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Abstract. The glueing-construction described in this paper makes use of two generalized quadrangles with a
spread in each of them and yields a partial linear space with special properties. We study the conditions under
which glueing will give a near hexagon. These near hexagons satisfy the nice property that every two points at
distance 2 are contained in a quad. We characterize the class of the “glued near hexagons” and give examples,
some of which are new near hexagons.
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1. Definitions

Anincidence structurés a tripleS = (P, L, ) with P (the point set) a nonempty set afid
(the set of lines) a (possibly empty) setidra symmetric incidence relation between those
sets. Although the incidence relation is symmetric, we will write, in order not to overload
the notation, | CP x L or even use £” as incidence relation. The incidence structures
which we will consider here are all finite. ¥is a point, therT; (x) denotes the set of all
points at distancefrom x (in the point graph). We will denotE(x) = I'1(X).

1. Anincidence structure is calledpartial linear spaceif the following conditions are
satisfied.

(a) Every lineL € £ is incident with at least two points.
(b) Two different points are incident with at most one line.

A linear spaceis a partial linear space with the property that every two points are
collinear.

2. Anincidence structure of points and lines@nectedf its point graph is connected.

3. A connected partial linear space is cal®heneratéf there is a point incident with
exactly one line.

4. Anear polygorsS is a connected partial linear space satisfying the following conditions.

(&) The diameter of the point graphof S is finite.
(b) For every pointp and every lineL, there is a unique poirg on L, nearest tap
(nearest with respect to the distarie, .) in I').
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If d is the diameter of™ thenS is called a near @gon. A near 0-gon has only one
point and no lines and a near 2-gon consists of one line with a num®rof points

on it. The near quadrangles are just the generalized quadrangles. A generalized quad-
rangle (GQ for short) is called degenerate if there is a point incident with exactly
one line. The point-line dual of a nhondegenerate GQ is again a nondegenerate GQ.
If a nondegenerate GQ is neither a grid nor a dual grid, then it must have an order
(s, b).

5. A GQ is calledbad when it is degenerate or when it is a nonsymmetrical dual grid;
otherwise it is called goodGQ. If Q is a good GQ, then every point of it is incident
with the same number of lines, this number being denoteig by 1.

6. Anovoidof a generalized quadrangi2is a setO of points such that every line @ is
incident with exactly one element @. If Q has order(s, t), then|O| =1+ st. A set
of 1+ st mutually noncollinear points of is always an ovoid of2. The dual notion
is that of aspread A spread is a set of lines @@ such that every point is incident
with exactly one line of the set. For more details on generalized quadrangles, we refer
to [6].

7. The incidence structurg = (P, L, 1) is calledaffineor embedded in the finite affine
spaceA if L is a set of lines of4, P is the union of all members & and the incidence
relation is the one induced by that gf. If A’ is the subspace ofl generated by all
points of P, then we say thatl’ is theambient spacef S.

A special type of affine embedding is the so-caliedar representationLet[ [ be
a projective space of dimensior> 0 embedded as a hyperplane in the projective space
[T and letK be a nonempty subset of the point sef¢f,. The linear representation
T (K) is the geometry with points the affine points|gf(= the points not belonging to
[ 1) The lines ofT*(K) are all the lines of | which intersec{ [, in a (unique) point
of K. Incidence is the one derived frofj.

8. If S1 = (P1, L1, 1) andS, = (P2, L2, 1) are two partial linear spaces, then the direct
product ofS; andS; is the partial linear spacg = (P, £, 1) with P = P x P, and
L = (P1x L2)U (L1 x Po). The point(x, y) is incident with the linga, L) € P1 x £,
if and only if x = aandy I, L and it is incident with the linéM, b) € £; x P, if and
only if y = bandx I; M. We denoteS also withS; x S,. SinceS; x Sz >~ S x S1
and(S; x 82) x 83 >~ 81 x (82 x 83), also the direct product & > 1 partial linear
spacesSy, ..., Sk is well-defined. IfS; (i € {1, 2}) is a near 8-gon, then one can
easily prove thaf; x S, is a near 2d; + dy)-gon.

9. LetS = (P, L, |) be a partial linear space. A s&tC P is called asubspacevhenever
all the points of a line are iX as soon as two of them are a Every such subspace
induces a partial linear spacs = (X, Lx, I’) where Lx is the set of all lines ofC
which have all their points itX and [ is the restriction of | toX x Lx. A subspaceX
is calledgeodetically closethen all points of a shortest path between two pointX of
are also contained iX. A quadis a geodetically closed subsetBfwhich induces a
nondegenerate GQ. Since no confusion will be possible in the sequel, the GQ induced
by a quad will also be called a quad. If a quaatontains a unique point nearest a fixed
pointx, then this point is called thgrojectionof x on Q.
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2. Some theorems

Theorem 2.1([7,8]) Letx and y be two points of a near polygon at mutual distéhdé
x and y have two common neighbours ¢ and d such that the line xc contains at least three
points then x and y are in a uniqu@ecessarily googlquad.

Theorem 2.2 LetS be anear polygon and let x be a point at distance at rhfrstm a quad
9, then there exists a unique pointof Q nearest to x and ¢k, y) = d(x, x') + d(x’, y)
for all points y of Q. Hence if L is a line of Q, then the unique point of L nearest to x is
also the unique point of L nearest td x

Proof: This follows from the fact tha® is geodetically closed. O

Corollary 2.3 Let Q be a quad of a near polygaf and let x and y be two collinear
points ofS such that the line xy is disjoint wit®. If x, respectively yis collinear with
X' € Q, respectively ye Q, thendx’,y) = 1.

Proof: ByTheorem2.2,wehavethat2d(x’,y) = d(x’,y)+d(y,y) = 1+d(Xx,Y).
|

Theorem 2.4([3]) LetS be a near polygon with the property that every two points at
distance2 are contained in a good quadhen each point of is incident with the same
number of lines.

Proof: Letx andy be two collinear points. The poimt(respectivelyy) is incident with
tx + 1 (respectivelyty 4+ 1) lines. Now

ty+1=1+ Ztgzty+1,

where the summation ranges over all qu&lishrough the linexy. Hencex andy are
incident with the same number of lines and the result follows by connectedngss dfl

Theorem 2.5([3]) LetS be a near polygon satisfying the following properties

(a) every two points at distanczhave at least two common neighbaours

(b) there are lines incident with a different number of pojnts

thenS is the direct product of a number of near polygoesch of which has a constant
length for the lines.

If S = (P, L,1)is anear 2-gon or a good GQ, thagh (p)| (i € {0, 1, 2}) is independent
of p € P. We derive a similar property for near hexagons.

Theorem 2.6 LetS = (P, L, 1) be a near hexagon such that every two points at distance
2 are contained in a good quathen|Ti (p)| (i € {0, 1, 2, 3}) is independent of g P.
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Proof: If notall lines ofS are incident with the same number of points, then Theorem 2.5
implies thatS is the direct product of a line with a good GQ. It is straightforward to check
that the result is true in this case. Hence we may suppose that all lines are incident with
S+ 1 points. Theorem 2.4 implies then th&thas an orde(s, t). Now, letp € P be a

fixed point and puty = |Tj(p)|. Thenng = 1, n; = s(t +1). LetV be the set of quads
throughp. Counting points if"»(p) we find

xeV
Counting edges betwedn (p) andI'3(p) we find that
Nat+1) =) t(t — o). €
xeV

Finally, counting triplegL1, Lo, Q) whereL 1, L, are two different lines through andQ
is the quad through; andL,, yields

tt+1) = t(tc+1). 3)

xeV

Eliminating}_ ty and}_ t2, we find thats = s(n, — s?t). Together withv = ng+ny + N,
+ n3 this gives

v
np=——-—-1+4+st(s—1), 4
2= 5y1  trste=D )
s =s( — st—1 (5)
$7 N\ s+1 ’
O

Corollary 2.7 If S is a near hexagon satisfying the property that every two points at
distance2 are contained in a quad of ordés, t;) or (s,t2), s > 1andl < t; < ty, then

for eachie {1, 2}, the number of quads of ordés, t;) through a point is independent of
that point.

Proof: This follows from Egs. (1), (3) and (4). O

Remark The previous corollary was proved in [2] inthe case that 2,t; = 1,t, = 2
by using the same double countings as in the proof of Theorem 2.6.

Theorem 2.8 LetS = (P, L, 1) be apartial linear space of ordés, t) # (s, 0) satisfying

1. for every point p and every line L not through fhere exists at most one point on L
collinear with p

2. a = |I';(x)| is independent of the pointx P,

3. d(x,L) <2forallx e Pand Le L,
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then b= |I'3(x)| is also independent of & PP and the following inequalities hoid

e a> s,

e b <s@-—s).

Moreover S is a generalized quadrangle if and only if-as?t andS is a near hexagon if
and only if a> s?t and b= s(a — s%).

Proof: Clearly|I'3(x)| = |P| —1—s(t +1) — |T'2(x)| is independent ot € P. Take an
arbitrary lineL. and letr be apointoL. There ar@ pointsinI'o(r ), s’t of these are contained
inT1(L). Hencea > s?t andl,(L) < (s+ 1)(a—s?). If a = st thenl'(L) = ¢ implies
thatS is a generalized quadrangle. So, supposeahas?t, thens is a near hexagon if and
onlyif I'o(L) = (s+ 1)(a—s?t). From|T'»(L)| = |P|—(s+ 1) —st(s+1) = a+b—s,

it follows thatb < s(a — s’t) and equality appears if and onlySfis a near hexagon. O

3. A possible construction for near hexagons

LetQ = (P, £i, 1) (foreach e {1, 2})beaGQofordefs, t;), let§ = (L, .. L$+su}
C L; be aspread of; and let be a bijection fronL. (" to L'? (here we suppose that every
line is a subset of the point set).
For everyi € {1,2} and everyj € {1,...,1+st}, d>(') Pi — L(') is defined such that
X € P; is mapped to the unique point bf') nearest tx (|n the generallzed quadrangli).
LetT'(Qy, Oy, Sl S, LY L?6)(r for short if no confusion is possible) be the graph
with vertex setL’ x § x S,. Two different points(x, L\", L(Z)) and(y, L\", L®) are
adjacent whenever at least one of the following two condltlons are satlsfled:

1) j =1ando™(x), " (y) are collinear points iR,
(2) i =kand®'? 06 (x), @2 06(y) are collinear points iQ,.

Ifi =kandj =1, then both (1) and (2) are satisfied. Itis clear the®:, Q. S1. S, L,
L?.6) ~ (22, Q1. . S LY LY. 07, For, A (x, L, L) > (0, L', LY)
deflnes an isomorphism. The defmmonlbis hence symmetrlc Q1 and Q-.

Remark In the sequel, we will not write the symbod™between functions, i.e. witlig
we mean the functiori o g.

Lemma 3.1 Through every two adjacent verticesltfthere is a uniqgue maximal clique.
This clique has size- 1.

Proof: Leta= (x,L{¥, L{¥) andb = (y, L\, L|?) be two fixed adjacent vertices; we
determlne what the common neighbowsL Y, L) look like. Ifi =k # m, thenj =

=1l and®” (x) ~ dP(2) ~ & (y) implies thatx = y and henca = b, a contradiction.
Slmllarly j =1 # nisimpossible. Ifi = k = m, thend>(2)9(x)~d>(2>9(z) d>(2)0(y)
implies thatd®@6(z) is an element of the line ap, throughcp(z)e(x) and® 2>6(y) This
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yieldss — 1 common neighbours @ andb and they are all mutually adjacent. Together
with the vertices andb, they yield a clique of size+ 1. A similar reasoning holds in the
casej =1 =n. |

LetS(Q1, Q2. S, S, LY, L1?, 6) be the partial linear space with points the vertices of
' and with lines the maximal cliques ®f. The incidence is the natural one. Again, we
will write S when no confusion is possible.

Definition 3.2 A line L is said to be otype |, if there exists a fixed, such that every
point of L is of the form(x, L(", L'?). Aline M is said to be otype II, if there exists

a fixedi, such that every point df1 is of the form(x, L"), LEZ)). Remark that there are
lines which are of both types, namely the liné€s, Li(l), Lﬁz)) | X € L(ll)}, wherei and |

are fixed. These lines partition the point setSofhence they form a spread 8.

Lemma 3.3

(a) Forafixed je {1,...,1+st}, the set{(x, LV, L) [ x e L 1 <i < 1+ st}
is a quad isomorphic t@);.

(b) Forafixedie {1,...,1+st}, the sef{(x, LIV, L) | x e LI". 1 < | < 1+ st}
is a quad isomorphic t@,.

Proof:  The isomorphisms are given by : (x, L{”, L) > &{”(x) for (a) andA,:

x, LY, L?) > @P0(x) for (b). O

Definition 3.4

(1) The previous lemma shows that several GQ’s (isomorphi@tmr Q,) are glued
together to form the geometr§. For this reason the above construction is called
glueingandS will be called aglued geometry

(2) A quad of type Irespectively lis a quad that arises like in (a), respectively (b) of the
previous lemma. The following properties hold then.

Every line contained in a quad of type(e {I, I1}) is also of type A.

Two quads of the same type are equal or disjoint.

Two quads of different type meet each other in a line which is of both types.
Through every point oF, there is a unique quad of each type.

Every line of typeA (e {l, I1}) is contained in a unique quad of type A.

Lemma 3.5 S has order(s, t; + to) and satisfies propertiesand 3 of Theoren®.8.

Proof: Let p be an arbitrary point af. The quad of type | (respectively type Il) through
p containg; + 1 (respectivelyt; + 1) lines throughp and both quads have exactly one line
in common. Hence has ordexs, t; + t5).

Property 1 clearly holds by Lemma 3.1, soXeandM be a point and a line af, both
arbitrarily chosen. Through, there is a qua®, of type A€ {l, Il}. Take the unique quad
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R, throughp of type B such thaf A, B} = {I, Il}. On the intersection line dR; andR,
there is a unique point nearestxo This point has distance at most 1xaand M. This

proves the lemma. O
Definition 3.6
o Foralli, j € {1,....1+st}, ¢ is the permutation of {* equal to the restriction of

cI>(11)q>‘.1)<I>i(l) to L(ll). The group of permutations d)fgl) generated by the elememgj)
is denoted byG;.

o Foralli, j € {1,....1+ sk}, ¢ is the permutation of ¥ equal to the restriction of
P 0?0 to LY. The group of permutations af{” generated by the elemer’
is denoted byG. ’

Remark

7, 97 are identity permutations,

o ¢ andg!¥ (k {1, 2)) are inverse permutations.

Theorem 3.7 S is a near hexagon if and only 51, 671G»6] = 0. (Here 0 stands for
the trivial group and Gy, #~1G,0] is the group generated by all commutatfgs, 6 ~1g,60]
withg, € Giand g € G».)

Proof: Suppose thaF is a near hexagon. It suffices to prove tbéff commutes with
610 for all possiblei, j, k.| withi # j andk # I. If x € L{", then we have the
following adjacencies:

(@P oM oo 0P 6P aP000, LY, L)
~ (e teP o oP0(x), LY, L?)
~(x LY L)
- (@ a0, LY. L)
~ (e teP oo 0o oM oY (x), LIV, L?).
Let p be the poinix, L{”, Li?) andL be the line{(x, L, L{?) | x € L{"} (this s a line

of type | and of type II). Since there is only one pointloft distance 2 fronp, it follows
that

_ 2 — 2
0 l¢|5,|)9¢i(71j) — ¢i(,]j)9 1¢|£’|)9 )

Conversely, suppose thab [, 6~1G,0] is the trivial group. Letx be an arbitrary point
of S. Throughx, there is a unique quaR; of type | and a unique qua®, of type Il. In
R1UTR,, there ares?(t; + tp) points of">(x). The points ofS notinR, U R, are partitioned
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by st;t, lines which have both types. The previous reasoning shows that each of these lines
contains a unique point at distance 2 framHencea = |I'»(X)| = S?(t1to + t; + to) isin-
dependent of the poimt. From this it follows thab = |[I's(X)| = (s+ 1)(st + 1)(sb + 1)
—1— (X)) — |T2(X)| = s®yty. Sincea > s2(t + t) andb = s(a — s2(t; + t)), it
follows from Theorem 2.8 thaf is a near hexagon. O

Above, we defined = S(01, @2, S, S, LY, L, 6). Take now an arbitrary line ™ in
S and an arbitrary line.{ in S. If we defineg, ; as the restriction o0 ®{" to L{*,
then we can define

S =8(21.22.8.%. LY. L?.6)).

Theorem 3.8 If Sisanearhexagorthens; j isisomorphictaSforalli € {1,..., 14 st}
andall je{1,...,1+ st}

Proof. We prove thaid:L{" x S x S = LV x S x S, (x, L, L?) > (0P g
9*1¢|(’2})9(x), L(kl), L|<2)) is an isomorphism betweehandsS; ;. This map is clearly a bijec-

tion and it suffices to prove that adjacency is preserved in the point graph of the geometries.

Consider the two adjacent verticas= (x, L(", L?) andb = (y, L\", L@) in S, then

y =612 06(x) and

,m

A@) = (oMol 019 F0x). LY. L1P).
AD) = (790 ¢ 0. L LY).

Now, A(a) ~ A(b) (in S ;) if and only if

cI>I(2) QEZ)Q CD(ll) @i(l)@i’li)e—l(bl(?j)e(x) ~ q)g)cDEZ)e q>(11) q>i(1)¢li,li)9_1¢r(1i)j G(y)
(bl(z)¢§2)9¢iiﬁ)9—1¢|(.2])9(x) ~ ¢g)¢§2)9¢§ﬁ)971¢ﬁ)j9(y)
020400 () ~ DR PP B 00y (y)

2207 (x) ~ @204 (y)

072047 (X) = P} (¥)
07 000 (%) = ¢ 0 92 0(%).

Consider the two adjacent verticas= (x, L\", L®) andb = (y, LY, L?) in S, then
Y = $iem() and

A@) = (007190000, L, L),
Alb) = (o690, LY. L),
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Now, A(a) ~ A(b) (in S ;) if and only if

ch(<1) Cbl(l) ¢I(<:,Li)971¢l(,2j)9 (X) ~ (br(%) CD|(1)¢(1) 971¢|(Y2j)9 (y)

m,l
Bemd B0 00 = 67190 (y)

k,m

DO 70 (%) = 071420 (0).

d

Theorem 3.9 If S is a near hexagarthen any two points at distan@sare contained in
a quad.

Proof: Letpy = (x, LY, L®) andp, = (y. L, L{?) denote the two points at dis-
tance 2. Ifi = k (respectivelyj = 1), thenp; and p, are contained in a quad of type I
(respectively 1). Ifi #k andj # 1, then the adjacencies of Theorem 3.7 show fhaind
p2 have two common neighboups and ps. If s > 2, then Theorem 2.1 implies thaj
and p; are contained in a quad (which iS®+ 1) x (s + 1)-grid in this case). I = 1,
then p; and p, are contained in a quad, sin€ps, P2, Ps3, P4} is geodetically closed and
induces a (% 2)-grid. O

Definition 3.10 Suppos& is a near hexagon. The quadssidifferent from the above de-
fined quads of type land Il are called the quads of type lll. These qua@s-ar® x (s+ 1)-
grids.

Remarks

(a) Fori € {1, 2} fixed, letQ; be an(s+ 1) x (s+ 1)-grid andS be one of the two spreads
of Q;. Sincequ(',f( is the identity permutation for all, k € {1, ..., 1+ s}, one has that
[G1, 071G»0] = 0, hencesS is a near hexagon. It is straightforward to check thag
the direct product 083 ; with a line of sizes + 1.

(b) For everyt € N\{0}, there is a unique GQ of ordéf, t). This GQ contains sev-
eral spreads which are all equivalent. Sirggis a commutative group, the above
construction withrs = 1, t;, t, > 1 will yield a thin near hexagon.

(c) Inthe next sections we will construct near hexagons using two generalized quadrangles
(Q1 and Q») and certain spreads in ther§, (and $; respectively). In the definition of
S, we took in each spread two special lines (namefyy andL{”). Theorem 3.8 says
(in the case tha$ is a near hexagon) that those special lines are in fact not so special.
One can obtain the same near hexagon starting with two arbitrary lines (one in each
spread) by taking a suitabfe

(d) We will not study the problem of determining suitable spreads and suitable fmaps
Also, the above construction can be generalized to obtain other near polygons (e.g. near
octagons). These two problems will be considered in forthcoming papers.
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4. A new construction for (T(O4), T5(02))
4.1. The generalized quadranglg (D)

Consider a hyperovaD in PG(2, q) with g even. Embed P@, q) as a hyperplane in
PG, ), thenT; (O) is a generalized quadrangle of ordgr— 1, g + 1), see [1, 5, 6]. Let
p be afixed point ofD, then the set of lines of PG, q) intersectingO in p defines a spread
S of TS(0O). Consider now the model of R@ q) where the points are the 1-dimensional
subspaces o¥ (4, q) and letLq, L,, L3 denote three arbitrary (but different) lines &f
The plang(Li, Lj) (i # j andi, j € {1, 2, 3}) intersects P@, g) in a line throughp. Let
(Gij) denote the second point Gf on that line. Take, b € V(4, ) such thatp = (&) and
L, = (&, b) and letx = (@a + b) with « € [Fq be an arbitrary point of ;. The projection
(in T,;(0)) of x on L is equal to®,(x) = (wd + b + BE12) wherep Fq is independent
of a. In the same way, we will find thab; ®3®,(X) = (@@ + b + B2 + yToz + 5Ca1)
wherey, § are independent @f. Now €2 + y €3 + 8C31 = na wherep is independent
of @. Hence the mag 3 (which is equal to the restriction cb; P3P, to L1) maps the
point («d + b) to ((« + w)a + b) wherep is independent of € Fy,.

4.2. The near hexagon {{01),T;(0,))

In [4] the following near hexagon was described. [t be a P@4, q), with g even,
embedded as a hyperplane in the 5-dimensional sphceConsider in[ ], two planes
a1 anday meeting each other in a poit and consider iny; (i = 1, 2) a hyperovalO;
containingp. It was proved in [4] thaf,; (O, U Oy) is a near hexagon and it was denoted
there by(T;(Oy), TS (Oy)).

Theorem 4.1 The near hexago(ir,(01), T, (Oy)) is glued.

Proof: Letabe afixed affine pointdf] and putA; = (a, ;) (i € {1, 2}). Forevery affine
pointx € ], we defineQ; (x) (i € {1,2}) as the GQ with the affine points ¢X, «;) as
points, two points are collinear in the GQ whenever they are collinégii@®, U O,). These
GQ's are quads of, (O, U Oy) and each point of;(O1 U Oy) has distance at most one to
each such quad. For= {1, 2}, let Q; = Q;(a), let § be the set of lines ofy intersecting
[I.in p, let LY = L? = paand finally leto be the identity map. In the previous
paragraph we determined whgt’ andg, look like. We can conclude tha@};, G,] = 0,
hence we can define a near hexa{fo& S(Ql, 92,9, S, pa, pa, 0). We will construct
now an isomorphismh betweenT;/(O; U O,) andS. Letx be an arbitrary affine point of
[1- The quadQ;(x) (respectivelsz(x)) intersectsQ, (respectivelyQ;) in a line §2(x)
(respectivelys, (x)) of S (respectivelys;). We puty (x) equal to the unique point gfa
nearesttx (in T,/ (O, U Oy)). The point ofQ; nearest tx is then equal to the projection (in
Q) of y(x) onthelinesi (x) € §, see Theorem 2.2. Ifwe pt(x) = (y(X), §1(X), §2(X)),
then we will prove thatA is an isomorphism. Lefa, L1, L2) = (¥ (X), 81(X), 82(x)) and
puta (i € {1,2}) equal to the projection cd on the lineL; of Q;. If L; = pa, then

X = ap; if L, = pa, thenx = ay; if L1 # pa # Ly, thenx is the common neighbour
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of a; anday (in T, (O, U Oy)) different froma. This proves that is a bijection. Since
both geometries have the same order, it suffices to proveAtipaeserves adjacency in the
point graph of the geometries. Letandr’ be two adjacent points af,(O; U Oy). If the
linerr’intersectd [, in a point of O;, thends_; (r) = §3-i (r') and the result follows from
Corollary 2.3 by considering the projection on the q@ad O

5. New example related taQ(5, q)

The generalized quadrand®5, q) is the GQ of the points and the lines of a nonsingular
elliptic quadric in PG5, q). Its order is(g, g%). The corresponding dual generalized quad-
rangle is the GQ of the points and the lines of a nonsingular Hermitian vaiedyg?) in
PG(3, g?), see [6]. If we intersect this variety with a nontangent plane, then we geta set
of g® + 1 mutually noncollinear points ikl (3, g2), henceO is an ovoid ofH (3, g?). This
ovoid O dualizes to a spreafiof Q(5, g).

Take nowQ = Q(5, q) and letL be an arbitrary line 08. The following theorem holds
then (4 denotes the identity permutation of the set of pointg pf

Theorem5.1 §=8(Q,Q,S S L,L,1)isanear hexagon.

Proof: We determine the permutationss; = ¢ while reasoning in the dual GQ.
The points ofH (3, g?) are 1-dimensional subspaces\of4, g%). Consider a nonsingular
Hermitian form(-, -) in V(4,g?), i.e. (3, Aiui, Zj wij wj) =y Zj kiu?(vi, wj), and
let ¢ be the corresponding polarity of P& g?). Take now a nontangent planeand let
¢ = (0). Take three arbitrary (but different) pointa), (b), (€) of O = = N H(3, g?).
The tangent plane d&) intersectsr in aline(a, v). LetL = (&, G+ Av) be an arbitrary
line of H (3, g%) through(a). Since(d + Av, 0+ A0) = 0, one finds thatd+l = — E‘L‘j)
We determine the lind.’ of H (3, g?) through (b) intersectingL. This line looks ’Iii<e
(b, 0 + A0 + Ba). An easy calculation yields = —2x Egg)) Hencel’ = (b, 0 + A7)
with (v') € 7 N (b)? independent ok. Similarly, if we projectL’ to a line L” through

(€) and finally L” to a lineL” through(a), we will find thatL” = (a, 0 + Av") with
(v € wN{a)* independent of. Nowv"” = y1a+ y»v, hencel” = (4, G+ Ay20) where
y2 is independent of. Just like before, one has th@ty)1* = — &3 or =1 itis
now clear that{1, G;] = 0, henceS is a near hexagon. ’ O

6. New example related toAS(q)

For every odd prime powey, there exists a generalized quadrangle of otder 1, g + 1)
denoted byAS(q), see [1, 6]. The points oAS(q) are the points of the affine space
AG(3, q). The lines ofAS(q) are the following curves of AG, q):

(1) x=0, y=a, z
2y x=a, y=o, z=
(8) x=co?—bo+a, y=-2c0+b, z=o0.
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Herg the parametes ranges over Gf§) anda, b, c are arbitrary elements of Gf). The
incidence is the natural one. The $vhich consists of all lines of type (1) is a spread of
AS(q). If L is an arbitrary line ofS, then we have the following theorem.

Theorem 6.1 S = S(ASQ), ASQ), S, S, L, L, 1) isanear hexagon.

Proof: Leta,b,c,d € GF(Qq) be fixed. Consider then the lindd = {(s,a,b) | 0 €
GF)}andN = {(o, ¢, d) | 0 € GF(Q)}. Let p = («, &, b) be an arbitrary point o1 and
let p’ = (B, ¢, d) be its projection orN. If b = d, theng = « and there is a line of type
(2) throughp andp'. If b # d, then the line througip and p” must necessarily be of type
(3). Letx =mo? —lo +k,y = —2mo +1, z = o be that line. Then we get the following
equations:

a=mb?—Ib+Kk,

g =md —Id +k,
a=-2mb+l,
c=-2md+1.

Sinceb # d, m andl are completely determined kg, b, c andd. We have thag =
o +m(d? —b?) +1(b—d).

Itis now clear that the mapg™ = ¢ are translations of the line. This proves that
[G1, G2] = 0, henceS is a near hexagon. O

Remark All the near hexagons with lines of size 3 and quads through every two points at
distance 2 were classified in [2]. The near hexagons derived hereA&8) and Q(5, 2)
are both isomorphic to example (vi) of [2]. (Notice tha§(3) ~ Q(5, 2).)

7. Characterizations
7.1. The local space

Let S = (P, L, 1) be a near hexagon satisfying the property that every two points at
distance 2 are contained in a unique quad. >ar P, we define the following incidence
structureSy.

e The points ofSy are the lines o8 throughx.
e Aline of S is the set of lines of throughx in a quad orx.
e Incidence is the symmetrized containment.

The spaceSy is linear and is callethe local space at x
Foru, v e N\{0}, letS,, = (Pu.v, Lu, luv) be the following linear space:

.PU,U:{aﬂﬂlv---aﬂU?ylv~--ayU}! . .
o Luv=1{{a,Br,.... 81 {o, yr, ..., v JU{{Bi, v} 11 <i <uand 1< | < v},
e |y, is the symmetrized containment.
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Su.v IS a linear space with a thin point (namety. Conversely, every linear space with a
thin point is obtained in this way. If is a glued near hexagon, théh ~ S, +, for all
pointsx of S.

Theorem 7.1 LetS be a near hexagon satisfying the following properties
e every two points at distancare contained in a quad

o if all lines of S are thin, then all quads are good

e there exists a point x & such thatSy >~ S, for some re N\{0},

thensS is the direct product of a line with a nondegener&®.

Proof: If not all lines of S have the same number of points, thefs the direct product
of a line with a GQ, see Theorem 2.5. Hence, by Theorem 2.4, we may assunSemst
order(s,t) witht = r + 1. Consider througlx a quadRy containingt lines throughx
and letLy be the remaining line througk. Every pointz of Ry is incident with exactly
one lineL, which is not inRy. Lety € L4\{x} be fixed. LetM; and M, be two lines
throughy different fromL and letRy be the quad throughl, andM,. The quad through
Mi (i € {1, 2}) andLy intersectsRy in a line M;. Now, letu be one of thes?(t — 1) points
of R, at distance 2 fronx. Letu; (i € {1, 2}) be the unique point o/ collinear withu.
The quad througliy; andL,, is a grid. Letu; be the intersection af,, with M; and let
v; be the unique neighbour of andu different fromu;. The pointy; is then the unique
point of L, at distance 2 frony. This implies thaty = v; = v,. Sincev is collinear with
the pointsu; andu, of Ry, v is itself contained inR,. Hence|I'2(y) N Ry| > s%(t — 1).
This implies thatRy is a GQ of order(s, t — 1) containing all lines througly, except the
line Ly and thatRy ~ Ry. The result follows now immediately. O

7.2. Characterizations of the new class of near polygons

Theorem 7.2 LetS = (P, L, |) be a near hexagon satisfying the following properties
e every two points at distancare contained in a quad

o if all lines of S are thin then all quads are goad

e there exists a point x such th&y has a thin point for all ye I'(x),

thenS is the direct product of a line with a nondegener&@or S is a glued near hexagon.

Proof: If not all lines of S have the same number of points, thefs the direct product

of a line with a nondegenerate GQ. Hence, by Theorem 2.4 we may assunsehthsian
order(s, t). If Sy (with y € P) is a linear space with a thin point, then we may suppose that
Sy contains a unique thin point which we denotelby, otherwise the result would follow
from Theorem 7.1. The lin&, is then contained in exactly two quads. The following
properties hold now.

(a) If y is a point for whichSy is a linear space with a thin point, thefy ~ Sy and
Ly = Ly for all pointsy” € L.

Proof: SupposeSy >~ S, 1, with ty, t; > 1 andt = t; + t,. The pointLy of Sy is
contained in exactly two lines &y, one line has; + 1 points, the othet, + 1 points.
Since there are exactty + t; + 1 points inSy, it follows thatSy ~ &, 1,. O
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(b) If y1, y» are points such thafy,, Sy, are linear spaces with a thin point, thep, and
Ly, are equal or disjoint.

Proof: This follows immediately from (a). O
(c) There exists a point € I'(x) such thaix € L.

Proof: Suppose that this is not true. Lgte I'(x) be fixed. LetQ be the quad of
order(s, t’) throughxy andLy. There ares(t’ 4+ 1) pointsz € Q collinear withx.

These give rise tg(t’ + 1) linesL and all these lines are different and hence disjoint
by (b). Suppose thdt, is not contained irQ for a certainz € I'(x) N Q, thenS,
contains at least three thick lines (namely the line define@layd the two lines of,
throughL ;), a contradiction sincé; is a linear space with a unique thin point. Hence,
all lines L, are contained i@ and there are at lea& + 1)(st’ + s) points inQ, but
this is again impossible. O

Lety e I'(x) such thai € Ly. HenceS, is also a linear space with a unique thin pdint
Let Q1 andQ, be the two quads throudh, with respective orders, t;) and(s, t). In Q;,
there arest, pointsz collinear withx and not onLy. These give rise tet disjoint linesL,
which together witiL, form a spread§ of Q;. Put§ = {L{’, ..., LY} Jwith L{’ = L,.
Finally, let 6 be the identity permutation df,. We prove now thatS ~ S(Q;, Qo,
S, S LY, LP o).

First we prove that every point of S has distance at most 1 to eah (i € {1, 2}).
Let U’ be the unique point of x nearest tal; we may suppose thak(u, u’) = 2. Since
Sy ~ S, it follows that the quad throughandu’ intersects eact; in a line. This proves
that eachQ; contains a point collinear with. Fori € {1, 2} andu € P, let p; (u) denote
the unique point of); nearest ta.

Next we prove that all the local spac&gare isomorphic ta;, 1,. Since for allu € Q;,
L, is contained in exactly two quad@{ and another quad), we have ti&f ~ S;, 1,. Letu
be a point ofS not contained iR; U Q,. Letu = p1(u) andu” = py(u). The local space
Sy containst; + t; + 1 points, a line witht; + 1 points (determined by the quad through
uu” andL ) and a line witht, + 1 points (determined by the quad througli andL,,).
From this it follows thatS, >~ S;, 1,. Hencel,, is defined for allu € P and all these lines

determine a spread &. EachL, is contained in exactly two quads. One quad intersects

9, in aline and is isomorphic t@;. The other quad intersec,; and is isomorphic to
Q,. Note that the isomorphisms are defined by the projectmpnise {1, 2}.

We consider now the following map: P — Ly x § xS, AU) = (y(U), s1(u),
83(u)), wherey (u) is the unique point of  nearest ta ands; (u) (i € {1, 2}) is the unique
line of § incident with p; (u). By Theorem 2.2, it follows thap; (u) is the projection (in
Q) of y(u) onthe lines; (u). Let(a, L1, Lo) = (v (u), 81(u), §2(u)) and puty; (i € {1, 2})
equal to the projection ai on the lineL; of Q;. If Ly = Ly, thenu = ay; if Ly = Ly,
thenu = ay; if L1 # Ly # Ly, thenu is the common neighbour @f; anda, different

from a. This proves thai\ is a bijection. Since both geometries have the same order, it
suffices to prove thah preserves adjacency in the point graph of the geometriesx Let
andx’ be two adjacent points. K andx’ are contained in a quad intersecti@yg, then
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82(X) = 82(x’) and the result follows from Corollary 2.3 by projection on the qgad If
x andx’ are contained in a quad intersecti@g, thensy(x) = §1(x’) and the result follows
from Corollary 2.3 by projection on the quag}. O

Theorem 7.3 LetS be a near hexagon satisfying the following properties

e every two points at distancare contained in a quad

o if all lines of S are thin then all quads are goad

e there exists a point x such th& has a thin point and such th&, contains the same
number of lines for all y& I"(x),

thenS is the direct product of a line with a nondegener&@or S is a glued near hexagon.

Proof. Just like before, we may suppose tisabas an orde(s, t). Theorem 2.6 implies
that the number of points ifiz(y) is independent of the poigtof S. Fory € T'(x), letVy
denote the set of quads throughNow,

YL )Y Sto. Y tolto+ 1),

QeVy QeVy QeVy

are respectively equal to the number of quads throyghe number of points ift2(y) and
t(t + 1), hence these quantities are independemt efl"(x). Let Ly be a thin point ofSy
and letQ; and 9, be the two quads throughy with respective orderss, t;) and(s, ty).
One has that = t; +t,. Letz # x be a second point dfy. If y € Q; N T'(x), then

D te—Dta—to) = ) (to—Dta—to) = (L — Dt — to).

QeVy QeV,

LetVy = Vy\{Q1}, then

D (o - Dt —tg) =0.

QeVy

Since there are only+ 1 lines throughy and Q; hast; + 1 lines throughy, one has that
1<tg <tyforall Q e Vy. Thisimplies thato = 1 ortg = t; for all @ € Vj. By
Theorem 7.1, we may suppose that, = 1. From

dYoi1=> 1

QeVy QeV,

and

So= Yt

QeVy QeV,

it follows now that the number of quadg of Vy with to = t; is equal to 1. This implies
thatSy >~ Sy, ¢, forall y € I'(x) N Q1. A similar reasoning shows that this is also true for
y € I'(X) N Q,. The result follows now from the previous theorem. O
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