General Form of Non-Symmetric Spin Models

TAKUYA IKUTA ikuta@koin.or.jp
Kobe Gakuin Women's College, Hayashiyama, Nagata-ku, Kobe, 653-0861 Japan
KAZUMASA NOMURA \quad nomura@tmd.ac.jp College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Kohnodai, Ichikawa, 272-0827 Japan

Received August 20, 1998; Revised October 14, 1998

Abstract

A spin model (for link invariants) is a square matrix W with non-zero complex entries which satisfies certain axioms. Recently (Jaeger and Nomura, J. Alg. Combin. 10 (1999), 241-278) it was shown that ${ }^{t} W W^{-1}$ is a permutation matrix (the order of this permutation matrix is called the "index" of W), and a general form was given for spin models of index 2. In the present paper, we generalize this general form to an arbitrary index m. In particular, we give a simple form of W when m is a prime number.

Keywords: spin model, association scheme, Bose-Mesner algebra

1. Introduction

Spin models were introduced by Vaughan Jones [7] to construct invariants of knots and links. A spin model is essentially a square matrix W with nonzero entries which satisfies two conditions (type II and type III conditions). In his definition of a spin model, Jones considered only symmetric matrices. It was generalized to non-symmetric case by Kawagoe-Munemasa-Watatani [8].

Recently, François Jaeger and the second author [6] introduced the notion of "index" of a spin model. For every spin model W, the transpose ${ }^{t} W$ is obtained from W by a permutation of rows. Let σ denote the corresponding permutation of $X=\{1, \ldots, n\}$ (n is the size of W). Then the index m is the order of σ. In [6], it was shown that X is partitioned into m subsets $X_{0}, X_{1}, \ldots, X_{m-1}$ such that $W(x, y)=\eta^{i-j} W(y, x)$ holds for all $x \in X_{i}$, $y \in X_{j}$. Moreover, the case of $m=2$ was deeply investigated, and a general form of spin models of index 2 was given.
In the present paper, we investigate the structure of spin models of an arbitrary index m. In Section 4, we show that W is decomposed into blocks $W_{i j}$, and $W_{i j}$ splits into Kronecker product of two matrices $S_{i j}$ and $T_{i j}$ (Proposition 4.3). In Section 5, we give conditions on $T_{i j}$ (Propositions 5.1 and 5.5). In Section 6, we apply this general form to some special cases (Propositions 6.1 and 6.2). In particular, we give a simple form of W when the index m is a prime number (Corollary 6.3).

2. Preliminaries

In this section, we give some basic materials concerning spin models and association schemes. For more details the reader can refer to [4-7].

Let X be a finite non-empty set with n elements. We denote by $\operatorname{Mat}_{X}(\mathbf{C})$ the set of square matrices with complex entries whose rows and columns are indexed by X. For $W \in \operatorname{Mat}_{X}(\mathbf{C})$ and $x, y \in X$, the (x, y)-entry of W is denoted by $W(x, y)$.
A type II matrix on X is a matrix $W \in \operatorname{Mat}_{X}(\mathbf{C})$ with nonzero entries which satisfies the type II condition:

$$
\begin{equation*}
\sum_{x \in X} \frac{W(a, x)}{W(b, x)}=n \delta_{a, b} \quad(\text { for all } a, b \in X) \tag{1}
\end{equation*}
$$

Let $W^{-} \in \operatorname{Mat}_{X}(\mathbf{C})$ be defined by $W^{-}(x, y)=W(y, x)^{-1}$. Then type II condition is written as $W W^{-}=n I$ (I denotes the identity matrix). Hence, if W is a type II matrix, then W is non-singular with $W^{-1}=n^{-1} W^{-}$. It is clear that W^{-1} and ${ }^{t} W$ are also type II matrices.

A type II matrix W is called a spin model on X if W satisfies type III condition:

$$
\begin{equation*}
\sum_{x \in X} \frac{W(a, x) W(b, x)}{W(c, x)}=D \frac{W(a, b)}{W(a, c) W(c, b)} \quad(\text { for all } a, b, c \in X) \tag{2}
\end{equation*}
$$

for some nonzero complex number D. The number D is called the loop variable of W. Setting $b=c$ in (2), $\sum_{x \in X} W(a, x)=D W(b, b)^{-1}$ holds, so that the diagonal entries $W(b, b)$ is a constant, which is called the modulus of W.

For a spin model W with loop variable D, any nonzero scalar multiple λW is a spin model with loop variable $\lambda^{2} D$. Usually W is normalized so that $D^{2}=n$, but we allow any nonzero value of D in this paper to simplify our arguments.
Observe that, for any spin models W_{i} on X_{i} with loop variable $D_{i}(i=1,2)$, their tensor (Kronecker) product $W_{1} \otimes W_{2}$ is a spin model with loop variable $D=D_{1} D_{2}$. Conversely, it is not difficult to show that, if $W_{1} \otimes W_{2}$ and W_{1} are spin models, then W_{2} must be a spin model.
A (class d) association scheme on X is a partition of $X \times X$ with nonempty relations $R_{0}, R_{1}, \ldots, R_{d}$, where $R_{0}=\{(x, x) \mid x \in X\}$ which satisfy the following conditions:
(i) For every i in $\{0,1, \ldots, d\}$, there exists i^{\prime} in $\{0,1, \ldots, d\}$ such that $R_{i^{\prime}}=\{(y, x) \mid$ $\left.(x, y) \in R_{i}\right\}$.
(ii) There exist integers $p_{i j}^{k}(i, j, k \in\{0,1, \ldots, d\})$ such that for every $(x, y) \in R_{k}$, there are precisely $p_{i j}^{k}$ elements z such that $(x, z) \in R_{i}$ and $(z, y) \in R_{j}$.
(iii) $p_{i j}^{k}=p_{j i}^{k}$ for every i, j in $\{0,1, \ldots, d\}$.

Let A_{i} denote the adjacency matrix of the relation R_{i}, so $A_{i} \in \operatorname{Mat}_{X}(\mathbf{C})$ is a $\{0,1\}$-matrix whose (x, y)-entry is equal to 1 if and only if $(x, y) \in R_{i}$. Clearly $A_{0}=I, A_{i} \circ A_{j}=\delta_{i, j} A_{i}$
(entry-wise product), $\sum_{i=0}^{d} A_{i}=J$ (all 1's matrix), and $A_{i} A_{j}=\sum_{k=0}^{d} p_{i j}^{k} A_{k}$ hold. The linear span \mathcal{A} of $\left\{A_{0}, A_{1}, \ldots, A_{d}\right\}$ becomes a subalgebra of $\operatorname{Mat}_{X}(\mathbf{C})$, called the BoseMesner algebra of the association scheme. Observe that \mathcal{A} is closed under entry-wise product, \mathcal{A} is closed under transposition $A \mapsto{ }^{t} A$, and \mathcal{A} contains I, J.

3. Associated permutation

Let W be a spin model on X. Then there exists an association scheme R_{0}, \ldots, R_{d} on X such that the corresponding Bose-Mesner algebra \mathcal{A} contains W ([5] Theorem 11). In [6], it was shown that ${ }^{t} W W^{-1}=A_{s}$ (the adjacency matrix of R_{s}) for some $s \in\{0,1, \ldots, d\}$, and moreover A_{s} is a permutation matrix ([6] Proposition 2). Let σ denote the corresponding permutation on X, so that $A_{s}(x, y)=1$ if $y=\sigma(x)$ and $A_{s}(x, y)=0$ otherwise. The order m of σ is called the index of W.
Observe that $m=1$ if and only if W is symmetric. Also observe that, for two spin models W_{i} of index $m_{i}(i=1,2)$, the index of $W_{1} \otimes W_{2}$ is equal to the least common multiple of m_{1} and m_{2}. In particular, tensor product of a spin model of index m with any symmetric spin model has index m.

Lemma 3.1

(i) $W(x, \sigma(x))=W(y, \sigma(y))(x, y \in X)$.
(ii) $W(y, x)=W(\sigma(x), y)(x, y \in X)$.
(iii) Every orbit of σ has length m.

Proof:

(i) Observe that, since $W \in \mathcal{A}, W$ is written as a linear combination $W=\sum_{i=0}^{d} t_{i} A_{i}$, so $W(x, y)=t_{i}$ for $(x, y) \in R_{i}$. Since $(x, \sigma(x)) \in R_{s}$ (for every $x \in X$), it holds that $W(x, \sigma(x))=t_{s}=W(y, \sigma(y))$.
(ii) $W(y, x)={ }^{t} W(x, y)=\left(A_{s} W\right)(x, y)=W(\sigma(x), y)$.
(iii) Pick any $i(0<i<m)$. Since A_{s}^{i} is a linear combination of A_{0}, \ldots, A_{d} and since A_{s}^{i} is a permutation matrix, we get $A_{s}^{i}=A_{j}$ for some $j \neq 0$. Observe that the diagonal entries of A_{j} are all zero since $j \neq 0$. This means that σ^{i} (which corresponds the permutation matrix A_{j}) has no fixed point on X. We have shown that σ^{i} fixes no point $(0<i<m)$. Thus every orbit of σ must have length m.

Lemma 3.2 There is a partition $X=X_{0} \cup \cdots \cup X_{m-1}$ such that (for all $i, j \in\{0, \ldots$, $m-1\}$)

$$
\begin{equation*}
W(x, y)=\eta^{i-j} W(y, x) \quad\left(\text { for all } x \in X_{i}, y \in X_{j}\right) \tag{3}
\end{equation*}
$$

where η denotes a primitive m-root of unity. Moreover, for every $i, \sigma\left(X_{i}\right)=X_{j}$ holds for some j.

Proof: The existence of such a partition follows from [6] Proposition 3. As in the proof of Lemma 3.1(i), we have $(x, \sigma(x)) \in R_{s}$ and $W(x, \sigma(x))=t_{s}$ for all $x \in X$. Then there exists s^{\prime} such that $(\sigma(x), x) \in R_{s^{\prime}}$, so that $W(\sigma(x), x)=t_{s^{\prime}}$. Now pick any $x \in X_{i}$. Then $\sigma(x) \in X_{j}$ for some j. On the other hand, $W(x, \sigma(x))=\eta^{i-j} W(\sigma(x), x)$. These imply $\eta^{i-j}=t_{s} t_{s^{\prime}}^{-1}$. This means that j is independent of the choice of $x \in X_{i}$, so that $\sigma\left(X_{i}\right)=X_{j}$.

We fix a primitive m-root of unity η, and let X_{0}, \ldots, X_{m-1} be the partition of X given in Lemma 3.2. We identify the index set $\{0,1, \ldots, m-1\}$ with $\mathbf{Z}_{m}=\mathbf{Z} / m \mathbf{Z}$. By Lemma 3.2, there is a permutation π on \mathbf{Z}_{m} such that $\sigma\left(X_{i}\right)=X_{\pi(i)}\left(i \in \mathbf{Z}_{m}\right)$. Let t denote the order of π, and set $k=m / t$.

Lemma 3.3 $\pi(i)-i=\pi(j)-j$ for all $i, j \in \mathbf{Z}_{m}$.

Proof: Pick any $x \in X_{i}, y \in X_{j}$. We have $\sigma(x) \in X_{\pi(i)}, \sigma(y) \in X_{\pi(j)}$. By Lemma 3.2, $W(x, \sigma(x))=\eta^{i-\pi(i)} W(\sigma(x), x)$ and $W(y, \sigma(y))=\eta^{i-\pi(j)} W(\sigma(y), y)$. On the other hand, $W(x, \sigma(x))=W(y, \sigma(y))$ by Lemma 3.1(i), and also $W(\sigma(x), x)=W(x, x)=$ (the modulus of W$)=W(y, y)=W(\sigma(y), y)$ by Lemma 3.1(ii). These imply $\eta^{i-\pi(i)}=$ $\eta^{j-\pi(j)}$.

Lemma 3.4 There exists an automorphism φ of the additive group \mathbf{Z}_{m} such that $\pi(\varphi(i))=$ $\varphi(i+k)$ for all $i \in \mathbf{Z}_{m}$. Moreover, $W(x, y)=\left(\eta^{\varphi(1)}\right)^{i-j} W(y, x)$ for every $x \in X_{\varphi(i)}$, $y \in X_{\varphi(j)}$.

Proof: Set $k^{\prime}=\pi(0)$. Then $\pi(i)=i+k^{\prime}\left(i \in \mathbf{Z}_{m}\right)$ by Lemma 3.3. Thus $k^{\prime} \mathbf{Z}_{m}=$ $\left\{0, k^{\prime}, 2 k^{\prime}, \ldots,(t-1) k^{\prime}\right\}$ is an orbit of π. Note that every orbit of π has length t, and hence the number of orbits of π is equal to $k=m / t$ (in particular, k must be an integer). Clearly $k^{\prime} \mathbf{Z}_{m}$ is the unique subgroup of \mathbf{Z}_{m} of order t, so $k^{\prime} \mathbf{Z}_{m}=k \mathbf{Z}_{m}$. Hence there is an automorphism φ of the additive group $k \mathbf{Z}_{m}$ such that $\varphi(k)=k^{\prime}$.

We claim that φ can be extended to an automorphism of \mathbf{Z}_{m}. In fact, for any cyclic group G and for any subgroup H of G, any automorphism of H can be extended to an automorphism of G. This fact can be easily shown when G is a cyclic p-group. For general case, decompose G into the Sylow subgroups.
Now we have an automorphism φ of \mathbf{Z}_{m} such that $\varphi(k)=k^{\prime}$. Since $\pi(i)=i+k^{\prime}$ for all $i \in \mathbf{Z}_{m}$, we get $\pi(\varphi(i))=\varphi(i)+k^{\prime}=\varphi(i)+\varphi(k)=\varphi(i+k)$.
Let $x \in X_{\varphi(i)}, y \in X_{\varphi(j)}$. Then, by Lemma 3.2, $W(x, y)=\eta^{\varphi(i)-\varphi(j)} W(y, x)$ holds for all $x \in X_{\varphi(i)}, y \in X_{\varphi(j)}$. Here $\varphi(i)-\varphi(j)=\varphi(i \cdot 1)-\varphi(j \cdot 1)=i \varphi(1)-j \varphi(1)=$ $\varphi(1)(i-j)$. Hence $W(x, y)=\left(\eta^{\varphi(1)}\right)^{i-j} W(y, x)$.

Thus, by reordering the indices $\{0,1, \ldots, m-1\}$ by φ, and by replacing η with $\eta^{\varphi(1)}$, we may assume that

$$
\begin{equation*}
\pi(i)=i+k \quad\left(i \in \mathbf{Z}_{m}\right) . \tag{4}
\end{equation*}
$$

4. General form of \mathbf{W}

We use the notation of the previous section. We also use the notation:

$$
\begin{equation*}
\gamma_{k}(\ell, i)=\eta^{-\ell i-(k / 2) \ell(\ell-1)} \tag{5}
\end{equation*}
$$

Proposition 4.1 Let $i, j \in \mathbf{Z}_{m}$ and $x \in X_{i}, y \in X_{j}$. Then for $\ell, \ell^{\prime} \in \mathbf{Z}$,

$$
\begin{equation*}
W\left(\sigma^{\ell}(x), \sigma^{\ell^{\prime}}(y)\right)=\gamma_{k}\left(\ell-\ell^{\prime}, i-j\right) W(x, y) \tag{6}
\end{equation*}
$$

Proof: Assume $\ell \geq 0$ and $\ell^{\prime} \geq 0$. First we consider the case of $\ell^{\prime}=0$. We proceed by induction on ℓ. Obviously (6) holds for $\ell=0$. By Lemma 3.1(ii) and Lemma 3.2, $W(y, x)=W(\sigma(x), y)$ and $W(y, x)=\eta^{j-i} W(x, y)$. Hence $W(\sigma(x), y)=\eta^{j-i} W(x, y)$, so (6) holds for $\ell=1$. Now assume $\ell>1$. Noting $\sigma(x) \in X_{\pi(i)}=X_{i+k}$ and using induction,

$$
\begin{aligned}
W\left(\sigma^{\ell}(x), y\right) & =W\left(\sigma^{\ell-1}(\sigma(x)), y\right) \\
& =\gamma_{k}(\ell-1,(i+k)-j) W(\sigma(x), y) \\
& =\gamma_{k}(\ell-1,(i+k)-j) \eta^{j-i} W(x, y) \\
& =\gamma_{k}(\ell, i-j) W(x, y) .
\end{aligned}
$$

Hence (6) holds for $\ell^{\prime}=0$. Now suppose $\ell^{\prime}>0$. Noting $\sigma^{\ell^{\prime}}(y) \in X_{j+\ell^{\prime} k}$ and using Lemma 3.2,

$$
\begin{aligned}
W\left(\sigma^{\ell}(x), \sigma^{\ell^{\prime}}(y)\right) & =\gamma_{k}\left(\ell, i-\left(j+\ell^{\prime} k\right)\right) W\left(x, \sigma^{\ell^{\prime}}(y)\right) \\
& =\gamma_{k}\left(\ell, i-\left(j+\ell^{\prime} k\right)\right) \eta^{i-\left(j+\ell^{\prime} k\right)} W\left(\sigma^{\ell^{\prime}}(y), x\right) \\
& =\gamma_{k}\left(\ell, i-\left(j+\ell^{\prime} k\right)\right) \eta^{i-\left(j+\ell^{\prime} k\right)} \gamma_{k}\left(\ell^{\prime}, j-i\right) W(y, x) \\
& =\gamma_{k}\left(\ell, i-\left(j+\ell^{\prime} k\right)\right) \eta^{i-\left(j+\ell^{\prime} k\right)} \gamma_{k}\left(\ell^{\prime}, j-i\right) \eta^{j-i} W(x, y) \\
& =\gamma_{k}\left(\ell-\ell^{\prime}, i-j\right) W(x, y) .
\end{aligned}
$$

Thus (6) holds for non-negative integers ℓ, ℓ^{\prime}.
Since $\sigma^{-\ell}(x) \in X_{i-\ell k}$,

$$
W(x, y)=W\left(\sigma^{\ell}\left(\sigma^{-\ell}(x)\right), y\right)=\gamma_{k}(\ell,(i-\ell k)-j) W\left(\sigma^{-\ell}(x), y\right)
$$

Hence

$$
\begin{aligned}
W\left(\sigma^{-\ell}(x), y\right) & =\gamma_{k}(\ell, i-\ell k-j)^{-1} W(x, y) \\
& =\eta^{\ell(i-\ell k-j)+(k / 2) \ell(\ell-1)} W(x, y) \\
& =\eta^{\ell(i-j)+(k / 2) \ell(\ell+1)} W(x, y) \\
& =\gamma_{k}(-\ell, i-j) W(x, y) .
\end{aligned}
$$

Since $\sigma^{-\ell^{\prime}}(y) \in X_{j-\ell^{\prime} k}$,

$$
W(x, y)=W\left(x, \sigma^{\ell^{\prime}}\left(\sigma^{-\ell^{\prime}}(y)\right)\right)=\gamma_{k}\left(-\ell^{\prime}, i-\left(j-\ell^{\prime} k\right)\right) W\left(x, \sigma^{-\ell^{\prime}}(y)\right) .
$$

Hence

$$
\begin{aligned}
W\left(x, \sigma^{-\ell^{\prime}}(y)\right) & =\gamma_{k}\left(-\ell^{\prime}, i-j+\ell^{\prime} k\right)^{-1} W(x, y) \\
& =\gamma_{k}\left(\ell^{\prime}, i-j\right) W(x, y) .
\end{aligned}
$$

Since $\sigma^{\ell^{\prime}}(y) \in X_{j+\ell^{\prime} k}$,

$$
\begin{aligned}
W\left(\sigma^{-\ell}(x), \sigma^{\ell^{\prime}}(y)\right) & =\gamma_{k}\left(-\ell, i-\left(j+\ell^{\prime} k\right)\right) W\left(x, \sigma^{\ell^{\prime}}(y)\right) \\
& =\gamma_{k}\left(-\ell, i-j-\ell^{\prime} k\right) \gamma_{k}\left(-\ell^{\prime}, i-j\right) W(x, y) \\
& =\gamma_{k}\left(-\ell-\ell^{\prime}, i-j\right) W(x, y) .
\end{aligned}
$$

Similarly, we can show that

$$
W\left(\sigma^{\ell}(x), \sigma^{-\ell^{\prime}}(y)\right)=\gamma_{k}\left(\ell+\ell^{\prime}, i-j\right) W(x, y),
$$

and

$$
W\left(\sigma^{-\ell}(x), \sigma^{-\ell^{\prime}}(y)\right)=\gamma_{k}\left(-\ell+\ell^{\prime}, i-j\right) W(x, y) .
$$

This completes the proof of (6).

Lemma 4.2 If m is even, then k is even.
Proof: We apply Proposition 4.1 for $\ell=m, \ell^{\prime}=0$ and $i=j$. Then (6) implies $\gamma_{k}(m, 0)=1$, and this becomes $\left(\eta^{-m / 2}\right)^{k(m-1)}=1$. Observe that $\eta^{-m / 2}=-1$, since η is a primitive m-root of unity and m is even. Hence $(-1)^{k(m-1)}=1$, so that k must be even.

For $i \in \mathbf{Z}_{m}$, set

$$
\Delta_{i}=\bigcup_{h=0}^{t-1} X_{i+h k} .
$$

Observe that $\left|\Delta_{i}\right|=t(n / m)=t n /(k t)=n / k$, and that

$$
X=\bigcup_{i=0}^{k-1} \Delta_{i},
$$

Since $\sigma\left(\Delta_{i}\right)=\Delta_{i}, \Delta_{i}$ is partitioned into σ-orbits Y_{α}^{i} :

$$
\Delta_{i}=\bigcup_{\alpha=1}^{r} Y_{\alpha}^{i} \quad(i=0, \ldots, k-1)
$$

where $r=\left|\Delta_{i}\right| / m=n /(m k)$. Observe that $\left|Y_{\alpha}^{i}\right|=m$ and $\left|Y_{\alpha}^{i} \cap X_{i}\right|=k$. We choose representative elements

$$
y_{\alpha}^{i} \in Y_{\alpha}^{i} \cap X_{i} \quad(i=0, \ldots, k-1, \alpha=1, \ldots, r) .
$$

Then

$$
\begin{equation*}
X=\left\{\sigma^{\ell}\left(y_{\alpha}^{i}\right) \mid i=0, \ldots, k-1, \alpha=1, \ldots, r, \ell=0, \ldots, m-1\right\} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
W\left(\sigma^{\ell}\left(y_{\alpha}^{i}\right), \sigma^{\ell^{\prime}}\left(y_{\beta}^{j}\right)\right)=\gamma_{k}\left(\ell-\ell^{\prime}, i-j\right) W\left(y_{\alpha}^{i}, y_{\beta}^{j}\right) \tag{8}
\end{equation*}
$$

for $\ell, \ell^{\prime} \in \mathbf{Z}_{m}, i, j=0, \ldots, k-1$ and $\alpha, \beta=1, \ldots, r$.
We define square matrices $T_{i j}$ of size r and $S_{i j}$ of size $m(i, j=0, \ldots, k-1)$ by

$$
\begin{aligned}
T_{i j}(\alpha, \beta) & =W\left(y_{\alpha}^{i}, y_{\beta}^{j}\right) \quad(\alpha, \beta=1, \ldots, r) \\
S_{i j}\left(\ell, \ell^{\prime}\right) & =\gamma_{k}\left(\ell-\ell^{\prime}, i-j\right) \quad\left(\ell, \ell^{\prime}=0, \ldots, m-1\right)
\end{aligned}
$$

For subsets A, B of X, let $\left.W\right|_{A \times B}$ denote the restriction (submatrix) of W on $A \times B$. For two matrices S, T, we denote the Kronecker product by $S \otimes T$.

Proposition 4.3 For $i, j=0, \ldots, k-1$,

$$
\left.W\right|_{Y_{\alpha}^{i} \times Y_{\beta}^{j}}=T_{i j}(\alpha, \beta) S_{i j} \quad(\alpha, \beta=1, \ldots, r),
$$

and

$$
\begin{equation*}
\left.W\right|_{\Delta_{i} \times \Delta_{j}}=S_{i j} \otimes T_{i j} \tag{9}
\end{equation*}
$$

Proof: Clear.

Thus W decomposes into blocks $W_{i j}=\left.W\right|_{\Delta_{i} \times \Delta_{j}}(i, j=0, \ldots, k-1)$, and each block has the form $W_{i j}=S_{i j} \otimes T_{i j}(i, j=0, \ldots, k-1)$.

5. Type II and Type III conditions

Let m, k, t, r be positive integers with $m=k t$.
Let $T_{i j}(i, j=0, \ldots, k-1)$ be any matrices of size r with nonzero entries, and let $S_{i j}$ $(i, j=0, \ldots, k-1)$ be the matrix of size m defined by

$$
S_{i j}\left(\ell, \ell^{\prime}\right)=\gamma_{k}\left(\ell-\ell^{\prime}, i-j\right) \quad\left(\ell, \ell^{\prime}=0, \ldots, m-1\right),
$$

where γ_{k} is defined by (5) for a primitive m-root of unity η. Now set

$$
W_{i j}=S_{i j} \otimes T_{i j} \quad(i, j=0, \ldots, k-1)
$$

and let W be the matrix of size $n=k m r$ whose (i, j) block is $W_{i j}(i, j=0, \ldots, k-1)$. We index the rows and the columns of W by the set:

$$
X=\{[i, \ell, \alpha] \mid 0 \leq i \leq k-1,0 \leq \ell \leq m-1,1 \leq \alpha \leq r\}
$$

so that

$$
\begin{equation*}
W\left([i, \ell, \alpha],\left[j, \ell^{\prime}, \beta\right]\right)=S_{i j}\left(\ell, \ell^{\prime}\right) T_{i j}(\alpha, \beta) \tag{10}
\end{equation*}
$$

Proposition 5.1 W is a type II matrix if and only if $T_{i j}$ is a type II matrix for all i, $j \in\{0, \ldots, k-1\}$.

Proof: The type II condition (1) for $a=\left[i_{1}, \ell_{1}, \alpha_{1}\right], b=\left[i_{2}, \ell_{2}, \alpha_{2}\right]$ becomes

$$
\begin{equation*}
\sum_{i=0}^{k-1} \sum_{\ell=0}^{m-1} \sum_{\alpha=1}^{r} \frac{W\left(\left[i_{1}, \ell_{1}, \alpha_{1}\right],[i, \ell, \alpha]\right)}{W\left(\left[i_{2}, \ell_{2}, \alpha_{2}\right],[i, \ell, \alpha]\right)}=n \delta_{i_{1}, i_{2}} \delta_{\ell_{1}, \ell_{2}} \delta_{\alpha_{1}, \alpha_{2}} . \tag{11}
\end{equation*}
$$

Using (10), we rewrite the left-hand-side as follows:

$$
\begin{aligned}
\text { 1.h.s. } & =\sum_{i=0}^{k-1} \sum_{\ell=0}^{m-1} \sum_{\alpha=1}^{r} \frac{\gamma_{k}\left(\ell_{1}-\ell, i_{1}-i\right) T_{i_{1} i}\left(\alpha_{1}, \alpha\right)}{\gamma_{k}\left(\ell_{2}-\ell, i_{2}-i\right) T_{i_{2} i}\left(\alpha_{2}, \alpha\right)} \\
& =\eta^{-\ell_{1} i_{i}+\ell_{2} i_{2}-(k / 2)\left(\ell_{1}-\ell_{2}\right)\left(\ell_{1}+\ell_{2}-1\right)} \sum_{i=0}^{k-1} \eta^{\left(\ell_{1}-\ell_{2}\right) i} \sum_{\alpha=1}^{r} \frac{T_{i_{i} i}\left(\alpha_{1}, \alpha\right)}{T_{i_{2} i}\left(\alpha_{2}, \alpha\right)} \sum_{\ell=0}^{m-1} \eta^{\left(i_{1}-i_{2}+k\left(\ell_{1}-\ell_{2}\right)\right) \ell}
\end{aligned}
$$

Observe that, since η is a primitive m-root of unity,

$$
\sum_{\ell=0}^{m-1} \eta^{\left(\left(i_{1}-i_{2}\right)+k\left(\ell_{1}-\ell_{2}\right)\right) \ell}= \begin{cases}m & \text { if }\left(i_{1}-i_{2}\right)+k\left(\ell_{1}-\ell_{2}\right) \equiv 0 \quad(\bmod m) \\ 0 & \text { otherwise }\end{cases}
$$

Observe that $\left(i_{1}-i_{2}\right)+k\left(\ell_{1}-\ell_{2}\right) \equiv 0(\bmod m)$ if and only if $i_{1}=i_{2}$ and $\ell_{1} \equiv \ell_{2}$ $(\bmod t)$, since $0 \leq i_{1}, i_{2} \leq k-1$ and $m=k t$.

Now suppose that $T_{i j}$ are type II $(i, j=0, \ldots, k-1)$. We must show that the 1.h.s. of (11) becomes zero for $\left[i_{1}, \ell_{1}, \alpha_{1}\right] \neq\left[i_{2}, \ell_{2}, \alpha_{2}\right]$. By the above observation, we may assume that $i_{1}=i_{2}$ and $\ell_{1} \equiv \ell_{2} \quad(\bmod t)$. We set $\ell_{1}-\ell_{2}=t s$. If $\alpha_{1} \neq \alpha_{2}$, then 1.h.s. of (11) vanishes by type II condition for $T_{i_{1} i}$. Hence we may assume $\alpha_{1}=\alpha_{2}$. Thus we have $i_{1}=i_{2}, \alpha_{1}=\alpha_{2}, \ell_{1}-\ell_{2} \equiv 0(\bmod t)$ and $\ell_{1} \neq \ell_{2}$. Hence

$$
\text { 1.h.s. }=m r \eta^{-\ell_{1} i_{1}+\ell_{2} i_{2}-(k / 2)\left(\ell_{1}-\ell_{2}\right)\left(\ell_{1}+\ell_{2}-1\right)} \sum_{i=0}^{k-1} \eta^{t s i}
$$

Observe that η^{t} is a primitive k-root of unity. So, $\sum_{i=0}^{k-1}\left(\eta^{t}\right)^{s i}=0$, since $s \not \equiv 0 \quad(\bmod k)$. We have shown that W is type II.

Next suppose that W is type II. Pick any distinct $\alpha_{1}, \alpha_{2} \in\{1, \ldots, r\}$. From (11) at $i_{1}=i_{2}$ and $\ell_{1} \equiv \ell_{2} \quad(\bmod t)$, we obtain

$$
\sum_{i=0}^{k-1} \eta^{\left(\ell_{1}-\ell_{2}\right) i} \sum_{\alpha=1}^{r} \frac{T_{i_{i} i}\left(\alpha_{1}, \alpha\right)}{T_{i_{2} i}\left(\alpha_{2}, \alpha\right)}=0
$$

Setting

$$
K_{i}=\sum_{\alpha=1}^{r} \frac{T_{i_{1} i}\left(\alpha_{1}, \alpha\right)}{T_{i_{1} i}\left(\alpha_{2}, \alpha\right)}
$$

and considering the case $\ell_{2}=0$, the above equation implies

$$
\sum_{i=0}^{k-1}\left(\eta^{\ell_{1}}\right)^{i} K_{i}=0 \quad\left(\ell_{1}=0, t, 2 t, \ldots,(k-1) t\right)
$$

or equivalently

$$
\sum_{i=0}^{k-1}\left(\eta^{t}\right)^{e i} K_{i}=0 \quad(e=0,1, \ldots, k-1)
$$

Observe that $\left(\eta^{t}\right)^{e}(e=0,1, \ldots, k-1)$ are distinct, since η^{t} is a primitive k-root of unity. Hence $K_{i}=0(i=0,1, \ldots, k-1)$ by Vandermonde determinant. Thus

$$
\sum_{\alpha=1}^{r} \frac{T_{i_{1} i}\left(\alpha_{1}, \alpha\right)}{T_{i_{1} i}\left(\alpha_{2}, \alpha\right)}=0 \quad(i=0, \ldots, k-1)
$$

so that $T_{i_{1} i}$ is type II.

Lemma 5.2 Assume k is even when m is even. Then the matrix W satisfies the type III condition (2) if and only if the following equation holds for all $i_{1}, i_{2}, i_{3} \in\{0, \ldots, k-1\}$ and for all $\alpha_{1}, \alpha_{2}, \alpha_{3} \in\{1, \ldots, r\}$:

$$
\begin{aligned}
& \sum_{i=0}^{k-1}\left(\sum_{\ell=0}^{m-1} \eta^{-k \ell} \gamma_{k}\left(\ell, i-i_{1}-i_{2}+i_{3}\right)\right)\left(\sum_{\alpha=1}^{r} \frac{T_{i_{1}, i}\left(\alpha_{1}, \alpha\right) T_{i_{2}, i}\left(\alpha_{2}, \alpha\right)}{T_{i_{3}, i}\left(\alpha_{3}, \alpha\right)}\right) \\
& \quad=D \frac{T_{i_{1}, i_{2}}\left(\alpha_{1}, \alpha_{2}\right)}{T_{i_{1}, i_{3}}\left(\alpha_{1}, \alpha_{3}\right) T_{i_{3}, i_{2}}\left(\alpha_{3}, \alpha_{2}\right)} .
\end{aligned}
$$

Proof: The type III condition (2) for $a=\left[i_{1}, \ell_{1}, \alpha_{1}\right], b=\left[i_{2}, \ell_{2}, \alpha_{2}\right], c=\left[i_{3}, \ell_{3}, \alpha_{3}\right]$ becomes

$$
\begin{aligned}
& \sum_{i=0}^{k-1} \sum_{\ell=0}^{m-1} \sum_{\alpha=1}^{r} \frac{\gamma_{k}\left(\ell_{1}-\ell, i_{1}-i\right) \gamma_{k}\left(\ell_{2}-\ell, i_{2}-i\right)}{\gamma_{k}\left(\ell_{3}-\ell, i_{3}-i\right)} \cdot \frac{T_{i_{1}, i}\left(\alpha_{1}, \alpha\right) T_{i_{2}, i}\left(\alpha_{2}, \alpha\right)}{T_{i_{3}, i}\left(\alpha_{3}, \alpha\right)} \\
& \quad=D \frac{\gamma_{k}\left(\ell_{1}-\ell_{2}, i_{1}-i_{2}\right)}{\gamma_{k}\left(\ell_{1}-\ell_{3}, i_{1}-i_{3}\right) \gamma_{k}\left(\ell_{3}-\ell_{2}, i_{3}-i_{2}\right)} \cdot \frac{T_{i_{1}, i_{2}}\left(\alpha_{1}, \alpha_{2}\right)}{T_{i_{1}, i_{3}}\left(\alpha_{1}, \alpha_{3}\right) T_{i_{3}, i_{2}}\left(\alpha_{3}, \alpha_{2}\right)} .
\end{aligned}
$$

By a direct (but somewhat long) computation, we obtain

$$
\begin{aligned}
& \frac{\gamma_{k}\left(\ell_{1}-\ell, i_{1}-i\right) \gamma_{k}\left(\ell_{2}-\ell, i_{2}-i\right)}{\gamma_{k}\left(\ell_{3}-\ell, i_{3}-i\right)} \cdot \frac{\gamma_{k}\left(\ell_{1}-\ell_{3}, i_{1}-i_{3}\right) \gamma_{k}\left(\ell_{3}-\ell_{2}, i_{3}-i_{2}\right)}{\gamma_{k}\left(\ell_{1}-\ell_{2}, i_{1}-i_{2}\right)} \\
& \quad=\eta^{-k(\ell-\hat{\ell})} \gamma_{k}(\ell-\hat{\ell}, i-\hat{i}),
\end{aligned}
$$

where $\hat{\ell}=\ell_{1}+\ell_{2}-\ell_{3}, \hat{i}=i_{1}+i_{2}-i_{3}$. So the type III condition becomes

$$
\begin{aligned}
& \sum_{i=0}^{k-1}\left(\sum_{\ell=0}^{m-1} \eta^{-k(\ell-\hat{\ell})} \gamma_{k}(\ell-\hat{\ell}, i-\hat{i})\right)\left(\sum_{\alpha=1}^{r} \frac{T_{i_{1}, i}\left(\alpha_{1}, \alpha\right) T_{i_{2}, i}\left(\alpha_{2}, \alpha\right)}{T_{i_{3}, i}\left(\alpha_{3}, \alpha\right)}\right) \\
& \quad=D \frac{T_{i_{1}, i_{2}}\left(\alpha_{1}, \alpha_{2}\right)}{T_{i_{1}, i_{3}}\left(\alpha_{1}, \alpha_{3}\right) T_{i_{3}, i_{2}}\left(\alpha_{3}, \alpha_{2}\right)}
\end{aligned}
$$

To complete our proof, we must show that

$$
\sum_{\ell=0}^{m-1} \eta^{-k(\ell-\hat{\ell})} \gamma_{k}(\ell-\hat{\ell}, i-\hat{i})=\sum_{\ell=0}^{m-1} \eta^{-k \ell} \gamma_{k}(\ell, i-\hat{i})
$$

To show this, it is enough to show that $\gamma_{k}(\ell+m, j)=\gamma_{k}(\ell, j)$ holds for all j, ℓ.

$$
\begin{aligned}
\gamma_{k}(\ell+m, j) & =\eta^{-(\ell+m) j-(k / 2)(\ell+m)(\ell+m-1)} \\
& =\gamma_{k}(\ell, j) \eta^{-m j-k m \ell} \eta^{-(k / 2) m(m-1)} \\
& =\gamma_{k}(\ell, j) \eta^{-k m(m-1) / 2}
\end{aligned}
$$

When m is odd, $(m-1) / 2$ is an integer. When m is even, k is even by our assumption, and so $k / 2$ is an integer. Thus $\eta^{-k m(m-1) / 2}=1$.

Lemma 5.3 For all $u, s(0 \leq u \leq t-1,0 \leq s \leq k-1)$,

$$
\gamma_{k}(u+s t, j)=\left((-1)^{t-1} \eta^{-t j}\right)^{s} \gamma_{k}(u, j)
$$

Proof: We compute $\gamma_{k}(u+s t, j)$ as follows.

$$
\begin{aligned}
\gamma_{k}(u+s t, j) & =\eta^{-(u+s t) j-(k / 2)(u+s t)(u+s t-1)} \\
& =\eta^{-u j-(k / 2) u(u-1)} \eta^{-s t j} \eta^{-(k t) s u} \eta^{-(k / 2) s t(s t-1)} \\
& =\gamma_{k}(u, j) \eta^{-s t j} \eta^{-(k / 2) s t(s t-1)} .
\end{aligned}
$$

So it is enough to show that

$$
\begin{equation*}
\eta^{-(k / 2) s t(s t-1)}=(-1)^{(t-1) s} . \tag{12}
\end{equation*}
$$

If t is even, then m is even and so $\eta^{(m / 2)}=-1$. Hence, noting $s t-1$ is odd,

$$
\eta^{-(k / 2) s t(s t-1)}=\left(\eta^{-(m / 2)}\right)^{(s t-1) s}=\left((-1)^{(s t-1)}\right)^{s}=(-1)^{s}
$$

so (12) holds. Next assume t is odd. If s is even, then

$$
\eta^{-(k / 2) s t(s t-1)}=\eta^{-(k t)(s / 2)(s t-1)}=\eta^{-m(s / 2)(s t-1)}=1
$$

If s is odd, then $s t-1$ is even. Hence

$$
\eta^{-(k / 2) s t(s t-1)}=\eta^{-(k t) s(s t-1) / 2}=\left(\eta^{-m}\right)^{s(s t-1) / 2}=1
$$

Therefore (12) holds in each case.

Lemma 5.4

(i) If t is odd, then

$$
\sum_{\ell=0}^{m-1} \eta^{-k \ell} \gamma_{k}(\ell, j)= \begin{cases}k \sum_{u=0}^{t-1} \eta^{-u j-k u(u+1) / 2} & \text { if } j \equiv 0 \quad(\bmod k) \\ 0 & \text { otherwise }\end{cases}
$$

(ii) If t and k are even, then

$$
\sum_{\ell=0}^{m-1} \eta^{-k \ell} \gamma_{k}(\ell, j)= \begin{cases}k \sum_{u=0}^{t-1} \eta^{-u j-k u(u+1) / 2} & \text { if } j \equiv \frac{k}{2} \quad(\bmod k) \\ 0 & \text { otherwise }\end{cases}
$$

Proof: Using Lemma 5.3, we proceed as follows.

$$
\begin{aligned}
\sum_{\ell=0}^{m-1} \eta^{-k \ell} \gamma_{k}(\ell, j) & =\sum_{u=0}^{t-1} \sum_{s=0}^{k-1} \eta^{-k(u+s t)} \gamma_{k}(u+s t, j) \\
& =\sum_{u=0}^{t-1} \sum_{s=0}^{k-1} \eta^{-(k u+m s)}\left((-1)^{t-1} \eta^{-t j}\right)^{s} \gamma_{k}(u, j) \\
& =\left(\sum_{s=0}^{k-1}\left((-1)^{t-1} \eta^{-t j}\right)^{s}\right)\left(\sum_{u=0}^{t-1} \eta^{-k u} \gamma_{k}(u, j)\right)
\end{aligned}
$$

If t is odd, then the first factor becomes

$$
\sum_{s=0}^{k-1}\left(\eta^{-t j}\right)^{s}=\sum_{s=0}^{k-1}\left(\eta^{-t}\right)^{j s}= \begin{cases}k & \text { if } j \equiv 0 \quad(\bmod k) \\ 0 & \text { otherwise }\end{cases}
$$

Suppose t and k are even. In this case, m is also even, so that $\eta^{(k t / 2)}=\eta^{(m / 2)}=-1$. Hence the first factor becomes

$$
\begin{aligned}
\sum_{s=0}^{k-1}\left((-1) \eta^{-t j}\right)^{s} & =\sum_{s=0}^{k-1}\left(\eta^{(k t / 2)} \eta^{-t j}\right)^{s} \\
& =\sum_{s=0}^{k-1}\left(\eta^{t}\right)^{((k / 2)-j) s} \\
& = \begin{cases}k & \text { if } \frac{k}{2}-j \equiv 0 \quad(\bmod k) \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Now the result follows by

$$
\eta^{-k u} \gamma_{k}(u, j)=\eta^{-u j-k u(u+1) / 2}
$$

Proposition 5.5 Assume k is even when m is even. Then the matrix W satisfies the type III condition (2) if and only if the following equation holds for all $i_{1}, i_{2}, i_{3} \in\{0, \ldots, k-1\}$ and for all $\alpha_{1}, \alpha_{2}, \alpha_{3} \in\{1, \ldots, r\}$:

$$
\begin{aligned}
& \left(\sum_{u=0}^{t-1} \eta^{-u(i-\hat{i})-k u(u+1) / 2}\right)\left(\sum_{\alpha=1}^{r} \frac{T_{i_{1}, i}\left(\alpha_{1}, \alpha\right) T_{i_{2}, i}\left(\alpha_{2}, \alpha\right)}{T_{i_{3}, i}\left(\alpha_{3}, \alpha\right)}\right) \\
& \quad=(D / k) \frac{T_{i_{1}, i_{2}}\left(\alpha_{1}, \alpha_{2}\right)}{T_{i_{1}, i_{3}}\left(\alpha_{1}, \alpha_{3}\right) T_{i_{3}, i_{2}}\left(\alpha_{3}, \alpha_{2}\right)},
\end{aligned}
$$

where $\hat{i}=i_{1}+i_{2}-i_{3}$, and i denotes the integer in $\{0, \ldots, k-1\}$ such that

$$
i \equiv \begin{cases}\hat{i}(\bmod k) & \text { if } t \text { is odd } \\ \hat{i}+\frac{k}{2}(\bmod k) & \text { if } \text { is even }\end{cases}
$$

Proof: This is a direct consequence of Lemmas 5.2 and 5.4.

6. Some special cases

We use the notation in Section 4.
Proposition 6.1 Suppose $k=1$. Then m is odd, and

$$
W=S \otimes T
$$

where S is a spin model of size m and index m which is given by

$$
S\left(\ell, \ell^{\prime}\right)=\eta^{-(1 / 2)\left(\ell-\ell^{\prime}\right)\left(\ell-\ell^{\prime}-1\right)} \quad\left(\ell, \ell^{\prime}=0,1, \ldots, m-1\right)
$$

and T is a symmetric spin model of size n / m.

Proof: When $k=1$, we have $X=\Delta_{0}$ and $r=n / m$. Setting $S=S_{00}$ and $T=T_{00}$, $W=\left.W\right|_{\Delta_{0}}=S \otimes T$ by Proposition 4.3. Obviously $S\left(\ell, \ell^{\prime}\right)=S_{00}\left(\ell, \ell^{\prime}\right)=\gamma_{1}\left(\ell-\ell^{\prime}, 0\right)$. For $\alpha, \beta \in\{1, \ldots, r\}, T(\alpha, \beta)=W\left(y_{\alpha}^{0}, y_{\beta}^{0}\right)=\eta^{0-0} W\left(y_{\beta}^{0}, y_{\alpha}^{0}\right)=T(\beta, \alpha)$, so that T is symmetric.

Since m is odd by Lemma 4.2, S is a spin model on the cyclic group of order m, which was constructed in [2] (see also [1, 3]). Since $W=S \otimes T$ with W, S are spin models, T must be a spin model.

Proposition 6.2 Suppose $k=m$. Then

$$
\left.W\right|_{X_{i} \times X_{j}}=S_{i j} \otimes T_{i j} \quad(i, j=0,1, \ldots, m-1)
$$

and

$$
S_{i j}\left(\ell, \ell^{\prime}\right)=\eta^{-\left(\ell-\ell^{\prime}\right)(i-j)} \quad\left(\ell, \ell^{\prime}=0, \ldots, m-1\right) .
$$

The matrices $T_{i j}$ are type II matrices of size $r=n / m^{2}$. Moreover the following equation holds for all $i_{1}, i_{2}, i_{3} \in\{0, \ldots, m-1\}$ and for all $\alpha_{1}, \alpha_{2}, \alpha_{3} \in\{1, \ldots, r\}$:

$$
\sum_{\alpha=1}^{r} \frac{T_{i_{1}, i}\left(\alpha_{1}, \alpha\right) T_{i_{2}, i}\left(\alpha_{2}, \alpha\right)}{T_{i_{3}, i}\left(\alpha_{3}, \alpha\right)}=(D / m) \frac{T_{i_{1}, i_{2}}\left(\alpha_{1}, \alpha_{2}\right)}{T_{i_{1}, i_{3}}\left(\alpha_{1}, \alpha_{3}\right) T_{i_{3}, i_{2}}\left(\alpha_{3}, \alpha_{2}\right)},
$$

where i denotes the integer in $\{0, \ldots, m-1\}$ such that $i \equiv i_{1}+i_{2}-i_{3} \quad(\bmod m)$.
Proof: We have $t=1, r=n /(m k)=n / m^{2}$ and $X_{i}=\Delta_{i}(i=0, \ldots, m-1)$. Hence $\left.W\right|_{X_{i} \times X_{j}}=S_{i j} \otimes T_{i j}$ by Proposition 4.3. Since $\eta^{(m / 2) \ell(\ell-1)}=\left(\eta^{m}\right)^{\ell(\ell-1) / 2}=1, \gamma_{m}(\ell, i)=$ $\eta^{-\ell i}$. So $S_{i j}\left(\ell, \ell^{\prime}\right)=\eta^{-\left(\ell-\ell^{\prime}\right)(i-j)}$. By Proposition 5.1, $T_{i j}$ is a type II matrix. Now the result follows from Proposition 5.1 and 5.5.

Corollary 6.3 Let W be a spin model on X of prime index m. Then one of the following holds, where η denotes a primitive m-root of unity.
(i) $W=S \otimes T$, where S is a spin model of size m with

$$
S\left(\ell, \ell^{\prime}\right)=\eta^{-(1 / 2)\left(\ell-\ell^{\prime}\right)\left(\ell-\ell^{\prime}-1\right)} \quad\left(\ell, \ell^{\prime}=0,1, \ldots, m-1\right)
$$

and T is a symmetric spin model of size $|X| / m$.
(ii) W decomposes into m^{2} blocks $W_{i j}(i, j=0, \ldots, m-1)$ with $W_{i j}=S_{i j} \otimes T_{i j}$, where $S_{i j}$ are matrices of size m defined by

$$
S_{i j}\left(\ell, \ell^{\prime}\right)=\eta^{-\left(\ell-\ell^{\prime}\right)(i-j)} \quad\left(\ell, \ell^{\prime}=0,1, \ldots, m-1\right)
$$

and $T_{i j}$ are type II matrices of size $r=n / m^{2}$ which satisfy the following equation for all $i_{1}, i_{2}, i_{3} \in\{0, \ldots, m-1\}$ and for all $\alpha_{1}, \alpha_{2}, \alpha_{3} \in\{1, \ldots, r\}$:

$$
\sum_{\alpha=1}^{r} \frac{T_{i_{1}, i}\left(\alpha_{1}, \alpha\right) T_{i_{2}, i}\left(\alpha_{2}, \alpha\right)}{T_{i_{3}, i}\left(\alpha_{3}, \alpha\right)}=(D / m) \frac{T_{i_{1}, i_{2}}\left(\alpha_{1}, \alpha_{2}\right)}{T_{i_{1}, i_{3}}\left(\alpha_{1}, \alpha_{3}\right) T_{i_{3}, i_{2}}\left(\alpha_{3}, \alpha_{2}\right)},
$$

where i denotes the integer in $\{0, \ldots, m-1\}$ such that $i \equiv i_{1}+i_{2}-i_{3} \quad(\bmod m)$.

References

1. Et. Bannai, "Modular invariance property and spin models attached to cyclic group association schemes," J. Stat. Plann. and Inference 51 (1996), 107-124
2. E. Bannai and Et. Bannai, "Spin models on finite cyclic groups," J. Alg. Combin. 3 (1994), 243-259
3. E. Bannai, Et. Bannai, and F. Jaeger, "On spin models, modular invariance, and duality," J. Alg. Combin. 6 (1997), 203-228.
4. E. Bannai and T. Ito, Algebraic Combinatorics I, Benjamin/Cummings, Menlo Park, 1984.
5. F. Jaeger, M. Matsumoto, and K. Nomura, "Bose-Mesner algebras related to type II matrices and spin models," J. Alg. Combin. 8 (1998), 39-72.
6. F. Jaeger and K. Nomura, "Symmetric versus non-symmetric spin models for link invariants," J. Alg. Combin. 10 (1999), 241-278.
7. V.F.R. Jones, "On knot invariants related to some statistical mechanical models," Pac. J. Math. 137 (1989), 311-336.
8. K. Kawagoe, A. Munemasa, and Y. Watatani, "Generalized spin models," J. of Knot Theory and its Ramifications 3 (1994), 465-475.
