspace ofA generated by all
points ofP, then we say thatA′ is theambient spaceof S.

A special type of affine embedding is the so-calledlinear representation. Let
∏
∞ be

a projective space of dimensionn ≥ 0 embedded as a hyperplane in the projective space∏
and letK be a nonempty subset of the point set of

∏
∞. The linear representation

T∗n (K) is the geometry with points the affine points of
∏

(= the points not belonging to∏
∞). The lines ofT∗n (K) are all the lines of

∏
which intersect

∏
∞ in a (unique) point

of K. Incidence is the one derived from
∏

.
8. If S1 = (P1,L1, I1) andS2 = (P2,L2, I2) are two partial linear spaces, then the direct

product ofS1 andS2 is the partial linear spaceS = (P,L, I) with P = P1×P2 and
L = (P1×L2)∪ (L1×P2). The point(x, y) is incident with the line(a, L) ∈ P1×L2

if and only if x = a andy I2 L and it is incident with the line(M, b) ∈ L1×P2 if and
only if y = b andx I1 M . We denoteS also withS1×S2. SinceS1×S2 ' S2×S1

and(S1×S2)×S3 ' S1 × (S2×S3), also the direct product ofk ≥ 1 partial linear
spacesS1, . . . ,Sk is well-defined. IfSi (i ∈ {1, 2}) is a near 2di -gon, then one can
easily prove thatS1×S2 is a near 2(d1+ d2)-gon.

9. LetS = (P,L, I) be a partial linear space. A setX ⊆ P is called asubspacewhenever
all the points of a line are inX as soon as two of them are inX. Every such subspace
induces a partial linear spaceSX = (X,LX, I′) whereLX is the set of all lines ofL
which have all their points inX and I′ is the restriction of I toX×LX. A subspaceX
is calledgeodetically closedwhen all points of a shortest path between two points ofX
are also contained inX. A quad is a geodetically closed subset ofP which induces a
nondegenerate GQ. Since no confusion will be possible in the sequel, the GQ induced
by a quad will also be called a quad. If a quadQ contains a unique point nearest a fixed
point x, then this point is called theprojectionof x onQ.
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2. Some theorems

Theorem 2.1([7, 8]) Let x and y be two points of a near polygon at mutual distance2. If
x and y have two common neighbours c and d such that the line xc contains at least three
points, then x and y are in a unique(necessarily good) quad.

Theorem 2.2 LetS be a near polygon and let x be a point at distance at most1 from a quad
Q, then there exists a unique point x′ ofQ nearest to x and d(x, y) = d(x, x′)+ d(x′, y)
for all points y ofQ. Hence, if L is a line ofQ, then the unique point of L nearest to x is
also the unique point of L nearest to x′.

Proof: This follows from the fact thatQ is geodetically closed. 2

Corollary 2.3 LetQ be a quad of a near polygonS and let x and y be two collinear
points ofS such that the line xy is disjoint withQ. If x, respectively y, is collinear with
x′ ∈ Q, respectively y′ ∈ Q, then d(x′, y′) = 1.

Proof: By Theorem 2.2, we have that 2= d(x′, y) = d(x′, y′)+ d(y′, y) = 1+ d(x′, y′).
2

Theorem 2.4([3]) Let S be a near polygon with the property that every two points at
distance2 are contained in a good quad, then each point ofS is incident with the same
number of lines.

Proof: Let x andy be two collinear points. The pointx (respectivelyy) is incident with
tx + 1 (respectivelyty+ 1) lines. Now

tx + 1= 1+
∑

tQ= ty+ 1,

where the summation ranges over all quadsQ through the linexy. Hencex and y are
incident with the same number of lines and the result follows by connectedness ofS. 2

Theorem 2.5([3]) LetS be a near polygon satisfying the following properties:
(a) every two points at distance2 have at least two common neighbours,

(b) there are lines incident with a different number of points,

thenS is the direct product of a number of near polygons, each of which has a constant
length for the lines.

If S = (P,L, I) is a near 2-gon or a good GQ, then|0i (p)| (i ∈ {0, 1, 2}) is independent
of p ∈ P. We derive a similar property for near hexagons.

Theorem 2.6 LetS = (P,L, I) be a near hexagon such that every two points at distance
2 are contained in a good quad, then|0i (p)| (i ∈ {0, 1, 2, 3}) is independent of p∈ P.
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Proof: If not all lines ofS are incident with the same number of points, then Theorem 2.5
implies thatS is the direct product of a line with a good GQ. It is straightforward to check
that the result is true in this case. Hence we may suppose that all lines are incident with
s+ 1 points. Theorem 2.4 implies then thatS has an order(s, t). Now, let p ∈ P be a
fixed point and putni = |0i (p)|. Thenn0 = 1, n1 = s(t + 1). Let V be the set of quads
throughp. Counting points in02(p) we find

n2 = s2
∑
x∈V

tx. (1)

Counting edges between02(p) and03(p) we find that

n3(t + 1) = s3
∑
x∈V

tx(t − tx). (2)

Finally, counting triples(L1, L2,Q) whereL1, L2 are two different lines throughp andQ
is the quad throughL1 andL2, yields

t (t + 1) =
∑
x∈V

tx(tx + 1). (3)

Eliminating
∑

tx and
∑

t2
x , we find thatn3 = s(n2−s2t). Together withv = n0+ n1+ n2

+ n3 this gives

n2 = v

s+ 1
− 1+ st(s− 1), (4)

n3 = s

(
v

s+ 1
− st− 1

)
. (5)

2

Corollary 2.7 If S is a near hexagon satisfying the property that every two points at
distance2 are contained in a quad of order(s, t1) or (s, t2), s ≥ 1 and1 ≤ t1 < t2, then
for each i∈ {1, 2}, the number of quads of order(s, ti ) through a point is independent of
that point.

Proof: This follows from Eqs. (1), (3) and (4). 2

Remark The previous corollary was proved in [2] in the case thats = 2, t1 = 1, t2 = 2
by using the same double countings as in the proof of Theorem 2.6.

Theorem 2.8 LetS = (P,L, I) be a partial linear space of order(s, t) 6= (s, 0) satisfying
1. for every point p and every line L not through p, there exists at most one point on L

collinear with p,
2. a = |02(x)| is independent of the point x∈ P,
3. d(x, L) ≤ 2 for all x ∈ P and L∈ L,
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then b= |03(x)| is also independent of x∈ P and the following inequalities hold:
• a ≥ s2t,
• b ≤ s(a− s2t).
Moreover, S is a generalized quadrangle if and only if a= s2t andS is a near hexagon if
and only if a> s2t and b= s(a− s2t).

Proof: Clearly|03(x)| = |P| − 1− s(t + 1)− |02(x)| is independent ofx ∈ P. Take an
arbitrary lineL and letr be a point ofL. There areapoints in02(r ),s2t of these are contained
in 01(L). Hencea ≥ s2t and02(L) ≤ (s+ 1)(a−s2t). If a = s2t then02(L) = ∅ implies
thatS is a generalized quadrangle. So, suppose thata 6= s2t , thenS is a near hexagon if and
only if 02(L) = (s+ 1)(a−s2t). From|02(L)| = |P|−(s+ 1)−st(s+ 1) = a+ b−s2t ,
it follows thatb ≤ s(a− s2t) and equality appears if and only ifS is a near hexagon. 2

3. A possible construction for near hexagons

LetQi = (Pi ,Li , I i ) (for eachi ∈ {1, 2}) be a GQ of order(s, ti ), letSi = {L(i )1 , . . . , L(i )1+ sti
}

⊂ Li be a spread ofQi and letθ be a bijection fromL(1)1 to L(2)1 (here we suppose that every
line is a subset of the point set).

For everyi ∈ {1, 2} and everyj ∈ {1, . . . ,1+ sti },8(i )
j :Pi 7→ L(i )j is defined such that

x ∈ Pi is mapped to the unique point ofL(i )j nearest tox (in the generalized quadrangleQi ).
Let0(Q1,Q2, S1, S2, L(1)1 , L(2)1 , θ) (0 for short if no confusion is possible) be the graph

with vertex setL(1)1 × S1× S2. Two different points(x, L(1)i , L(2)j ) and(y, L(1)k , L(2)l ) are
adjacent whenever at least one of the following two conditions are satisfied:

(1) j = l and8(1)
i (x),8

(1)
k (y) are collinear points inQ1,

(2) i = k and8(2)
j ◦ θ(x),8(2)

l ◦ θ(y) are collinear points inQ2.

If i = k and j = l , then both (1) and (2) are satisfied. It is clear that0(Q1,Q2, S1, S2, L(1)1 ,

L (2)1 , θ) ' 0(Q2,Q1, S2, S1, L(2)1 , L(1)1 , θ
−1). For,1 : (x, L(1)i , L(2)j ) 7→ (θ(x), L(2)j , L(1)i )

defines an isomorphism. The definition of0 is hence symmetric inQ1 andQ2.

Remark In the sequel, we will not write the symbol “◦” between functions, i.e. withf g
we mean the functionf ◦ g.

Lemma 3.1 Through every two adjacent vertices of0, there is a unique maximal clique.
This clique has size s+ 1.

Proof: Let a = (x, L(1)i , L(2)j ) andb = (y, L(1)k , L(2)l ) be two fixed adjacent vertices; we
determine what the common neighbours(z, L(1)m , L(2)n ) look like. If i = k 6= m, then j =
n = l and8(1)

i (x)∼8(1)
m (z)∼8(1)

i (y) implies thatx = y and hencea = b, a contradiction.
Similarly, j = l 6= n is impossible. Ifi = k = m, then8(2)j θ(x)∼8(2)

n θ(z)∼8(2)
l θ(y)

implies that8(2)
n θ(z) is an element of the line ofQ2 through8(2)

j θ(x) and8(2)
l θ(y). This
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yieldss− 1 common neighbours ofa andb and they are all mutually adjacent. Together
with the verticesa andb, they yield a clique of sizes+ 1. A similar reasoning holds in the
casej = l = n. 2

LetS(Q1,Q2, S1, S2, L(1)1 , L(2)1 , θ) be the partial linear space with points the vertices of
0 and with lines the maximal cliques of0. The incidence is the natural one. Again, we
will write S when no confusion is possible.

Definition 3.2 A line L is said to be oftype I, if there exists a fixedj , such that every
point of L is of the form(x, L(1)i , L(2)j ). A line M is said to be oftype II, if there exists
a fixedi , such that every point ofM is of the form(x, L (1)i , L(2)j ). Remark that there are
lines which are of both types, namely the lines{(x, L(1)i , L(2)j ) | x ∈ L (1)1 }, wherei and j
are fixed. These lines partition the point set ofS (hence they form a spread ofS).

Lemma 3.3
(a) For a fixed j ∈ {1, . . . ,1+ st2}, the set{(x, L(1)i , L(2)j ) | x ∈ L (1)1 , 1 ≤ i ≤ 1+ st1}

is a quad isomorphic toQ1.
(b) For a fixed i ∈ {1, . . . ,1+ st1}, the set{(x, L(1)i , L(2)j ) | x ∈ L(1)1 , 1 ≤ j ≤ 1+ st2}

is a quad isomorphic toQ2.

Proof: The isomorphisms are given by11 : (x, L(1)i , L(2)j ) 7→ 8
(1)
i (x) for (a) and12 :

(x, L (1)i , L(2)j ) 7→ 8
(2)
j θ(x) for (b). 2

Definition 3.4

(1) The previous lemma shows that several GQ’s (isomorphic toQ1 or Q2) are glued
together to form the geometryS. For this reason the above construction is called
glueingandS will be called aglued geometry.

(2) A quad of type I, respectively IIis a quad that arises like in (a), respectively (b) of the
previous lemma. The following properties hold then.

• Every line contained in a quad of typeA (∈ {I, II}) is also of type A.
• Two quads of the same type are equal or disjoint.
• Two quads of different type meet each other in a line which is of both types.
• Through every point ofS, there is a unique quad of each type.
• Every line of typeA (∈ {I, II}) is contained in a unique quad of type A.

Lemma 3.5 S has order(s, t1+ t2) and satisfies properties1 and3 of Theorem2.8.

Proof: Let p be an arbitrary point ofS. The quad of type I (respectively type II) through
p containst1+ 1 (respectivelyt2+1) lines throughp and both quads have exactly one line
in common. HenceS has order(s, t1+ t2).

Property 1 clearly holds by Lemma 3.1, so letx andM be a point and a line ofS, both
arbitrarily chosen. ThroughM , there is a quadR1 of type A∈ {I, II}. Take the unique quad
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R2 throughp of type B such that{A, B} = {I, II}. On the intersection line ofR1 andR2

there is a unique point nearest tox. This point has distance at most 1 tox and M . This
proves the lemma. 2

Definition 3.6

• For all i, j ∈ {1, . . . ,1+ st1}, φ(1)i, j is the permutation ofL(1)1 equal to the restriction of
8
(1)
1 8

(1)
j 8

(1)
i to L(1)1 . The group of permutations ofL(1)1 generated by the elementsφ(1)i, j

is denoted byG1.
• For all i, j ∈ {1, . . . ,1+ st2}, φ(2)i, j is the permutation ofL(2)1 equal to the restriction of
8
(2)
1 8

(2)
j 8

(2)
i to L(2)1 . The group of permutations ofL(2)1 generated by the elementsφ(2)i, j

is denoted byG2.

Remark

• φ(1)i,i , φ
(2)
i,i are identity permutations,

• φ(k)i, j andφ(k)j,i (k ∈ {1, 2}) are inverse permutations.

Theorem 3.7 S is a near hexagon if and only if[G1, θ
−1G2θ ] = 0. (Here0 stands for

the trivial group and[G1, θ
−1G2θ ] is the group generated by all commutators[g1, θ

−1g2θ ]
with g1 ∈ G1 and g2 ∈ G2.)

Proof: Suppose thatS is a near hexagon. It suffices to prove thatφ
(1)
i, j commutes with

θ−1φ
(2)
k,l θ for all possiblei, j, k, l with i 6= j andk 6= l . If x ∈ L(1)1 , then we have the

following adjacencies:(
8
(1)
1 8

(1)
j 8

(1)
i θ
−18

(2)
1 8

(2)
l 8

(2)
k θ(x), L(1)j , L(2)l

)
∼ (θ−18

(2)
1 8

(2)
l 8

(2)
k θ(x), L(1)i , L(2)l

)
∼ (x, L(1)i , L(2)k

)
∼ (8(1)

1 8
(1)
j 8

(1)
i (x), L(1)j , L(2)k

)
∼ (θ−18

(2)
1 8

(2)
l 8

(2)
k θ8

(1)
1 8

(1)
j 8

(1)
i (x), L(1)j , L(2)l

)
.

Let p be the point(x, L (1)i , L(2)k ) andL be the line{(x, L(1)j , L(2)l ) | x ∈ L(1)1 } (this is a line
of type I and of type II). Since there is only one point ofL at distance 2 fromp, it follows
that

θ−1φ
(2)
k,l θφ

(1)
i, j =φ(1)i, j θ

−1φ
(2)
k,l θ.

Conversely, suppose that [G1, θ
−1G2θ ] is the trivial group. Letx be an arbitrary point

of S. Throughx, there is a unique quadR1 of type I and a unique quadR2 of type II. In
R1∪R2, there ares2(t1+ t2)points of02(x). The points ofS not inR1∪R2 are partitioned
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bys2t1t2 lines which have both types. The previous reasoning shows that each of these lines
contains a unique point at distance 2 fromx. Hencea = |02(x)| = s2(t1t2+ t1+ t2) is in-
dependent of the pointx. From this it follows thatb = |03(x)| = (s+ 1)(st1+ 1)(st2+ 1)
− 1− |01(x)| − |02(x)| = s3t1t2. Sincea > s2(t1 + t2) andb = s(a − s2(t1 + t2)), it
follows from Theorem 2.8 thatS is a near hexagon. 2

Above, we definedS = S(Q1,Q2, S1, S2, L(1)1 , L(2)1 , θ). Take now an arbitrary lineL(1)i in
S1 and an arbitrary lineL(2)j in S2. If we defineθi, j as the restriction of8(2)

j θ8
(1)
1 to L(1)i ,

then we can define

Si, j = S
(
Q1,Q2, S1, S2, L(1)i , L(2)j , θi, j

)
.

Theorem 3.8 If S is a near hexagon, thenSi, j is isomorphic toS for all i ∈ {1, . . . ,1+ st1}
and all j ∈ {1, . . . ,1+ st2}.

Proof: We prove that1 : L(1)1 × S1× S2 7→ L(1)i × S1× S2, (x, L(1)k , L(2)l ) 7→ (8
(1)
i φ

(1)
k,i

θ−1φ
(2)
l , j θ(x), L(1)k , L(2)l ) is an isomorphism betweenS andSi, j . This map is clearly a bijec-

tion and it suffices to prove that adjacency is preserved in the point graph of the geometries.
Consider the two adjacent verticesa = (x, L(1)k , L(2)l ) andb = (y, L(1)k , L(2)m ) in S, then
y = θ−1φ

(2)
l ,mθ(x) and

1(a) = (8(1)
i φ

(1)
k,i θ
−1φ

(2)
l , j θ(x), L(1)k , L(2)l

)
,

1(b) = (8(1)
i φ

(1)
k,i θ
−1φ

(2)
m, j θ(y), L(1)k , L(2)m

)
.

Now,1(a)∼1(b) (in Si, j ) if and only if

8
(2)
l 8

(2)
j θ8

(1)
1 8

(1)
i φ

(1)
k,i θ
−1φ

(2)
l , j θ(x) ∼ 8(2)

m 8
(2)
j θ8

(1)
1 8

(1)
i φ

(1)
k,i θ
−1φ

(2)
m, j θ(y)

8
(2)
l 8

(2)
j θφ

(1)
k,i θ
−1φ

(2)
l , j θ(x) ∼ 8(2)

m 8
(2)
j θφ

(1)
k,i θ
−1φ

(2)
m, j θ(y)

8
(2)
l 8

(2)
j φ

(2)
l , j θφ

(1)
k,i (x) ∼ 8(2)

m 8
(2)
j φ

(2)
m, j θφ

(1)
k,i (y)

8
(2)
l θφ

(1)
k,i (x) ∼ 8(2)

m θφ
(1)
k,i (y)

θ−1φ
(2)
l ,mθφ

(1)
k,i (x) = φ(1)k,i (y)

θ−1φ
(2)
l ,mθφ

(1)
k,i (x) = φ(1)k,i θ

−1φ
(2)
l ,mθ(x).

Consider the two adjacent verticesa = (x, L(1)k , L(2)l ) andb = (y, L(1)m , L(2)l ) in S, then
y = φ(1)k,m(x) and

1(a) = (8(1)
i φ

(1)
k,i θ
−1φ

(2)
l , j θ(x), L(1)k , L(2)l

)
,

1(b) = (8(1)
i φ

(1)
m,i θ

−1φ
(2)
l , j θ(y), L(1)m , L(2)l

)
.
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Now,1(a)∼1(b) (in Si, j ) if and only if

8
(1)
k 8

(1)
i φ

(1)
k,i θ
−1φ

(2)
l , j θ(x) ∼ 8(1)

m 8
(1)
i φ

(1)
m,i θ

−1φ
(2)
l , j θ(y)

8
(1)
k θ
−1φ

(2)
l , j θ(x) ∼ 8(1)

m θ
−1φ

(2)
l , j θ(y)

φ
(1)
k,mθ

−1φ
(2)
l , j θ(x) = θ−1φ

(2)
l , j θ(y)

φ
(1)
k,mθ

−1φ
(2)
l , j θ(x) = θ−1φ

(2)
l , j θφ

(1)
k,m(x).

2

Theorem 3.9 If S is a near hexagon, then any two points at distance2 are contained in
a quad.

Proof: Let p1 = (x, L(1)i , L(2)j ) and p2 = (y, L(1)k , L(2)l ) denote the two points at dis-
tance 2. Ifi = k (respectivelyj = l ), then p1 and p2 are contained in a quad of type II
(respectively I). Ifi 6= k and j 6= l , then the adjacencies of Theorem 3.7 show thatp1 and
p2 have two common neighboursp3 and p4. If s ≥ 2, then Theorem 2.1 implies thatp1

and p2 are contained in a quad (which is a(s+ 1)× (s+ 1)-grid in this case). Ifs = 1,
then p1 and p2 are contained in a quad, since{p1, p2, p3, p4} is geodetically closed and
induces a (2× 2)-grid. 2

Definition 3.10 SupposeS is a near hexagon. The quads inS, different from the above de-
fined quads of type I and II are called the quads of type III. These quads are(s+ 1)× (s+ 1)-
grids.

Remarks

(a) Fori ∈ {1, 2} fixed, letQi be an(s+ 1)× (s+ 1)-grid andSi be one of the two spreads
of Qi . Sinceφ(i )j,k is the identity permutation for allj, k ∈ {1, . . . ,1+ s}, one has that
[G1, θ

−1G2θ ] = 0, henceS is a near hexagon. It is straightforward to check thatS is
the direct product ofQ3−i with a line of sizes+ 1.

(b) For everyt ∈ N\{0}, there is a unique GQ of order(1, t). This GQ contains sev-
eral spreads which are all equivalent. SinceG2 is a commutative group, the above
construction withs= 1, t1, t2 ≥ 1 will yield a thin near hexagon.

(c) In the next sections we will construct near hexagons using two generalized quadrangles
(Q1 andQ2) and certain spreads in them (S1 andS2 respectively). In the definition of
S, we took in each spread two special lines (namelyL(1)1 andL(2)1 ). Theorem 3.8 says
(in the case thatS is a near hexagon) that those special lines are in fact not so special.
One can obtain the same near hexagon starting with two arbitrary lines (one in each
spread) by taking a suitableθ .

(d) We will not study the problem of determining suitable spreads and suitable mapsθ .
Also, the above construction can be generalized to obtain other near polygons (e.g. near
octagons). These two problems will be considered in forthcoming papers.



220 DE BRUYN

4. A new construction for (T∗2(O1), T∗2(O2))

4.1. The generalized quadrangle T∗2 (O)

Consider a hyperovalO in PG(2,q) with q even. Embed PG(2,q) as a hyperplane in
PG(3,q), thenT∗2 (O) is a generalized quadrangle of order(q−1,q+1), see [1, 5, 6]. Let
p be a fixed point ofO, then the set of lines of PG(3,q) intersectingO in p defines a spread
S of T∗2 (O). Consider now the model of PG(3,q) where the points are the 1-dimensional
subspaces ofV(4,q) and letL1, L2, L3 denote three arbitrary (but different) lines ofS.
The plane〈Li , L j 〉 (i 6= j andi, j ∈ {1, 2, 3}) intersects PG(2,q) in a line throughp. Let
〈c̄i j 〉 denote the second point ofO on that line. Takēa, b̄ ∈ V(4,q) such thatp = 〈ā〉 and
L1 = 〈ā, b̄〉 and letx=〈αā+ b̄〉 with α ∈ Fq be an arbitrary point ofL1. The projection
(in T∗2 (O)) of x on L2 is equal to82(x) = 〈αā+ b̄+ βc̄12〉 whereβ ∈ Fq is independent
of α. In the same way, we will find that818382(x) = 〈αā + b̄+ βc̄12+ γ c̄23+ δc̄31〉
whereγ, δ are independent ofα. Now βc̄12+ γ c̄23+ δc̄31 = µā whereµ is independent
of α. Hence the mapφ2,3 (which is equal to the restriction of818382 to L1) maps the
point 〈αā+ b̄〉 to 〈(α + µ)ā+ b̄〉 whereµ is independent ofα ∈ Fq.

4.2. The near hexagon (T∗2 (O1),T∗2 (O2))

In [4] the following near hexagon was described. Let
∏
∞ be a PG(4,q), with q even,

embedded as a hyperplane in the 5-dimensional space
∏

. Consider in
∏
∞ two planes

α1 andα2 meeting each other in a pointp and consider inαi (i = 1, 2) a hyperovalOi

containingp. It was proved in [4] thatT∗4 (O1 ∪ O2) is a near hexagon and it was denoted
there by(T∗2 (O1), T∗2 (O2)).

Theorem 4.1 The near hexagon(T∗2 (O1), T∗2 (O2)) is glued.

Proof: Leta be a fixed affine point of
∏

and putAi = 〈a, αi 〉 (i ∈ {1, 2}). For every affine
point x ∈ ∏, we defineQi (x) (i ∈ {1, 2}) as the GQ with the affine points of〈x, αi 〉 as
points, two points are collinear in the GQ whenever they are collinear inT∗4 (O1∪O2). These
GQ’s are quads ofT∗4 (O1∪O2) and each point ofT∗4 (O1∪O2) has distance at most one to
each such quad. Fori = {1, 2}, letQi = Qi (a), let Si be the set of lines ofAi intersecting∏
∞ in p, let L(1)1 = L(2)1 = pa and finally letθ be the identity map. In the previous

paragraph we determined whatφ(1)i, j andφ(2)i, j look like. We can conclude that [G1,G2] = 0,
hence we can define a near hexagonS = S(Q1,Q2, S1, S2, pa, pa, θ). We will construct
now an isomorphism1 betweenT∗4 (O1 ∪ O2) andS. Let x be an arbitrary affine point of∏

. The quadQ1(x) (respectivelyQ2(x)) intersectsQ2 (respectivelyQ1) in a line δ2(x)
(respectivelyδ1(x)) of S2 (respectivelyS1). We putγ (x) equal to the unique point ofpa
nearest tox (in T∗4 (O1∪O2)). The point ofQi nearest tox is then equal to the projection (in
Qi ) of γ (x) on the lineδi (x) ∈ Si , see Theorem 2.2. If we put1(x) = (γ (x), δ1(x), δ2(x)),
then we will prove that1 is an isomorphism. Let(a, L1, L2) = (γ (x), δ1(x), δ2(x)) and
put ai (i ∈ {1, 2}) equal to the projection ofa on the lineLi of Qi . If L1 = pa, then
x = a2; if L2 = pa, thenx = a1; if L1 6= pa 6= L2, thenx is the common neighbour
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of a1 anda2 (in T∗4 (O1 ∪ O2)) different froma. This proves that1 is a bijection. Since
both geometries have the same order, it suffices to prove that1 preserves adjacency in the
point graph of the geometries. Letr andr ′ be two adjacent points ofT∗4 (O1 ∪ O2). If the
line rr ′ intersects

∏
∞ in a point ofOi , thenδ3−i (r ) = δ3−i (r ′) and the result follows from

Corollary 2.3 by considering the projection on the quadQi . 2

5. New example related toQ(5, q)

The generalized quadrangleQ(5,q) is the GQ of the points and the lines of a nonsingular
elliptic quadric in PG(5,q). Its order is(q,q2). The corresponding dual generalized quad-
rangle is the GQ of the points and the lines of a nonsingular Hermitian varietyH(3,q2) in
PG(3,q2), see [6]. If we intersect this variety with a nontangent plane, then we get a setO
of q3+ 1 mutually noncollinear points inH(3,q2), henceO is an ovoid ofH(3,q2). This
ovoid O dualizes to a spreadSof Q(5,q).

Take nowQ = Q(5,q) and letL be an arbitrary line ofS. The following theorem holds
then (1L denotes the identity permutation of the set of points ofL).

Theorem 5.1 S = S(Q, Q, S, S, L , L , 1L) is a near hexagon.

Proof: We determine the permutationsφ(1)i, j = φ
(2)
i, j while reasoning in the dual GQ.

The points ofH(3,q2) are 1-dimensional subspaces ofV(4,q2). Consider a nonsingular
Hermitian form(· , ·) in V(4,q2), i.e. (

∑
i λi vi ,

∑
j µ j w j ) =

∑
i

∑
j λiµ

q
j (vi , w j ), and

let ζ be the corresponding polarity of PG(3,q2). Take now a nontangent planeπ and let
πζ = 〈ū〉. Take three arbitrary (but different) points〈ā〉, 〈b̄〉, 〈c̄〉 of O = π ∩ H(3,q2).
The tangent plane at〈ā〉 intersectsπ in a line〈ā, v̄〉. Let L = 〈ā, ū+ λv̄〉 be an arbitrary
line of H(3,q2) through〈ā〉. Since(ū+ λv̄, ū+ λv̄) = 0, one finds thatλq+1= − (ū,ū)

(v̄,v̄)
.

We determine the lineL ′ of H(3,q2) through 〈b̄〉 intersectingL. This line looks like
〈b̄, ū + λv̄ + βā〉. An easy calculation yieldsβ = −λ (v̄,b̄)

(ā,b̄)
. HenceL ′ = 〈b̄, ū + λv̄′〉

with 〈v̄′〉 ∈ π ∩ 〈b̄〉ζ independent ofλ. Similarly, if we projectL ′ to a line L ′′ through
〈c̄〉 and finally L ′′ to a line L ′′′ through〈ā〉, we will find that L ′′′ = 〈ā, ū + λv̄′′′〉 with
〈v̄′′′〉 ∈ π ∩〈ā〉ζ independent ofλ. Now v̄′′′ = γ1ā+γ2v̄, henceL ′′′ = 〈ā, ū+λγ2v̄〉where
γ2 is independent ofλ. Just like before, one has that(λγ2)

q+1 = − (ū,ū)
(v̄,v̄)

or γ q+1
2 = 1. It is

now clear that [G1,G2] = 0, henceS is a near hexagon. 2

6. New example related toAS(q)

For every odd prime powerq, there exists a generalized quadrangle of order(q− 1,q+ 1)
denoted byAS(q), see [1, 6]. The points ofAS(q) are the points of the affine space
AG(3,q). The lines ofAS(q) are the following curves of AG(3,q):

(1) x = σ, y = a, z= b;
(2) x = a, y = σ, z= b;
(3) x = cσ 2− bσ +a, y=−2cσ + b, z= σ .
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Here, the parameterσ ranges over GF(q) anda, b, c are arbitrary elements of GF(q). The
incidence is the natural one. The setSwhich consists of all lines of type (1) is a spread of
AS(q). If L is an arbitrary line ofS, then we have the following theorem.

Theorem 6.1 S = S(AS(q), AS(q), S, S, L , L , 1L) is a near hexagon.

Proof: Let a, b, c, d ∈ GF(q) be fixed. Consider then the linesM = {(σ,a, b) | σ ∈
GF(q)} andN = {(σ, c, d) | σ ∈ GF(q)}. Let p = (α,a, b) be an arbitrary point ofM and
let p′ = (β, c, d) be its projection onN. If b = d, thenβ = α and there is a line of type
(2) throughp and p′. If b 6= d, then the line throughp and p′ must necessarily be of type
(3). Letx = mσ 2− lσ + k, y = −2mσ + l , z= σ be that line. Then we get the following
equations:

α = mb2− lb + k,

β = md2− ld + k,

a = −2mb+ l ,

c = −2md+ l .

Sinceb 6= d, m and l are completely determined bya, b, c andd. We have thatβ =
α +m(d2− b2)+ l (b− d).

It is now clear that the mapsφ(1)i, j = φ(2)i, j are translations of the lineL. This proves that
[G1,G2] = 0, henceS is a near hexagon. 2

Remark All the near hexagons with lines of size 3 and quads through every two points at
distance 2 were classified in [2]. The near hexagons derived here fromAS(3) andQ(5, 2)
are both isomorphic to example (vi) of [2]. (Notice thatAS(3) ' Q(5, 2).)

7. Characterizations

7.1. The local space

Let S = (P,L, I) be a near hexagon satisfying the property that every two points at
distance 2 are contained in a unique quad. Forx ∈ P, we define the following incidence
structureSx.

• The points ofSx are the lines ofS throughx.
• A line of Sx is the set of lines ofS throughx in a quad onx.
• Incidence is the symmetrized containment.

The spaceSx is linear and is calledthe local space at x.
For u, v ∈ N\{0}, letSu,v = (Pu,v,Lu,v, Iu,v) be the following linear space:

• Pu,v = {α, β1, . . . , βu, γ1, . . . , γv},
• Lu,v = {{α, β1, . . . , βu}, {α, γ1, . . . , γv}} ∪ {{βi , γ j } | 1≤ i ≤ u and 1≤ j ≤ v},
• Iu,v is the symmetrized containment.
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Su,v is a linear space with a thin point (namelyα). Conversely, every linear space with a
thin point is obtained in this way. IfS is a glued near hexagon, thenSx ' St1,t2 for all
pointsx of S.

Theorem 7.1 LetS be a near hexagon satisfying the following properties:
• every two points at distance2 are contained in a quad,
• if all lines ofS are thin, then all quads are good,
• there exists a point x ofS such thatSx ' S1,r for some r∈ N\{0},
thenS is the direct product of a line with a nondegenerateGQ.

Proof: If not all lines ofS have the same number of points, thenS is the direct product
of a line with a GQ, see Theorem 2.5. Hence, by Theorem 2.4, we may assume thatS has
order(s, t) with t = r + 1. Consider throughx a quadRx containingt lines throughx
and letLx be the remaining line throughx. Every pointz of Rx is incident with exactly
one lineLz which is not inRx. Let y ∈ Lx\{x} be fixed. LetM1 and M2 be two lines
throughy different fromLx and letRy be the quad throughM1 andM2. The quad through
Mi (i ∈ {1, 2}) andLx intersectsRx in a lineM ′i . Now, letu be one of thes2(t − 1) points
of Rx at distance 2 fromx. Let ui (i ∈ {1, 2}) be the unique point onM ′i collinear withu.
The quad throughuui andLui is a grid. Letu′i be the intersection ofLui with Mi and let
vi be the unique neighbour ofu′i andu different fromui . The pointvi is then the unique
point of Lu at distance 2 fromy. This implies thatv = v1 = v2. Sincev is collinear with
the pointsu′1 andu′2 of Ry, v is itself contained inRy. Hence|02(y) ∩ Ry| ≥ s2(t − 1).
This implies thatRy is a GQ of order(s, t − 1) containing all lines throughy, except the
line Lx and thatRy ' Rx. The result follows now immediately. 2

7.2. Characterizations of the new class of near polygons

Theorem 7.2 LetS = (P,L, I) be a near hexagon satisfying the following properties:
• every two points at distance2 are contained in a quad,
• if all lines ofS are thin, then all quads are good,
• there exists a point x such thatSy has a thin point for all y∈ 0(x),
thenS is the direct product of a line with a nondegenerateGQor S is a glued near hexagon.

Proof: If not all lines ofS have the same number of points, thenS is the direct product
of a line with a nondegenerate GQ. Hence, by Theorem 2.4 we may assume thatS has an
order(s, t). If Sy (with y ∈ P) is a linear space with a thin point, then we may suppose that
Sy contains a unique thin point which we denote byL y, otherwise the result would follow
from Theorem 7.1. The lineL y is then contained in exactly two quads. The following
properties hold now.

(a) If y is a point for whichSy is a linear space with a thin point, thenSy′ ' Sy and
L y′ = L y for all pointsy′ ∈ L y.

Proof: SupposeSy ' St1,t2 with t1, t2 > 1 andt = t1 + t2. The pointL y of Sy′ is
contained in exactly two lines ofSy′ , one line hast1+ 1 points, the othert2+ 1 points.
Since there are exactlyt1+ t2+ 1 points inSy′ , it follows thatSy′ ' St1,t2. 2
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(b) If y1, y2 are points such thatSy1,Sy2 are linear spaces with a thin point, thenL y1 and
L y2 are equal or disjoint.

Proof: This follows immediately from (a). 2

(c) There exists a pointy ∈ 0(x) such thatx ∈ L y.

Proof: Suppose that this is not true. Lety ∈ 0(x) be fixed. LetQ be the quad of
order(s, t ′) throughxy and L y. There ares(t ′ + 1) pointszi ∈ Q collinear withx.
These give rise tos(t ′ + 1) linesLzi and all these lines are different and hence disjoint
by (b). Suppose thatLz is not contained inQ for a certainz ∈ 0(x) ∩ Q, thenSz

contains at least three thick lines (namely the line defined byQ and the two lines ofSz

throughLz), a contradiction sinceSz is a linear space with a unique thin point. Hence,
all lines Lz are contained inQ and there are at least(s+ 1)(st′ + s) points inQ, but
this is again impossible. 2

Let y ∈ 0(x) such thatx ∈ L y. HenceSx is also a linear space with a unique thin pointLx.
LetQ1 andQ2 be the two quads throughLx with respective orders(s, t1) and(s, t2). InQi ,
there aresti pointsz collinear withx and not onLx. These give rise tosti disjoint linesLz

which together withLx form a spreadSi ofQi . PutSi = {L(i )1 , . . . , L(i )1+sti
}with L(i )1 = Lx.

Finally, let θ be the identity permutation ofLx. We prove now thatS ' S(Q1,Q2,

S1, S2, L(1)1 , L(2)1 , θ).
First we prove that every pointu of S has distance at most 1 to eachQi (i ∈ {1, 2}).

Let u′ be the unique point ofLx nearest tou; we may suppose thatd(u, u′) = 2. Since
Su′ ' Sx, it follows that the quad throughu andu′ intersects eachQi in a line. This proves
that eachQi contains a point collinear withu. For i ∈ {1, 2} andu ∈ P, let pi (u) denote
the unique point ofQi nearest tou.

Next we prove that all the local spacesSu are isomorphic toSt1,t2. Since for allu ∈ Qi ,
Lu is contained in exactly two quads (Qi and another quad), we have thatGu ' St1,t2. Letu
be a point ofS not contained inQ1∪Q2. Letu′ = p1(u) andu′′ = p2(u). The local space
Su containst1 + t2 + 1 points, a line witht1 + 1 points (determined by the quad through
uu′′ andLu′′ ) and a line witht2 + 1 points (determined by the quad throughuu′ andLu′ ).
From this it follows thatSu ' St1,t2. HenceLu is defined for allu ∈ P and all these lines
determine a spread ofS. EachLu is contained in exactly two quads. One quad intersects
Q2 in a line and is isomorphic toQ1. The other quad intersectsQ1 and is isomorphic to
Q2. Note that the isomorphisms are defined by the projectionspi , i ∈ {1, 2}.

We consider now the following map1 :P 7→ Lx × S1× S2,1(u) = (γ (u), δ1(u),
δ3(u)), whereγ (u) is the unique point ofLx nearest tou andδi (u) (i ∈ {1, 2}) is the unique
line of Si incident with pi (u). By Theorem 2.2, it follows thatpi (u) is the projection (in
Qi ) of γ (u) on the lineδi (u). Let (a, L1, L2) = (γ (u), δ1(u), δ2(u)) and putai (i ∈ {1, 2})
equal to the projection ofa on the lineLi of Qi . If L1 = Lx, thenu = a2; if L2 = Lx,
thenu = a1; if L1 6= Lx 6= L2, thenu is the common neighbour ofa1 anda2 different
from a. This proves that1 is a bijection. Since both geometries have the same order, it
suffices to prove that1 preserves adjacency in the point graph of the geometries. Letx
andx′ be two adjacent points. Ifx andx′ are contained in a quad intersectingQ2, then
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δ2(x) = δ2(x′) and the result follows from Corollary 2.3 by projection on the quadQ1. If
x andx′ are contained in a quad intersectingQ1, thenδ1(x) = δ1(x′) and the result follows
from Corollary 2.3 by projection on the quadQ2. 2

Theorem 7.3 LetS be a near hexagon satisfying the following properties:
• every two points at distance2 are contained in a quad,
• if all lines ofS are thin, then all quads are good,
• there exists a point x such thatSx has a thin point and such thatSy contains the same

number of lines for all y∈ 0(x),
thenS is the direct product of a line with a nondegenerateGQor S is a glued near hexagon.

Proof: Just like before, we may suppose thatS has an order(s, t). Theorem 2.6 implies
that the number of points in02(y) is independent of the pointy of S. For y ∈ 0(x), let Vy

denote the set of quads throughy. Now,∑
Q∈Vy

1,
∑
Q∈Vy

s2tQ,
∑
Q∈Vy

tQ(tQ + 1),

are respectively equal to the number of quads throughy, the number of points in02(y) and
t (t + 1), hence these quantities are independent ofy ∈ 0(x). Let Lx be a thin point ofSx

and letQ1 andQ2 be the two quads throughLx with respective orders(s, t1) and(s, t2).
One has thatt = t1+ t2. Let z 6= x be a second point ofLx. If y ∈ Q1 ∩ 0(x), then∑

Q∈Vy

(tQ − 1)(t2− tQ) =
∑
Q∈Vz

(tQ − 1)(t2− tQ) = (t1− 1)(t2− t1).

Let V ′y = Vy\{Q1}, then∑
Q∈V ′y

(tQ − 1)(t2− tQ) = 0.

Since there are onlyt + 1 lines throughy andQ1 hast1 + 1 lines throughy, one has that
1 ≤ tQ ≤ t2 for all Q ∈ V ′y. This implies thattQ = 1 or tQ = t2 for all Q ∈ V ′y. By
Theorem 7.1, we may suppose thatt1, t2 6= 1. From∑

Q∈Vy

1=
∑
Q∈Vz

1,

and ∑
Q∈Vy

tQ=
∑
Q∈Vz

tQ,

it follows now that the number of quadsQ of V ′y with tQ = t2 is equal to 1. This implies
thatSy ' St1,t2 for all y ∈ 0(x) ∩Q1. A similar reasoning shows that this is also true for
y ∈ 0(x) ∩Q2. The result follows now from the previous theorem. 2
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