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Abstract. We investigate a connection between distance-regular graphs andUq(sl(2)), the quantum universal
enveloping algebra of the Lie algebrasl(2). Let0 be a distance-regular graph with diameterd ≥ 3 and valency
k ≥ 3, and assume0 is not isomorphic to thed-cube. Fix a vertexx of0, and letT = T (x) denote the Terwilliger
algebra of0 with respect tox. Fix any complex numberq 6∈ {0, 1,−1}. ThenT is generated by certain matrices
satisfying the defining relations ofUq(sl(2)) if and only if0 is bipartite and 2-homogeneous.
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1. Introduction

We investigate a connection between distance-regular graphs andUq(sl(2)), the quantum
universal enveloping algebra of the Lie algebrasl(2). It is well-known that there is a
“natural” sl(2) action on thed-cubes (see Proctor [9] or Go [4]). Here we describe the
distance-regular graphs with a similar naturalUq(sl(2)) action. We show that these graphs
are precisely the bipartite distance-regular graphs which are 2-homogeneous in the sense
of [7, 8], excluding thed-cubes. To state this precisely, we recall some definitions.

LetU (sl(2)) denote the unital associativeC-algebra generated byX−, X+, andZ subject
to the relations

Z X− − X−Z = 2X−, Z X+ − X+Z = −2X+, X−X+ − X+X− = Z. (1)

U (sl(2)) is called theuniversal enveloping algebra of sl(2). For any complex numberq
satisfying

q 6= 1, q 6= 0, q 6= −1, (2)

let Uq(sl(2)) denote the unital associativeC-algebra generated byX−, X+, Y, andY−1

subject to the relations

Y Y−1 = Y−1Y = 1, (3)

Y X− = q2X−Y, Y X+ = q−2X+Y, X−X+ − X+X− = Y − Y−1

q − q−1
. (4)
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Uq(sl(2)) is called thequantum universal enveloping algebra of sl(2). For more onUq(sl(2))
and its relation toU (sl(2)) see [5, 6].

Let 0= (X, R) denote a finite, undirected, connected graph without loops or multiple
edges and having vertex setX, edge setR, distance function∂, and diameterd. 0 is said to
bedistance-regularwhenever for all integers̀, i , j (0≤ `, i, j ≤ d) there exists a scalar
p`i j such that for allx, y ∈ X with ∂(x, y) = `, |{z ∈ X | ∂(x, z) = i, ∂(y, z) = j }| = p`i j .
Assume that0 is distance-regular. Setc0 = 0, ci = pi

1i−1 (1 ≤ i ≤ d), ai = pi
1i

(0 ≤ i ≤ d), bi = pi
1i+1 (0 ≤ i ≤ d − 1), andbd = 0. 0 is regular with valency

k = b0 = p0
11, andci + ai + bi = k (0 ≤ i ≤ d). 0 is bipartite precisely whenai = 0

(0≤ i ≤ d).
Let0= (X, R) denote a bipartite distance-regular graph.0 is said to be 2-homogeneous

whenever for all integersi (1 ≤ i ≤ d) there exists a scalarγi such that for allx, y,
z ∈ X with ∂(x, y) = i , ∂(x, z) = i , ∂(y, z) = 2, |{w ∈ X | ∂(x, w) = i − 1, ∂(y, w) =
1, ∂(z, w) = 1}| = γi . 0 may be 2-homogeneous despite the fact that some structure
constantγi is not uniquely determined: This occurs when there are nox, y, z ∈ X with
∂(x, y) = i , ∂(x, z) = i , ∂(y, z) = 2. It is known thatγd is not uniquely determined
when0 is 2-homogeneous [8]. Thed-cubeis the graph with vertex setX = {0, 1}d (the
d-tuples with entries in{0, 1}) such that two vertices are adjacent if and only if they differ in
precisely one coordinate. Thed-cube is a 2-homogeneous bipartite distance-regular graph
with γi = 1 (1 ≤ i ≤ d − 1). The 2-homogeneous bipartite distance-regular graphs have
been studied in [3, 8, 11].

Let MatX(C) denote theC-algebra of matrices with rows and columns indexed byX. Let
A ∈ MatX(C) denote the adjacency matrix of0. For the rest of this section fixx ∈ X. For
all i (0 ≤ i ≤ d), defineE∗i = E∗i (x) to be the diagonal matrix inMatX(C) such that for
all y ∈ X, E∗i has(y, y)-entry equal to 1 if∂(x, y) = i , and 0 otherwise. LetT = T (x)
denote the subalgebra ofMatX(C) generated byA, E∗0, E∗1, . . . , E∗d.

SetL = ∑d−1
i=0 E∗i AE∗i+1 and R= ∑d

i=1 E∗i AE∗i−1. Proctor [9] showed that if0 is iso-
morphic to thed-cube, then the matricesX− = L, X+ = R, andZ = ∑d

i=0(d − 2i )E∗i
satisfy the relations of (1) (see also Go [4]). We must slightly relax the form of these
matrices to admit aUq(sl(2)) structure. Specifically, we consider matrices of the form:

X− =
d−1∑
i=0

x−i E∗i AE∗i+1, X+ =
d∑

i=1

x+i E∗i AE∗i−1, Y =
d∑

i=0

yi E
∗
i , (5)

wherex−i (0 ≤ i ≤ d − 1), x+i (1 ≤ i ≤ d), andyi (0 ≤ i ≤ d) are arbitrary complex
scalars.Y is invertible if and only ifyi 6= 0 (0≤ i ≤ d), in which caseY−1 =∑d

i=0 y−1
i E∗i .

Theorem 1.1 Let0 = (X, R) denote a distance-regular graph with diameter d≥ 3 and
valency k≥ 3. Assume that0 is not isomorphic to the d-cube. Fix x∈ X, and write
E∗i = E∗i (x) (0≤ i ≤ d) andT = T (x). Let X−, X+, and Y be any matrices of the form
(5), and let q be any nonzero complex number. Then the following are equivalent.
(i) Y is invertible, X−, X+, Y, Y−1 generateT , and(2)–(4) hold.
(ii) 0 is bipartite and2-homogeneous, (q + q−1)2 = c2

2b−1
2 (k − 2)(c2 − 1)−1, and there
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existsε ∈ {1, −1} such that

yi = εqd−2i (0≤ i ≤ d),

x−i x+i+1 = εq−2i+1(qd + q2i )(qd + q2i+2)(qd + q2)−2 (0≤ i ≤ d − 1).

The condition (i) of Theorem 1.1 means that the Terwilliger algebraT is a homomorphic
image ofUq(sl(2)). The factor ofε appears in (ii) because the defining relations ofUq(sl(2))
are invariant under changing the signs of any two ofX−, X+, andY.

2. Background

Throughout this section, let0 = (X, R) denote a distance-regular graph with diameterd.
Let MatX(C) denote theC-algebra of matrices with rows and columns indexed byX. For
all i (0 ≤ i ≤ d), defineAi to be the matrix inMatX(C) such that for ally, z ∈ X the
(y, z)-entry of Ai is 1 if ∂(y, z) = i and 0 otherwise. Observe thatA0 = I (the identity
matrix), A := A1 is the adjacency matrix of0, and

∑d
i=0 Ai = J (the all 1’s matrix).

Observe thatAi Aj = Aj Ai =
∑d

`=0 p`ij A` (0 ≤ i, j ≤ d). It follows that the linear span
M of A0, A1, . . . , Ad is a commutative subalgebra ofMatX(C). The algebraM is called
theBose-Mesner algebraof 0. It is known thatM is generated byA. See [1, 2] for more
on distance-regular graphs and their Bose-Mesner algebras.

For the rest of this section fixx ∈ X. For all i (0 ≤ i ≤ d), defineE∗i = E∗i (x)
to be the diagonal matrix inMatX(C) such that for ally ∈ X, the (y, y)-entry of E∗i
is E∗i (y, y) = Ai (x, y). Observe thatE∗i E∗j = δij E∗i (0 ≤ i, j ≤ d) and

∑d
i=0 E∗i = I .

It follows that the linear spanM∗ =M∗(x) of E∗0, E∗1, . . . , E∗d is a commutative subalgebra
of MatX(C). The algebraM∗ is called thedual Bose-Mesner algebraof0 with respect tox.
Let T = T (x) denote the subalgebra ofMatX(C) generated byM ∪M∗. The algebraT
is called theTerwilliger algebraof 0 with respect tox. See [10] for more on Terwilliger
algebras.

Fix `, i , j (0 ≤ `, i, j ≤ d). Observe that for ally, z ∈ X, the(y, z)-entry of E∗i A`E∗j
is 0 or 1, and it is equal to 1 if and only if∂(x, y) = i , ∂(y, z) = ` and∂(x, z) = j . Thus,
considering the positions of the nonzero entries,

{E∗i A`E
∗
j 6= 0 | 0≤ `, i, j ≤ d} is linearly independent, (6)

E∗i A`E
∗
j 6= 0 if and only if p`i j 6= 0. (7)

Observe thatp`i j = 0 if one of`, i , j is greater than the sum of the other two, andp`ij 6= 0
if one of`, i , j is equal to the sum of the other two. It follows thatE∗i AE∗j = E∗j AE∗i = 0
whenever|i − j | > 1. HenceA =∑d

i=0

∑d
j=0 E∗i AE∗j = L + F + R, where

L =
d−1∑
i=0

E∗i AE∗i+1, F =
d∑

i=0

E∗i AE∗i , R=
d∑

i=1

E∗i AE∗i−1.

Observe thatE∗i AE∗i = 0 if and only ifai = 0, so0 is bipartite if and only ifF = 0.
We wish to emphasize the following combinatorial interpretation ofL and R. For all

i (0 ≤ i ≤ d) and for all y ∈ X, let 0i (y) = {z ∈ X | ∂(y, z) = i }. Identify each



28 CURTIN AND NOMURA

vertex with its characteristic column vector, and note thatMatX(C) acts on the vertices by
left multiplication. For alli (0 ≤ i ≤ d) and all y ∈ 0i (x), Ly = ∑

w∈01(y)∩0i−1(x)
w,

Ry = ∑
w∈01(y)∩0i+1(x)

w, andE∗j y = δij y (0 ≤ j ≤ d). Fix i (0 ≤ i ≤ d). For all y,
z ∈ 0i (x), set

β(y, z) = |01(y) ∩ 01(z) ∩ 0i+1(x)|, γ (y, z) = |01(y) ∩ 01(z) ∩ 0i−1(x)|. (8)

Observe that for ally, z ∈ 0i (x),

(LRE∗i )(y, z) = β(y, z), (RLE∗i )(y, z) = γ (y, z). (9)

In particular,(LRE∗i )(y, y)= bi , (RLE∗i )(y, y)= ci , and when∂(y, z)>2, (LRE∗i )(y, z)=
(RLE∗i )(y, z)= 0.

3. Construction of U(sl(2)) andUq(sl(2)) structures

In this section, we construct aU (sl(2)) structure on thed-cubes and aUq(sl(2)) structure on
the remaining 2-homogeneous bipartite distance-regular graphs. Throughout this section,
let 0 = (X, R) denote a distance-regular graph with diameterd ≥ 3 and valencyk ≥ 3.
Fix x ∈ X, and writeE∗i = E∗i (x) (0≤ i ≤ d),M∗ =M∗(x), T = T (x).

Lemma 3.1 Let z0, z1, . . . , zd denote distinct complex scalars. Then Z= ∑d
i=0 zi E∗i

generatesM∗.

Proof: Observe thatZ j = ∑d
i=0 zj

i E∗i (0 ≤ j ≤ d), where the j = 0 equation is
interpreted asI = ∑d

i=0 E∗i . Viewing E∗0, E∗1, . . . , E∗d as unknowns, this is a system
of linear equations with Vandermonde (hence invertible) coefficient matrix. ThusE∗i ∈
span{Z j | 0≤ j ≤ d} (0≤ i ≤ d), soZ generatesM∗. 2

Lemma 3.2[4, 9] Suppose0 is isomorphic to the d-cube. Then X− = L, X+ = R and
Z =∑d

i=0(d − 2i )E∗i generateT and satisfy(1).

Proof: Observe thatZ generatesM∗ by Lemma 3.1. Observe thatF = 0 since0 is
bipartite, soA = L + R. A generatesM, soL, R, andZ generateT .

The relationsZ L − L Z = 2L and Z R− RZ = −2R are easily verified using the
definitions ofL, R, andZ and the fact thatE∗i E∗j = δij E∗i (0 ≤ i, j ≤ d). It remains to
verify LR− RL= Z. Since

∑d
i=0 E∗i = I , it is enough to show that for alli (0≤ i ≤ d)

LRE∗i − RLE∗i = (d − 2i )E∗i . (10)

Fix i (0 ≤ i ≤ d), and picky, z ∈ 0i (x). Let r , s, t denote the(y, z)-entries ofLRE∗i ,
RLE∗i , andE∗i , respectively. From (8), (9) we find the following. Suppose∂(y, z) > 2.
Thenr = s = t = 0. Suppose∂(y, z) = 2. Thenr = c2 − γi = 1, s = γi = 1, and
t = 0. The case∂(y, z) = 1 does not occur sinceai = 0. Finally supposey = z. Then
r = bi = d − i , s= ci = i , andt = 1. In all casesr − s= (d − 2i )t , so (10) holds. 2



QUANTUM ENVELOPING ALGEBRA 29

Theorem 3.3([3, Theorem 35]) Suppose0 is not isomorphic to the d-cube. Then0 is
bipartite and2-homogeneous if and only if there exists a complex scalar q6∈ {0, 1,−1}
such that

ci = ei [ i ], bi = ei [ d − i ] (0≤ i ≤ d), (11)

where

ei = qi−1(qd + q2)(qd + q2i )−1, [ i ] = (qi − q−i )(q − q−1)−1 (12)

for all integers i . Suppose the above equivalent conditions hold. Then

γi = e2ei e
−1
i+1 (1≤ i ≤ d − 1). (13)

Corollary 3.4 ([3, Corollary 36]) Suppose0 is bipartite and2-homogeneous, but not
isomorphic to the d-cube. Then any complex scalar q6∈ {0, 1,−1} satisfying(11) and(12)
is real and

(q + q−1)2 = c2
2b−1

2 (b0− 2)(c2− 1)−1. (14)

The set ofq satisfying (14) is of the form{λ, λ−1, −λ, −λ−1} for some real number
λ > 1. Whend is even, all suchq satisfy (11). Whend is odd, onlyq ∈ {λ, λ−1} satisfy (11)
sinceq + q−1 = c2γ

−1
r > 0, wherer = (d − 1)/2 (see [3, Corollary 36]).

Lemma 3.5 Suppose0 is bipartite and2-homogeneous but not isomorphic to the d-cube.
Let q 6∈ {0, 1,−1} be any complex scalar such that(11), (12) hold, and let ei (0≤ i ≤ d)
be as in(12). Then the matrices

X− =
d−1∑
j=0

e−1
j E∗j AE∗j+1, X+ =

d∑
j=1

e−1
j E∗j AE∗j−1, Y =

d∑
j=0

qd−2 j E∗j

generateT and satisfy(4).

Proof: Observe thatY generatesM∗ by Lemma 3.1. NowL = (
∑d−1

i=0 ei E∗i )X
− and

R= (∑d
i=1 ei E∗i )X

+ are in the algebra generated byY, X− andX+. Observe thatF = 0
since0 is bipartite, soA = L + R. A generatesM, soX−, X+, andY generateT .

The relationsY X− = q2X−Y andY X+ = q−2X+Y are easily verified using the defini-
tions ofX−, X+, andY and the fact thatE∗i E∗j = δij E∗i (0≤ i, j ≤ d). It remains to verify
X−X+ − X+X− = (Y−Y−1)/(q−q−1). Observe that for alli (0≤ i ≤ d), X−X+E∗i =
e−1

i e−1
i+1LRE∗i , X+X−E∗i = e−1

i−1e−1
i RLE∗i , and(Y − Y−1)/(q − q−1)E∗i = [ d − 2i ]E∗i .

Thus, sinceI =∑d
i=0 E∗i , it is enough to show that for alli (0≤ i ≤ d)

e−1
i e−1

i+1LRE∗i − e−1
i−1e−1

i RLE∗i = [ d − 2i ]E∗i . (15)
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Fix i (0≤ i ≤ d), and picky, z ∈ 0i (x). Let r , s, andt denote the(y, z)-entries ofLRE∗i ,
RLE∗i , andE∗i , respectively. From (8), (9) we find the following. Suppose∂(y, z) > 2.
Thenr = s = t = 0. Suppose∂(y, z) = 2. Then by the definition of 2-homogeneous,
r = c2 − γi , s = γi , andt = 0. It can be verified by a direct computation using (11)–(13)
thate−1

i e−1
i+1(c2 − γi )− e−1

i−1e−1
i γi = 0. The case∂(y, z) = 1 does not occur sinceai = 0.

Finally supposey = z. Thenr = bi , s = ci , andt = 1. It can be verified by a direct
(albeit long) computation using (11), (12) thate−1

i e−1
i+1bi − e−1

i−1e−1
i ci = [ d − 2i ]. In all

casese−1
i e−1

i+1r − e−1
i−1e−1

i s= [ d − 2i ]t , so (15) holds. 2

TheU (sl(2)) structure on thed-cube is very similar to theUq(sl(2)) structure on the
remaining 2-homogeneous bipartite distance-regular graphs. In the sequel, we exploit this
similarity to prove the following result and Theorem 1.1 simultaneously.

Theorem 3.6 Let0 = (X, R) denote a distance-regular graph with diameter d≥ 3 and
valency k≥ 3. Fix x ∈ X, and write E∗i = E∗i (x) (0 ≤ i ≤ d), T = T (x). Let X−, X+,
and Z be of the form X− =∑d−1

i=0 x−i E∗i AE∗i+1, X+ =∑d
i=1 x+i E∗i AE∗i−1, Z =∑d

i=0 zi E∗i
for some complex scalars x−i (0 ≤ i ≤ d − 1), x+i (1 ≤ i ≤ d), zi (0 ≤ i ≤ d). Then the
following are equivalent.
(i) X−, X+, and Z generateT and satisfy(1).

(ii) 0 is isomorphic to the d-cube, and

x−i x+i+1 = 1 (0≤ i ≤ d − 1),

zi = d − 2i (0≤ i ≤ d).

As in Theorem 1.1, The condition (i) of Theorem 3.6 means that the Terwilliger algebraT
is a homomorphic image ofU (sl(2)).

4. Combinatorial structure

We show that theU (sl(2)) andUq(sl(2)) structures of Lemmas 3.2 and 3.5 can only occur
on a 2-homogeneous bipartite distance-regular graph. Specifically, we show the following.

Theorem 4.1 Let0 = (X, R) denote a distance-regular graph with diameter d≥ 3 and
valency k≥ 3. Fix x ∈ X, and write E∗i = E∗i (x) (0 ≤ i ≤ d), T = T (x). Suppose
that T is generated by{X−, X+} ∪M∗ and that X−X+ − X+X− = Z, where X− and
X+ are of the form(5) and Z is of the form Z= ∑d

i=0 zi E∗i for some complex scalars zi

(0≤ i ≤ d). Then0 is bipartite and2-homogeneous.

The hypotheses of this result are met by both Theorems 1.1(i) and 3.6(i). Throughout
this section, we adopt the notation and assumptions of Theorem 4.1 as we prove this result
in a series of lemmas. The first step in our proof of Theorem 4.1 is to show thatai = 0
(1≤ i ≤ d − 1). To do so, we consider certain matrices in the left idealT E∗1 of T :

Ki = E∗i JE∗1 (0≤ i ≤ d),

N0 = 0, Ni = E∗i Ai−1E∗1 (1≤ i ≤ d).
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Lemma 4.2 LK0 = 0, LKi = bi−1Ki−1 (1 ≤ i ≤ d), RKi = ci+1Ki+1 (0 ≤ i ≤ d − 1),
RKd = 0, and X−K0 = 0, X−Ki = x−i−1bi−1Ki−1 (1 ≤ i ≤ d), X+Ki = x+i+1ci+1Ki+1

(0≤ i ≤ d − 1), X+Kd = 0.

Proof: Clearly LK0 = LE∗0K0 = 0. Fix i (1 ≤ i ≤ d). Fix y, z ∈ X, and letr ands
denote the(y, z)-entries ofLKi and Ki−1, respectively. Observe thatr = s = 0 unless
y ∈ 0i−1(x) andz ∈ 01(x), so supposey ∈ 0i−1(x) andz ∈ 01(x). Then

r = (E∗i−1AE∗i JE∗1)(y, z) =
∑
p∈X

E∗i−1(y, y)A(y, p)E∗i (p, p)J(p, z)E∗1(z, z)

=
∑
p∈X

A(y, p)E∗i (p, p) = |01(y) ∩ 0i (x)| = bi−1,

s = (E∗i−1JE∗1)(y, z) = E∗i−1(y, y)J(y, z)E∗1(z, z) = 1.

In all casesr = bi−1s, soLKi = bi−1Ki−1. The equations forRKi are proved similarly.
The equations involvingX− and X+ follow since X−E∗i = x−i−1LE∗i (1 ≤ i ≤ d) and
X+E∗i = x+i+1RE∗i (0≤ i ≤ d − 1). 2

Lemma 4.3 x−i 6= 0 and x+i+1 6= 0 (0 ≤ i ≤ d − 1). In particular, si := x−i x+i+1 6= 0
(0≤ i ≤ d − 1).

Proof: Supposex−i = 0 for somei (0 ≤ i ≤ d − 1), and setU = span{Kh | i + 1 ≤ h
≤ d}. ThenU is closed under left multiplication by the generatorsX−, X+, andM∗ of T
by Lemma 4.2 and construction. HenceU is a left ideal ofT . However,LKi+1 = bi Ki 6= 0
andKi 6∈ U , a contradiction. Hencex−i 6= 0 (0 ≤ i ≤ d − 1). A similar argument shows
thatx+i+1 6= 0 (0≤ i ≤ d − 1). 2

Lemma 4.4 X+Ni = x+i+1ci Ni+1 (1≤ i ≤ d − 1) and X+Nd = 0.

Proof: Fix i (1 ≤ i ≤ d − 1). Picky, z ∈ X, and letr ands denote the(y, z)-entries of
X+Ni andNi+1, respectively. Observe thatr = s = 0 unlessy ∈ 0i+1(x) andz ∈ 01(x),
so supposey ∈ 0i+1(x) andz ∈ 01(x). Then

r = x+i+1(E
∗
i+1AE∗i Ai−1E∗1)(y, z)

= x+i+1

∑
p∈X

E∗i+1(y, y)A(y, p)E∗i (p, p)Ai−1(p, z)E
∗
1(z, z)

= x+i+1|01(y) ∩ 0i (x) ∩ 0i−1(z)|,
s = (E∗i+1Ai E

∗
1)(y, z) = Ai (y, z).

Observe thatr = s = 0 when∂(y, z) 6= i , andr = x+i+1ci , s = 1 when∂(y, z) = i . In all
casesr = x+i+1ci s, soX+Ni = x+i+1ci Ni+1. ClearlyX+Nd = X+E∗d Nd = 0. 2

Lemma 4.5 X−Ni ∈ span{Ni−1, Ki−1} (1≤ i ≤ d).
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Proof: It is easy to show thatX−N1 = x−0 K0 by entry-wise computation. We proceed
by induction: Fixi (2 ≤ i ≤ d), and assumeX−Ni−1 = gNi−2 + hKi−2 for some scalars
g, h. We compute

X−X+Ni−1 = X−(x+i ci−1Ni ) = x+i ci−1(X
−Ni ),

X+X−Ni−1 = X+(gNi−2+ hKi−2) = gx+i−1ci−2Ni−1+ hx+i−1ci−1Ki−1,

Z Ni−1 = zi−1Ni−1.

Now we may apply the relationX−X+ − X+X− = Z to Ni−1 and solve to findX−Ni ∈
span{Ni−1, Ki−1} sincex+i ci−1 6= 0. The result follows by induction. 2

Lemma 4.6 ai = 0 (1≤ i ≤ d − 1).

Proof: By Lemmas 4.2–4.5 and construction,U = span{Ki | 0≤ i ≤ d}+ span{Ni | 1≤
i ≤ d} is a left ideal ofT . In fact, U = TE∗1 since E∗1 = N1. Now fix i (1 ≤ i ≤
d − 1). Then E∗i TE∗1 = E∗i U = span{E∗i Ki , E∗i Ni }, so dimC E∗i TE∗1 ≤ 2. Observe
that the subspaceE∗i TE∗1 containsE∗i Aj E∗1 ( j = i − 1, i, i + 1), andE∗i Ai−1E∗1 6= 0,
E∗i Ai+1E∗1 6= 0 by (7). If E∗i Ai E∗1 6= 0, then these three matrices are linearly independent
by (6), contradicting dimC E∗i TE∗1 ≤ 2. ThusE∗i Ai E∗1 = 0, soai = 0 by (7). 2

We show thatad = 0 by showing that there is a unique vertex at distanced from x.

Lemma 4.7 Set si = x−i x+i+1 (0 ≤ i ≤ d − 1) and s−1 = sd = 0. Then for all i
(0≤ i ≤ d),

si LRE∗i − si−1RLE∗i = zi E
∗
i , (16)

siβ(y, z)− si−1γ (y, z) = δyzzi (y, z ∈ 0i (x)), (17)

whereβ(y, z)andγ (y, z)are as in(8). In particular, β(y, z) = 0 if and only if γ (y, z) = 0
for any distinct y, z ∈ 0i (x).

Proof: Fix i (0 ≤ i ≤ d). Apply the relationX−X+ − X+X− = Z to E∗i to get (16).
Fix y, z ∈ 0i (x). Computing the(y, z)-entry of (16) gives (17) by (9). It is clear from (17)
and Lemma 4.3 thatβ(y, z) = 0 if and only ifγ (y, z) = 0 wheny, z are distinct. 2

Lemma 4.8 |0d(x)| = 1 and0 is bipartite.

Proof: By a down-up walkof length 2̀ (1 ≤ ` ≤ d), we mean a sequence of vertices
v0, v1, . . . , v2` such thatvi andvi+1 are adjacent(0 ≤ i ≤ 2`− 1), vi , v2`−i ∈ 0d−i (x)
(0 ≤ i ≤ `), andv0 6= v2`. Assume|0d(x)| ≥ 2. For all distincty, z ∈ 0d(x) there exists
a down-up walk of length 2d (takingv0 = y, vd = x, v2d = z), but there is no down-up
walk of length 2 since|0d−1(x) ∩ 01(y) ∩ 01(z)| = 0 by Lemma 4.7.

Fix a down-up walkv0, v1, . . . , v2` of minimal length 2̀. By minimality of the length of
this down-up walk,v`−1 andv`+1 ∈ 0d−`+1(x)are distinct. Letγ (v`−1, v`+1),β(v`−1, v`+1)
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be as in (8). Observe thatγ (v`−1, v`+1) > 0, soβ(v`−1, v`+1) > 0 by Lemma 4.7. Fix
w ∈ 0d−`+2(x) ∩ 01(v`−1) ∩ 01(v`+1). Fix a pathwd−`+2 = w,wd−`+3, . . . ,wd such that
wi ∈ 0i (x) (such a path exists sincebi > 0 (0 ≤ i ≤ d − 1)). Supposewd 6= v0. Then
v0, . . . , v`−1, wd−`+2, . . . , wd is a down-up path of length 2` − 2, contradicting the
minimality of length 2̀ . Thuswd = v0. Similarly, v2` = wd, contradictingv0 6= v2`. It
follows that|0d(x)| = 1, soad = 0. Hence0 is bipartite in light of Lemma 4.6. 2

Lemma 4.9 0 is 2-homogeneous.

Proof: By [3, Theorem 16] it is enough to show that for alli (1 ≤ i ≤ d) and for ally,
z ∈ 0i (x) with ∂(y, z) = 2, the numberγ (y, z) of (8) is independent of the choice ofy, z.

Fix i (1 ≤ i ≤ d − 1), and pick anyy, z ∈ 0i (x) with ∂(y, z)= 2. By Lemma 4.8,
0 is bipartite, soβ(y, z) + γ (y, z) = c2. By (17), siβ(y, z) − si−1γ (y, z) = 0. Thus
(si + si−1)γ (y, z) = c2si . Sincesi 6= 0 by Lemma 4.3, the right side is nonzero and hence
the left side is also nonzero. Thus we may solve this equation forγ (y, z) independent ofy
andz. Observe that wheni = d there is nothing to show by Lemma 4.8. 2

5. Proof of Theorem 1.1

In this section we prove Theorems 1.1 and 3.6. We continue with the notation and assump-
tions of Theorem 4.1 throughout this section. We begin by considering the uniqueness of
theU (sl(2)) andUq(sl(2)) structures.

Lemma 5.1 Set si = x−i x+i+1 (0 ≤ i ≤ d − 1). Then the scalars si (0 ≤ i ≤ d − 1) and
zi (0≤ i ≤ d) are uniquely determined up to the same scalar multiple.

Proof: Observe that for alli (0 ≤ i ≤ d) and for all y ∈ 0i (x), β(y, y) = bi and
γ (y, y) = ci , whereβ(y, y) andγ (y, y) are as in (8). Thus applying (17) withy = z gives

s0 = z0b−1
0 , si bi − si−1ci = zi (1≤ i ≤ d − 1), sd−1cd = −zd. (18)

Applying the relationX−X+ − X+X− = Z to Ki (1 ≤ i ≤ d − 1) and simplifying with
Lemma 4.2 gives

si bi ci+1− si−1bi−1ci = zi (1≤ i ≤ d − 1). (19)

Fix i (1≤ i ≤ d − 1). Subtracting (18) from (19) givessi bi (ci+1− 1) = si−1ci (bi−1− 1).
Sincesi , si−1 are nonzero by Lemma 4.3,bi−1 = 1 if and only ifci+1 = 1. Supposebi−1 =
ci+1 = 1. Then 1≤ bi ≤ bi−1 = 1 and 1≤ ci ≤ ci+1 = 1 since theci form a nondecreasing
sequence and thebi form a nonincreasing sequence by [2, Proposition 4.1.6]. Thusk = ci +
bi = 2, a contradiction. Thus we may solve forsi assi = ci (bi−1− 1)si−1/(bi (ci+1− 1)).
In particular, sinces0 = z0b−1

0 , the numberssj (0 ≤ j ≤ d − 1) are determined by the
intersection numbers andz0. The numberszj (1 ≤ j ≤ d) are determined by (18). In
these formulasz0 is a factor ofsj (0 ≤ j ≤ d − 1) andzj (1 ≤ j ≤ d), so the result
follows. 2
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Lemma 5.2 Suppose that0 is isomorphic to the d-cube. Then, after multiplying X+ and
Z by some same scalar, Z =∑d

i=0(d − 2i )E∗i and X−, X+, Z satisfy(1).

Proof: By (16),si LRE∗i − si−1RLE∗i = zi E∗i (0 ≤ i ≤ d), and by (10),LRE∗i − RLE∗i =
(d − 2i )E∗i (0 ≤ i ≤ d). One possibility issi = 1 (0 ≤ i ≤ d − 1), and in this case
zi = d − 2i (0 ≤ i ≤ d). Thus by Lemma 5.1, there exists a scalarα such thatαsi = 1
(0≤ i ≤ d − 1) andαzi = d − 2i (0≤ i ≤ d). Hence, after replacingX+ with αX+ and
Z with αZ, we find thatZ =∑d

i=0(d − 2i )E∗i andX−, X+, andZ satisfy (1). 2

Lemma 5.3 Suppose0 is not isomorphic to the d-cube. Then, after multiplying X+ and Z
by some same scalar, Z =∑d

i=0 [ d − 2i ]E∗i and X−, X+, Y =∑d
i=0 qd−2i E∗i satisfy(4)

for some real number q6∈ {0, 1,−1}.

Proof: By (16), si LRE∗i − si−1RLE∗i = zi E∗i (0 ≤ i ≤ d), and by (15),e−1
i e−1

i+1LRE∗i −
e−1

i−1e−1
i RLE∗i = [ d − 2i ]E∗i (0 ≤ i ≤ d), whereej and [ j ] are as in (12) for all

integersj . One possibility issi = e−1
i e−1

i+1 (0≤ i ≤ d − 1), and in this casezi = [ d − 2i ]
(0 ≤ i ≤ d). Thus by Lemma 5.1, there exists a scalarα such thatαsi = e−1

i e−1
i+1

(0 ≤ i ≤ d − 1) andαzi = [ d − 2i ] (0 ≤ i ≤ d). HenceαZ =∑d
i=0 [ d − 2i ]E∗i , and,

after replacingX+ with αX+, we find thatX−, X+, andY =∑d
i=0 qd−2i E∗i satisfy (4).

2

Lemma 5.4 The conclusions of Lemma5.3 do not hold when0 is isomorphic to the
d-cube, and the conclusions of Lemma5.2 do not hold when0 is not isomorphic to the
d-cube.

Proof: If this is not the case, then arguing as in Lemmas 5.2 and 5.3, we find that there
is a scalarα such thatα(d − 2i ) = [ d − 2i ] (0 ≤ i ≤ d), where [d − 2i ] is as in (12)
for some real numberq 6∈ {0, 1,−1}. Whend is odd, this equation ati = (d − 1)/2
and i = (d − 3)/2 routinely impliesq ∈ {1, −1}, and whend is even, this equation at
i = d/2− 1 andi = d/2− 2 routinely impliesq ∈ {1, −1}, a contradiction. 2

We are ready to prove Theorems 1.1 and 3.6.

Proof of Theorem 3.6:

(i)⇒(ii): Observe that0 is isomorphic to thed-cube by Theorem 4.1 and Lemma 5.4.
Applying the relationZX− X−Z = 2X− to Ki (1 ≤ i ≤ d) and simplifying with

Lemma 4.2, we find thatzi−1x−i−1bi−1Ki−1−zi x
−
i−1bi−1Ki−1 = 2x−i−1bi−1Ki−1 (1≤ i ≤

d). Thuszi = zi−1−2 (1≤ i ≤ d), sozi = β+d−2i (0≤ i ≤ d), whereβ = z0−d.
By Lemma 5.2, there exists a scalarα such thatαzi = d − 2i (0 ≤ i ≤ d). Comparing
these formulas forzi , we find thatα = 1 andβ = 0. It follows from Lemma 5.2 that
zi = d − 2i (0≤ i ≤ d) andsi = 1 (0≤ i ≤ d − 1).

(ii)⇒(i): The relations are verified exactly as in Lemma 3.2. We may argue as in Lemma
3.5 to show that these matrices generateT . 2
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Proof of Theorem 1.1:

(i)⇒(ii): 0 is bipartite and 2-homogeneous by Theorem 4.1. Note that it is not isomorphic
to thed-cube by assumption. We apply our results toUp(sl(2)) and useq to denote the
parameter of Theorem 3.3 while showing that the formulas for(p+ p−1)2 andx−i x+i+1
hold.

Applying the relationYX− = p2X−Y to Ki (1≤ i ≤ d) and simplifying with Lemma
4.2, we find thatyi−1x−i−1bi−1Ki−1 = p2yi x

−
i−1bi−1Ki−1 (1 ≤ i ≤ d). Thus yi =

yi−1 p−2 (1 ≤ i ≤ d), soyi = βpd−2i (0 ≤ i ≤ d), whereβ = y0 p−d. By Lemma 5.3,
there exists a scalarα such thatα(yi − y−1

i )(p− p−1)−1= (qd−2i −q−d+2i )(q−q−1)−1

(0≤ i ≤ d). Combining these formulas,

α(βpd−2i − β−1 p−d+2i )(p− p−1)−1

= (qd−2i − q−d+2i )(q − q−1)−1 (0≤ i ≤ d). (20)

Supposed is odd. Then (20) ati = (d−1)/2 andi = (d+1)/2 routinely implies that
α = β ∈ {1, −1}. Now (20) ati = (d−3)/2 givesp2+ p−2 = q2+q−2. Supposed is
even. Then (20) ati = d/2 routinely implies thatβ ∈ {1, −1}. Now (20) ati = d/2−1
andi = d/2− 2 routinely implies thatα = β and p2+ p−2 = q2+ q−2. In both cases
(p+ p−1)2 = (q + q−1)2, so the formula for(p+ p−1)2 follows from Corollary 3.4.
The formula forx−i x+i+1 follows from Lemma 5.3 (withε = α).

(ii)⇒(i): Identical to Lemma 3.5 since the expression forx−i x+i+1 in (ii) equalsεe−1
i e−1

i+1
(0≤ i ≤ d − 1). 2

6. Remarks

The 2-homogeneous bipartite distance-regular graphs are essentially known.

Theorem 6.1[8, 11] Let0 = (X, R) denote distance-regular graph with diameter d≥ 3
and valency k≥ 3, and assume that0 is not isomorphic to the d-cube. Then0 is bipartite
and2-homogeneous if and only if it is one of the following:
(i) the complement of the2× (k+ 1)-grid;

(ii) a Hadamard graph of order4γ for some positive integerγ ;
(iii) a bipartite distance-regular graph with diameter5 and intersection array

{b0, b1, . . . ,b4; c1, c2, . . . , c4} = {k, k− 1, k− µ,µ,1; 1, µ, k− µ, k− 1, k},
where k= γ (γ 2+ 3γ + 1), µ = γ (γ + 1) for some integerγ ≥ 2.

Whenγ = 2, (iii) is uniquely realized by the antipodal 2-cover of the Higman-Sims graph.
No examples of (iii) withγ ≥ 3 are known.

We present some examples of distance-regular graphs related toU (sl(2)) andUq(sl(2))
which do not satisfy hypotheses of Theorem 1.1.

Let 0= (X, R) denote the 2d-cycle (d ≥ 2). Fix x ∈ X, and writeE∗i = E∗i (x) (0 ≤
i ≤ d) andT = T (x). Observe that0 is vacuously 2-homogeneous. Letq be a primitive
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2dth root of unity, and setX− = ∑d−1
i=0 [d − i ]E∗i AE∗i+1, X+ = ∑d

i=1[i ]E∗i AE∗i−1, and
Y = ∑d

i=0 qd−2i E∗i . Then X−, X+, andY satisfy (4). However, these matrices do not
generateT . The 4-cycle is exceptional. In addition to theU (sl(2)) structure of Theorem
3.6, the 4-cycle has theUq(sl(2)) structure of Theorem 1.1 for any non-zero complex
numberq such thatq4 6= 1.

Let 0 = (X, R) denote the Hamming graphH(d, n), n ≥ 3. Fix x ∈ X, and write
E∗i = E∗i (x) (0 ≤ i ≤ d) andT = T (x). By [10, p. 202],X− = L, X+ = R, and
Z = LR− RL satisfy (1). However, these matrices do not generateT andZ 6∈M∗.

It is hoped that some further light will be shed upon the Q-polynomial distance-regular
graphs through our work on the 2-homogeneous bipartite distance-regular graphs. Thus in
a future paper we will relate the algebraic properties ofT to those ofUq(sl(2)).
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