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Abstract. We introduce the Singleton bounds for codes over a finite commutative quasi-Frobenius ring.
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1. Introduction

Let R be a finite commutative quasi-Frobenius (QF) ring (see [1]), and letV := Rn be the
free module of rankn consisting of alln-tuples of elements ofR. A code Cof lengthn
over R is anR-submodule ofV . An element ofC is called acodewordof C.

In this paper, we will use a general notion of weight, abstracted from the Hamming, the
Lee and the Euclidean weights. For everyx = (x1, . . . , xn) ∈ V andr ∈ R, thecomplete
weight of x is defined by

nr (x) := |{i | xi = r }|.

To define ageneral weight functionw(x), letar , (0 6=)r ∈ R, be positive real numbers, and
seta0 = 0. Set

w(x) :=
∑
r∈R

ar nr (x). (1)

If we setar = 1, (0 6=)∀r ∈ R, thenw(x) is just the Hamming weight ofx. For later use,
we denote

A := max{ar | r ∈ R}. (2)

For example, ifR= Z4 = {0, 1, 2, 3}, then settinga1 = a3 = 1 anda2 = 2 yields the Lee
weight, while settinga1 = a3 = 1 anda2 = 4 yields the Euclidean weight.

Put N := {1, 2, . . . ,n}. Define thesupportsupp(x) of a vectorx = (x1, . . . , xn) ∈ V
by

supp(x) := {i ∈ N | xi 6= 0}.
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Theminimum weightof a codeC, denoted byd, is

d := min{w(x) | (0 6=)x ∈ C}.

We make the important (and elementary) observation that

w(x) ≤ A|supp(x)|. (3)

The inner productof vectorsx = (x1, . . . , xn), y = (y1, . . . , yn) ∈ V is defined by

〈x, y〉 = x1y1+ · · · + xnyn.

Thedual codeof C is defined by

C⊥ := {y ∈ V | 〈x, y〉 = 0 (∀x ∈ C)}.

The following proposition is well-known as the Singleton bound (see [4]).

Proposition 1 Let C be a linear[n, k, d]-code over GF(q), where d is the minimum
Hamming weight of C. Then,

d ≤ n− k+ 1.

The main purpose of this paper is to find a similar bound for the minimum weight of a
general weight functionw(x) over R.

2. Singleton bound

For a submoduleD of V and a subsetM ⊆ N = {1, 2, . . . ,n}, let

D(M) := {x ∈ D | supp(x) ⊆ M},
D∗ := HomR(D, R).

ClearlyD(M) = D ∩V(M) is a submodule ofV , and|V(M)| = |R||M |. It is also the case
that |D| = |D∗| for any submodule ofV . The following lemma is essential. (There is a
similar result overGF(q) in [6]).

Lemma 1 Let C be a code of length n over R and M⊆ N. Then there is an exact
sequence of R-modules:

0→ C⊥(M)
inc→ V(M)

f→ C∗
res→ C(N − M)∗ → 0,

where the mapsinc, resdenote the inclusion map, restriction map, respectively, and the
map f is defined by

f : y 7→ (ŷ : x 7→ 〈x, y〉).
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Proof: The exactness of the sequence atC⊥(M) and atV(M) is clear. That the map
res is surjective follows fromR being an injective module over itself (the meaning ofR
being QF).

Clearly we note that Imf ⊆ ker(res). Conversely, if we take anyλ ∈ ker(res), then

λ(x) = 0 (∀x ∈ C(N − M)).

Note thatV → C∗; v 7→ v̂ is surjective, so there existsy ∈ V with λ = ŷ. For any
x ∈ C(N − M), 〈x, y〉 = 0, so that,

y ∈ (C(N − M))⊥ = (C ∩ V(N − M))⊥

= C⊥ + V(N − M)⊥ = C⊥ + V(M).

Sinceẑ= 0 for anyz ∈ C⊥, we have

ker(res) ⊆ Im f.

Thus the sequence is also exact atC∗, and the lemma follows. 2

We remark that we can prove the MacWilliams identity for codes overZ4 ([3]) by using
Lemma 1 (there are similar results overGF(q) in [5] and [6]).

Using the above lemma, we establish the Singleton bound for a general weight function
over R.

Theorem 1 Let C be a code of length n over a finite commutative QF ring R. Letw(x)
be a general weight function on C, as in (1), and with maximum ar -value A, as in (2).
Suppose the minimum weight ofw(x) on C is d. Then[

d − 1

A

]
≤ n− log|R| |C|,

where[b] is the integer part of b.

Proof: By Lemma 1, we have

|C| · |C⊥(N − M̃)| = |V(N − M̃)| · |C(M̃)|,

whereM̃ = N − M . If we take a subsetM of N with |M̃ | = [ d−1
A ], then |C(M̃)| = 1

by (3). Since we always have|C⊥(N − M̃)| ≥ 1, we see that

|C| ≤ |V(N − M̃)| = |R||N−M̃ |.

Hence the theorem follows. 2
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3. An application to codes overZl

The ringR = Zl is a good example of a finite commutative QF ring. Letk := [l/2], and
regardZl as the set{0,±1, . . . ,±k} (with k = −k, whenl = 2k is even). On codes over
Zl , there are three special weight functions:

1. theHamming weight, where eachai = 1, i 6= 0,
2. theLee weight, whereai = |i |, and
3. theEuclidean weight, whereai = |i |2.

Denote the minimum weight of a codeC with respect to these three weights bydH , dL and
dE, respectively. It is clear that the maximumar -valueA is 1, k andk2, respectively. The
next result follows immediately from Theorem 1.

Theorem 2 Using the above notation for a code C of length n overZl , there are the
following bounds on minimum weights:

dH ≤ n− logl |C| + 1,[
dL − 1

k

]
≤ n− logl |C|,[

dE − 1

k2

]
≤ n− logl |C|.

The Gray mapφ : Z4 → Z2
2 is defined byφ(0) = 00, φ(1) = 01, φ(2) = 11, and

φ(3) = 10. It is well-known thatφ is a weight-preserving map from (Zn
4, Lee weight)

to (Z2n
2 , Hamming weight) (see [2]). Using the above theorem, we have the Singleton

bound for certain binary nonlinear codes.

Corollary 1 If a binary nonlinear(2n,M, d)-code B, where M := |B| and d is the
minimum Hamming weight of B, is the Gray map image of a code C of length n overZ4,

then [
d − 1

2

]
≤ n− log4 M.

Proof: SinceM = |C| andd is also the minimum Lee weight ofC, the corollary follows
from Theorem 2. 2
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