ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

The Structure of Automorphism Groups of Cayley Graphs and Maps

Robert Jajcay

DOI: 10.1023/A:1008763602097

Abstract

The automorphism groups Aut( C( G, X)) and Aut( CM( G, X, p)) of a Cayley graph C( G, X) and a Cayley map CM( G, X, p) both contain an isomorphic copy of the underlying group G acting via left translations. In our paper, we show that both automorphism groups are rotary extensions of the group G by the stabilizer subgroup of the vertex 1 G . We use this description to derive necessary and sufficient conditions to be satisfied by a finite group in order to be the (full) automorphism group of a Cayley graph or map and classify all the finite groups that can be represented as the (full) automorphism group of some Cayley graph or map.

Pages: 73–84

Keywords: Cayley graph; Cayley map; automorphism group

Full Text: PDF

References

1. N. Biggs, “Cayley maps and symmetrical maps,” Proc. Camb. Phil. Soc. 72 (1972), 381-386.
2. N. Biggs and A.T. White, “Permutation groups and combinatorial structures,” Math. Soc. Lect. Notes, vol. 33, Cambridge Univ. Press, Cambridge, 1979.
3. C.D. Godsil, “GRR's for non-solvable groups,” Algebraic methods in graph theory, Vol. I., II. (Szeged, 1978), 221-239.
4. J. Gross and T. Tucker, Topological Graph Theory, John Wiley & Sons, New York, 1987.
5. W. Imrich and M.E. Watkins, “On graphical regular representations of cyclic extensions of groups,” Pac. J. Math. 55 (1974), 461-477.
6. R. Jajcay, “Automorphism groups of Cayley maps,” Journal of Comb. Theory Series B 59 (1993), 297-310.
7. R. Jajcay, “On a new product of groups,” Europ. J. Combinatorics 15 (1994), 251-252.
8. R. Jajcay, “Characterization and construction of Cayley graphs admitting regular Cayley maps,” Discrete Mathematics 158 (1996), 151-160.
9. R. Jajcay, “On a construction of infinite families of regular Cayley maps,” Combinatorica 18(2) (1998), 191-199.
10. L.D. James and G.A. Jones, “Regular orientable imbeddings of complete graphs,” Journal of Comb. Theory 39 (1985), 353-367.
11. G.A. Jones and D. Singerman, “Theory of maps on orientable surfaces,” Proc. London Math. Soc. 37(3) (1978), 273-307.
12. L.A. Nowitz and M.E. Watkins, “Graphical regular representations of non-abelian groups, I,” Canadian J. Math. 24 (1972), 993-1008.
13. L.A. Nowitz and M.E. Watkins, “Graphical regular representations of non-abelian groups, II,” Canadian J. Math. 24 (1972), 1009-1018.
14. L.V. Sabinin, “On the equivalence of categories of loops and homogeneous spaces,” Soviet Math. Dokl. 13(4) (1972), 970-974.
15. M. \check Skoviera and J. \check Sirá\check n, “Regular maps from Cayley graphs, Part I. Balanced Cayley maps,” Discrete Math. 109 (1992), 265-276.
16. M. \check Skoviera and J. \check Sirá\check n, “Regular maps from Cayley graphs II. Antibalanced Cayley maps,” Discrete Math. 124 (1994), 179-191.
17. A.T. White, Strongly Symmetric Maps, Graph Theory and Combinatorics, R.J. Wilson (Ed.), Pitman, London, 1979, 106-132.
18. H. Wielandt, Finite Permutation Groups, Academic Press, New York, 1964.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition