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Abstract. Let.A be a real arrangement of hyperplanes. Bet B(q) be Varchenko’s quantum bilinear form
of A, introduced [15], specialized so that all hyperplanes have wejigi®(q) is nonsingular for all compleg
except certain roots of unity. Here, we examine the kernd@ af roots of unity in relation to the topology of the
hyperplane singularity.

We use Varchenko’s work [16] to rela®(q) to a Salvetti complex for the Milnor fibration of. This paper’s
main result is specific to the arrangement of reflecting hyperplanes associated whth freot system. We use a
geometric property of the Milnor fibre to resolve a conjecture due to Hanlon and Stanley regardihgrtiedule
structure of the kernel dB(q) at certain roots of unity.
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1. Introduction

Let.4 be an arrangement of hyperplaneRIih In what follows, all hyperplanes are assumed
to contain the origin. Let (A) denote their lattice of intersections. For eddhe A, let
£y be alinear functional whose kernelis LetQ =[], 4 ¢H. Q is said to be a defining
polynomial of the hyperplane arrangemehtAlso letC be the set of chambers gf; that
is, the set of connected component®R8f . H.

In [15], Varchenko defines a matr& = B(.4) whose rows and columns are indexed by
the chamberg. The entries of the matrix aB(C, C') = [[, an, where{ay : H € A}
is a set of indeterminates, and where the product is taken over hyperpiaresi that
separate chambe@andC'. In this paper, we restrict our attention to the case where each
hyperplane has the same weighhereB(C, C') = g™, wheren(C, C’) is the number
of hyperplanes that lie between chamb@randC’.

Let V be the complex vector space with baGisRegardB as an endomorphism &f by
specializingg to a complex number. Varchenko gives a formula for the determinaBt of
in [15] that showsB is singular if and only ig? = 1, where

k=1{H:H 2 X}

for some subspac¥ € L(A) for which Crapo’s beta invariant [4] is honzero. See [15] or
[7] for a complete statement of this result.
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When A is the set of reflecting hyperplanes given by a root system, the Weyl @ggoup
permutes the chambef€s which givesV the structure of &-module. For any € G,
one can see that(cC, cC’) = n(C, C’); therefore multiplication byB is a G-module
endomorphism of/. Using the traditional labelling of the chambers4With the elements
of G, it turns out thaB acts as multiplication by an element of the group alg€la

The focus of this note shall be arrangement given by the root syAtes) also known
as the braid arrangement. Here, the defining polynomial is

Q= [] &—xp. (1.1)

1<i<j<n

and the Weyl group is the symmetric gro&g. Varchenko’s determinant formula special-
izes to

n N . I
detB = ]‘[ (1- qk<k—1>)(k)<k—2>.<n K+1)! w2
k=2

ThusB is singular if and only if] = ¢ wheret satisfieg*®~D = 1 for somek, 2 < k < n.
Hanlon and Stanley [7] have shown that the kerneBdias an interesting structure as

an&, module for some values of More precisely, leg be akth root of unity. In context,

we shall usé& also to denote the one-dimensional representation of the cyclic subgroup of

&, generated by thle-cycle (12- - - k), whose value on the generatogisThey prove:

Theorem 1.3 Theorem3.3in [7]) Letq = ¢ be a nin — th root of unity for which
¢10-Y £ 1for1 < j < n. Then as ans,-module

kerB = Indg[1§” — Indfﬂ“;”‘l.

If p is afaithful, one-dimensional representatiorCgf then Incfn”,o = Lien, where Lig
is the representation @, afforded on the multilinear part of the free Lie algebra with
generators.

Corollary 1.4 ([7]) Letqg= ¢ be a primitive n(n — 1)th root of unity. Then
~ 1ndCn | ;
kerB = |nd6n71|-|en—1 — Liep.

This representation has appeared in other contexts, such as the theory of noncommutative
symmetric functions, and a version of graph cohomology [6, 13]. However, computational
evidence given in Hanlon and Stanley’s paper suggests thathkas no comparably simple
description for general values gf In particular, without the condition thagt (-1 = 1
for j < n, itis not always true that the virtual representationginl‘]lct“ - Indgn”g“”‘l is
even an actual representation. They conjecture that a generalization holds for certain values:
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Conjecture 1.5([7]) For anyk satisfying 2< k < n, letq = ¢, wherez1(-D = 1 for
2 < j <nifandonlyif j = k. Then, as &,-module,

kerB = (n —k + D(Indg" ¢ — IndS" ¢k ). (1.6)

The main objective of this paper is to show that the conjecture above is true, subject to
the additional restriction th&t > n/2. The proof occupies Section 3. However, it turns out
that the conjectured result does not hold for any valudés-ofn/2. The smallest value of
for which somek and¢ meet the other hypothesesis= 8, with k = 4 and¢ a primitive,
twelfth root of unity. Then the dimension of the right-hand sid€106) is strictly greater
than that of keB, for reasons which will appear below.

The proof relies on identifying the role of the matifikin a calculation of the singular
homology of a topological space associated with the hyperplane arrangement. This is
the subject of Section 2. For an arbitrary arrangemenndfyperplanes, consider the
defining polynomial as a ma@ : C" — C. Let N = Q~1(0), andM = C"\ N, respectively
the variety and the complement of the arrangement. The restrictiégn:df — C* is a
fibration (see [9]), andF = Q~(1) is known as the Milnor fibre of the arrangement. Its
topology is the subject of ongoing investigation: see, for example, [3] or [2].

We give an explicit chain complex that computes the homolog¥ d¢br any real ar-
rangement. A geometric property Bf its monodromy action, provides information about
the algebraic properties of the matiix

Conversely, Theorem 1.3 applies to describe the representation of the alternating group
afforded by certain monodromy eigenspaces in the homolodsy; ke Section 4.

2. A complex for the Milnor fibre

Here we describe the connection between Varchenko’s mBtard the homology of the
Milnor fibre. Section 2.1 uses traditional algebraic topology to express the Milnor fibre as
an infinite cyclic cover of the complement spabk, In [14], Salvetti gives a CW-complex

that is homotopic toM, whose structure is determined by combinatorial data from the
hyperplane arrangement (the face lattice.) With methods of Varchenko [16], one can use
this to build a chain complex (Section 2.2) that computes the homolody, efhere B
appears as a chain map.

2.1. Aninfinite cyclic cover
Choose 1 as the base point@f, and choose an arbitrary poixg € F as the base point

of M. A standard device of homotopy theory [17] makes it possible to extend the fibration
sequence

FosM3ct
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to the left, to obtain a new fibration, up to homotopy:
QC* - F - M.

Here,QC* is the (based) space of homotopy classes of maps $oimC*, homotopically
equivalent to the integeid. The inclusionF — M is not itself a fibration, but one can
replaceF by a homotopically equivalent spaé€Q) to get an actual fibration ove:

Z>FQ 35 M (2.1)
The spacd- (Q) is thehomotopy fibreof Q:
F(Q ={X,w):xeM,we[l,C, w0 =10l = QX),

where ||, X] is meant to denote the continuous maps between [0, 1] and a space,
modulo homotopies that preserve endpoints. To see(@dly works, observe thaE (Q)
consists of points ifM paired with homotopy classes of pathsGi leading from 1 (the
base point) to the imag®(x) of x underQ. The mapr in (2.1) is given by projection
onto the first coordinate.

The fibrer ~1(xo) consists of homotopy classes of loopsdh, sinceQ(xo) = 1, and
these are indexed naturally by the integers. Fix an explicit homotopy equivalence as follows.
Define¢: F — F(Q) by ¢ (X) = (X, 1), wherel is the constant path. Let = |.A|, and
define a path-lifting function : F(Q) — [I, M] by

WX, 0)(t) = [0 — )] 7x

for points(x, w) € F(Q). Finally, defineyr : F(Q) — F by (X, w) = ¥ (X, w)(0). ltis
not hard to verify the following:

Proposition 2.2 The mapsp and ¢ establish a homotopy equivalence between F and
F(Q). Furthermore suppose a group G acts on M in such a way that Q is constant on
orbits. Thenp andyr are equivariant with respect to the group action that G induces on F
and F(Q).

In other words, the Milnor fibré& is homotopically equivalent to an infinite cyclic cover
of M, in which the sheets of the cover are counted by the winding numbers of pathis in
Milnor’s article [8] describes this situation in generality. Our next observation will be that
the deck transformations coincide with the geometric monodromy actidh on

The fundamental group, (M) has a presentation with one generator for each hyperplane,
given by a loopxy around that hyperplane (Randell, [12]). Since the image udef
such a loop is a loop around the origin @f, eachay has the same action on points
(X, w) € F(Q): namely, it adds another loop around the origin to the patbenote this
map byh': F(Q) — F(Q). One can check that a generatotm@f{C*, 1) acts onF (Q) as
the self-magh’.
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By way of comparison, leh: F — F be the monodromy action, given byx) =
e 271/Mx_ Then the following diagram commutes:

FIQ 5 FQ

bl

F——> F

Sinceyr is an isomorphism in homology, we can identiy (F (Q), C) with H,(F, C).
Thenh: F — F andh’: F(Q) — F(Q) induce the same endomorphismof H,(F, C).
Sinceh™ = Id, the action oZ = 7;(C*, 1) on H,(F, C) factors througlz /mZ, andh,
represents a generator of the group.

The Leray-Serre spectral sequence applied to the fibré2idn states that

E2, = Hp(M, Hq(2)) = Hpiq(F. C).
This stage of the spectral sequence has only one nonzero row, so
H.(F, C) = H.(M, C[t, t™)). (2.3)

It follows from the discussion above that the local coefficient systgimt ] is a1 (M)-
module in which each generator #f(M) acts by multiplication byt. At the same time,
H.(F, C) is aC[t, t~1]-module by identifying multiplication by with the action oh,.

2.2. Cellular homology of M

We continue by restating Varchenko’s method of calculating the homology of a local coef-
ficient system oM. The reader should refer to Chapter 2 of [16] for complete details. We
begin with a brief description of Salvetti's complex; for the details of the construction, see
[14], or the concise presentation in [11].

Three CW-complexeX, Y, A are required, wher¥ is a subcomplex oA. X is, by
construction, homotopically equivalentkd. ComplexesA C Y are contractible, and the
pair (A, Y) is homotopically equivalent to the paic", N).

The data for the construction comes from the face lattice of the real arrangement
which we shall denot& = L£(A). Let < denote its partial ordering by reverse inclusion,
and writeQ < P if P coversQ. The rankp(P) of a faceP is given by its codimension.

Let £, denote the faces of rargx thenC = Lo, the set of chambers. Recall the definition
of the vector produdPC € C of any P € £ andC < C. PC is the chamber determined by
“pushing” a point in the interior oP in the direction of chambet.

Cells in the CW-complexes are labelled with symbBl$, Q), whereP andQ are faces

with Q < P. ForO<r <nandO<s<n-r,let

Es={EPP,Q:Peli;s, Qe Ls, Q <P}
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The cells of complexA in dimensionr are indexed by the set.&s. The cells of the
subcomplexY are indexed bys.o&s. Last, ther-cells of X are indexed by, alone.
In A, the boundary of e-cell E(P, Q) consists ofall cell&€(P’, Q), whereQ < P’ < P.
In X, the boundary of a-cell E(P, Q) consists of alf —1-cellsE(Q, QC), whereQ < P.
The cellular chain complexes corresponding to the comilexd the paiA, Y) have
the same bases, but differing boundary maps(X) andC, (A, Y) are both isomorphic to
the complex vector space generated by

{E(P,C):PeLy,,CelC,C<P}
In order to describe boundary maps that compute the homology afid of the pair
(AY), letHyps={H € A:P C H,Q & H}, and letb(C, Q; P) be the number of
H e Hyps that separateé andQ, minus the number that do not. Coorient the faces of the
arrangement, and for facex) < P lete(P, Q) be+1 or —1 according to whether or not
the coorientations oP and Q agree. Se€2.4.2) in [16]. The following proposition is a
specialization of Lemmas 2.5.13 and 2.5.15 of [16].

Proposition 2.4 (16]) LetW be a local coefficient system and Iéts t be automor-
phisms oV so that eaclwy € 71(X) acts by t. Then
1. H.(X, W) is computed by the chain complex(®) ® W, with boundary map

IE(P.C) = Y &(P, Q)s"“*PE(Q, QO).

Q<P

2. H.(A, Y, W) is computed by A, Y) ® W, with boundary map

YE(P.C)= Y &(P.QE(Q.C).

C<Q<P

The main objective of this section is an application of the result aboveiLet C[t, t=1
be the local coefficient system #.3). LetC, = C,(X) @ W, andC, = C,(A,Y)®@W.

Corollary 2.5 Regard s as an indeterminate satisfyirfg=st. Then
H.(F,C) = H.(C., 3(t))
asC[t, t—%]-modules.

Proof: LetW = C[t,t]asin(2.3), and apply the proposition. Sin&eis homotopically
equivalent taM,

H..(M, C[t, t™]) = H.(C,, 3(1)).

The proof is completed by recalling Eqg. (2.3). O
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T=y>2
y>r>z T>Y>2
y>r=2 T>Y=2
y>z>r r>z>Y
T=2>Y
y=2>z z2>y>z z>zT>Y
2>z=y

Figure L The A, arrangement.

Example 2.6 Consider the arrangement with defining polynon@= (x — y)(x — 2)
(y — 2) and faces labelled as in figure 1. The face lattice has maximum eleiment
{(X,¥,2):x =y =z}. One can check that, for example,

° aéE(i, X>y>7) = —E(X = y>2,X>y>7) — EX>y>Z X>Yy>2);
e hEX=y>Z x>y>7) = STIE(X>Y>2Z X>y>2) — SE(y>X>2, y>X>2).
e 3,:C, — Cjisabx 12 matrix with invariant factors 1,4t,1—t,1—t, 1—t3, 1—t3.

We shall also require the observation that, since the pair of sp@€ebl) is contractible,
Lemma 2.7 The chain completC., 9') is exact.

We introduce another important tool from [16]. For chaml&r€’ € C, letb(C, C’) be
the number oH € A that separat€ andC’, minus the number that do not. Now define
a bilinear formB’ from the arrangement whose matrix ha€, C’ entry equal te?(©C"),
We shall be interested in this bilinear form for various subarrangements dfor any

X € L(A), let B{ denote the corresponding bilinear form determined by the arrangement
Ay, the subarrangement of hyperplanes contait{ngNote that if one setg = 2,

B=s"B. (2.8)

Define amags, : C, — C. by

S,E(P.C) = ) B[ (C.C)E(P.C),
CeC



234 DENHAM

for C € C, P € L, where|P| denotes the subspace spannePbys, is a block sum of
matricesB’; via Corollary 2.5, thenS, provides a relation between the homology of the
Milnor fibre and Varchenko’s matrices:

Proposition 2.9([16]) S.:C, — C; is @ homomorphism of chain complexes.isSan
injection and its cokernel is a torsion module over the ri@ff, t—1].

The last two lemmas have to do with the actiorZginZ on H, (M, C[t, t~]). Recall
that the group’s generator acts as multiplicationtbyThust™ acts as the identity, and
multiplication by (1 — t™) kills H,(M, C[t, t~]). Consequently:

Lemma 2.10 Whenx € C satisfies\™ # 1, the chain comple((é*, a(1)) is exact.

To state the remaining lemma, |@t= 8(A) denote Crapo’s beta invariant of the matroid
associated withkd. It is equal to the reduced Euler characteristic of the decoog of

Lemma 2.11([3]) Wheni € Cis an mth root of unitythe A-eigenspace of h) acting on
Hnh_1(F, C), has dimension at leag(A).

3. Generalizing Hanlon and Stanley’s theorem
Our main theorem is based on Conjecture 1.5.

Theorem 3.1 For any k satisfying fi2 < k < n, let q = ¢, where¢i4-Y = 1 for
2 < j <nifandonlyif j= k. Then as a&,-module

kerB(n) = (n — k + 1)(IndS" ¢* — Indg¢ Y.

3.1. Preliminaries

For what follows, it will be convenient to restrict th,_; braid arrangement tB8"~* by
eliminating the subspace contained in all hyperplares; X, + --- + X, = 0. Call the
arrangementl(Sy), and fix a defining polynomial for it by substituting = — Zinz‘ll X in

Eq. (1.1). LetB(n) = B(A(G,)), and note that the matrix is unaffected by this restriction.
Take B(1) = (1), corresponding to the empty arrangement. The symmetric gEQuacts

on A(&,) andM by permuting the coordinates.

The complexes defined in the previous section have nice descriptions for the braid ar-
rangements. We begin with the face lattice: itis well known that the faces of the arrangement
A(6,) are determined by block-ordered partitions of the set elements. That is, to any
faceP € L,_g there corresponds a partition][= ]_[:‘:1 X, where eachX; is nonempty.

The valueg| Xy, ..., | Xk|) form a composition: an ordered sequence of positive integers
whose sum isi. The points ofP are those whose coordinates satigfyc x; whenx; € X;
andx; e Xswithr <'s, andx; = x; exactly wherr = s. In particular, chambers are
indexed by permutations. Recall that the cells of the compl€xéX) andC, (A, Y) are
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indexed by pairgP, C) for which P € Ly, C € C, andP < C. Let(as,...,an_«)
be the composition af corresponding td, ando € &, the permutation given bg. We
express the paitP, C) by writing o in one-line notation and delimiting the blocks Bfs
block-ordered partition with /*’s:

(01, ey 08 /0a 415 -+ s Oagtan/ =+ /Oagttan atls - - - s Gn).

In [16], Varchenko shows that one can construct the compl¥x&s and A so thatS,, acts
cellularly.

Proposition3.2([16]) LetE(P, C)beacellof X or Aindexed by the pair (ay, .. ., anh_k)
as above. Thereachr € &, induces the mapE(P, C) = ¢(r)E(P’, C’) in C,.(X) and
C.(A,Y), wheree is the sign characterand (P’, C’) is determined by the expression

((TU)la UK (TU)al/ e /(ro—)al-l—----i—an,k,l-‘rla R (TU)n)~
Furthermore 9, andd, are &,-module homomorphisms.

We also require some notation to describe the invariant factoB(iof over the ring
C[g, 9~ 1]. For a reference on the Smith Normal Form of a matrix, see [10].

Definition 3.3 Let R be a Euclidean domairA a matrix overR, andu € R a nonunit.
Letds, dy, ..., d¢ be the invariant factors o, ordered as usual so thé{d, ;. Letm, be
the number of invariant factoi that are divisible by, but not byu' . Let u(A, u, X)
be the generating function for the numbeats that s, (A, u, x) = >, m;x".

For example, over the integers,
121 0 1 000
A=12 6 0 4|~]0 2 0 0},
1 0 7 -8 0 0 40
sou(A, 2,X) = 14 x + x?, whereasu(A, u, Xx) = 3 foru # 2 or 4.
Note that Eq. (2.8) implies that(B, f, x) = u(B’, f, x) for any polynomialf € C[q],
as long asf (0) # 0, subject to the usual identificatish = q.

We shall need to use the following property of the generating function.

Lemma3.4 LetA@ A denote the direct sum of two real hyperplane arrangements. Then
for any nonunit fe C[q],

w(BA @A), f,x) = u(B(A), f,x)- w(BA), f,Xx).

Proof: From [16, Section 2.6], we hav&(A @& A") = B(A) ® B(A’). Let S(A) denote
the Smith Normal Form of a matriA. For any two square matricesand A, it is known



236 DENHAM

thatS(A® A') equalsS(A) ® S(A), up to areordering of the rows and columns. Then one
only needs to verify the identity (A ® A, f, x) = w(A, f,X)u(A, f,x) whenAandA’
are diagonal. O

Definition 3.5 For any arrangement of rankn and nonunitf € C[q] satisfying f (0) #
0, let

XA £0 = (=D u(S f,%).
k=0

Sinceu is additive over direct sums of matrices, it follows from the definitionSpfin
Section 2.2 that

XA 1.0 = (=D""PVu(Bp, f,x), (3.6)

PeL

whereBp; = B(Ap)).

The next lemma gives a more specific relation between functioasd . in the case
of braid arrangements. For any nonuhit C[q, q~1] with f(0) # 0, define a generating
function

B(k), f, x)yX
G(f7x’y):1+zw
k>1 )

Lemma 3.7 G(f, x, y) satisfies the identity

G(f,x,y) ! 1+Z( D x(A(r?n)) f.0y"

n>1

Proof: Given a faceP € Ly, let(ay, ..., an_x) be the composition afi associated with
it. It is not hard to verify that the arrangemedtp, is the direct sum of the arrangements
A(S,). By Lemma 3.4, then,

k
u(Biep. £.x) = [n(BG@). f.%). (3.8)

Now let us determine the coefficient gf/n! in G(f, x, y)~%. Put
T =Y 11 —m(BK), f,x)y*/kl. Then

l
G(f,x,y)~ T

K (— 1) (B(ar> f.oy"
“ D P (I
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where the sum is taken over sequences of positive intégers. ., ax) whose sum is.
Using (3.8) to compare this with{3.6) yields the desired identity. O

Example 3.9 Let f = g? — 1, and letP(A, x) denote the Poincarpolynomial of the
intersection lattice (A). With respect to the prime factors gqf — 1, the Smith Normal
Form of Varchenko’s matrix is known: we have

w(B(), f,x) = P(A(G,),x) By Theorem 3.1 of [§]

—L

(14 rx) by Arnold’'s Theorem [1].

r=1

ThenG(f, x, y) = (1-xy)~Y/%, by the generalized binomial theorem. Clealgf, x, y)~*
= G(f, —x, —y), from which

X (A(Gn), f,x) = P(A(Gn), —X).
(In fact, one can show that this last formula holds for any arrangemgnt

Describing the invariant factors of Varchenko’s matrices at primes otherghan is
closely related to describing the nontrivial monodromy eigenspacés, @, C), how-
ever, and remains an open problem: see [5]. The alternatingygutn f, x) introduced in
Definition 3.5 is a weaker invariant of an arrangement. At the same time, one can regard
it as a refinement of the Reidemeister torsion or zeta functidh thfat Milnor considers
in [9].

3.2. Proof of Theorem 3.1

The proof of the theorem depends on considering the relation between the generating
functions (B(n), q — ¢, x) andx (A(Gn), q — ¢, X) for appropriate roots of unity.

Lemma 3.10 Let.A be an essentiah-dimensional arrangement of m hyperplanasd

let ¢ be a nonzero complex number.

1. If ¢2™ £ 1, theny (A, q — ¢, X) = 0.

2. If g = ¢ is aroot ofdetB(A), but not of anydetB(Ax) for X € L(A)\{1} satisfying
B(Ax) # 0, theny (A, q — ¢, X) = (=D"(X — DB(A).

Proof: In order to isolate the behaviour gf— ¢, we shall localizeC[t, t 1] at the prime
generated by — ¢2. (Recall that = g°.) Let R denote the local ring, and assume this
localization is in effect through this proof without further reference to it. Sigces an
injection (Proposition 2.9), there is an exact sequence

0 C,(t) > C. — cokerS, — 0.
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To prove claim (1), decompose cok&rfor eachk as a direct sum

R ark

r>1

By the properties of the Smith Normal Foragy is the coefficient ok" in (S, t — ¢2, X).
From Lemmas 2.10 and 2.7, respectively, the compl€gs) and C; are exact. Using
the long exact sequence in homology, we find that c8kés also exact. Sinc€, (t) and
C! are both exact sequences of free modules, they both split. This induces a splitting on
cokelS,, from which it follows that the alternating sum of the multiplicitigg is zero, for
eachr. That is, each coefficient of the polynomjal.A, q — ¢, X) is zero.

Now we prove claim (2). Lemma 2.11 asserts thatoker?) has dimension at leagt
From Lemma 2.7 and Proposition 2.8, and S,_; are injections whet = ¢2. Since
3S = Si-19n(¢?), the dimension of ke®, is also at leasp whent = ¢2. On the other
hand, Varchenko’s determinant formula shows that; 2 divides detS, exactlys times; it
follows thatu (S, t — ¢2, X) = X + ¢ for a constant.

To complete the argument, note thatS, f, 1) = dim¢ Cy for eachk. By exactness,
then,x (A, t — ¢2,1) =0, and we find thag (A4, q — ¢, X) = (=1D)"(x — 1)B. O

Lemma 3.11 Letk > 1. For any¢ satisfyingc“®=0 = 1, let n > 1 be the smallest
integer satisfying "™V = 1, excluding k. Supposes k. Then

1. w(B(r),g—¢,x)=rlforl<r <k;

2. u(B(r),q— ¢, x) is alinear function of x for k< r < min{n, 2k}.

Proof:  Apply the previous lemma to the arrangemdiitS, ). For2<r < n,r # k, case
(1) applies. For =k, case (2) applies. Using the generating function identity (Lemma 3.7),

x—1
k(k — 1)

-1
G(q—f,x,y)z[l—er yk+0(y“)} :
G is the exponential generating function fo¢B(r), q — ¢, X). From the equation above,
its coefficients are constant wherx k and linear inx when bothr < 2kandr <n. O

Lemma 3.12 Letk > 1 and k < n < 2k. Suppose that satisfies¢"™*~Y = 1 for

2 <r < nonly when r= k. For the arrangementi(&,) and map $:C, — C/, let

g=¢. Then

1. ker§S =0forO<r <k-—1

2. Fork—1 <r < n -1, there exists some > 0 for whichker§ = a(lndggker B(k))
asS,-modules.

/
*7

Proof. Assertion (1) follows from the determinant formuta2). To prove (2), suppose
k—1<r <n-1,andle = (ay,...,a,—r) be acomposition ai. LetB(a) = Pr Bp|,
where the direct sum is taken over all faéeg L, whose block-ordered partition has block



HANLON AND STANLEY'S CONJECTURE AND MILNOR FIBRE 239

sizesa. Using Proposition 3.2 an@.8),
s =cPB@.
a

is a direct sum of5,-homomorphisms, where is some nonzero scalar, and the sum is
taken over all compositions ofwith n — r parts. Then

ker§ = @ kerB(a).

Since the hypotheses dictate timak 2k, k appears at most once in each composition
of n. Recall thatBjp| = B(ay) @ B(ay) @ - - @ B(an—r) as ab;, x --- x &5, -module
homomorphism. At most one factorBk), and the rest are isomorphisms. It follows that
kerB(a) = Indg:kerB(k) if somea; = k, and 0 if not. O

Now we are prepared to prove Theorem 3.1:

Proof of 3.1: Suppose than, k, and¢ satisfy the hypotheses of the theorem, and set
g = ¢. We shall use induction am—k. If n = k, Theorem 1.3 applies. Otherwise, suppose
further that, for allr satlsfymgk < r < n, kerB(r) is the direct sum of copies of the
&, -module Incf’ ok Ind ;k 1. We must show that the same is true wihes n.

By Lemma 3. 12 and the |nduct|0n hypothesis, 8en = b, U for eachr < n, for some
numbers, > 0, where

U = Indg" ¢ — Indg ¢t (3.13)
Consider the exact sequence of chain complexes©&sf
0— kerS, — C.(¢5) 3 € - 0. (3.14)

From Lemmas 2.7 and 2.10, respectivély( ) andé; are exact. The long exact sequence
in homology shows that ke, is also exact. It follows that ke%,_1 = b,U, where

- Y D) b.

1<r<n

SinceB(n) = gq""V/4g,, by (2.8), it remains only to determine,. From Lemma 3.11,
the dimension of keB(n) equals the multiplicity ofj — ¢ as a factor of deB(n). This
equalsp)(k—2)!'(n—k+1)!, by (1.2). Since dimJ = n!/k(k— 1), one finds keB(n) =
(n—k+ DU. O

4. Remarks

The proof of Theorem 3.1 shows why Hanlon and Stanley’s conjecture needs the restriction
thatn < 2k. Whenn > 2k, A(&,) has edges that contain a direct sum of more than one braid
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sub-arrangememd(Sy). In this case, the methods used here describe the representation of
&y on the kernel oB(n) in terms of sums of tensor products of the representaBaiB)
with itself.

Atthe same time, Theorem 1.3 (Theorem 3.3 of [7]) describes the representatipoiof
the homology ofC, (¢), wheret is a root of unity satisfying the conditions of the theorem:
one uses the exact sequence (3.14) as before. Equivalently, the theorem characterizes the
representation of the alternating grofip on the¢-eigenspace oH,.(F, C). One might
hope for an approach that simultaneously accounts for more of the structure of the (co)kernel
of Varchenko’s quantum bilinear form and of the homology of the arrangement’s Milnor
fibre.
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