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Abstract. Alon, Babai and Suzuki proved the following theorem:

Let p be a prime and let K, L be two disjoint subsets of{0, 1, . . . , p− 1}. Let |K | = r, |L| = s, and assume
r (s− r + 1) ≤ p− 1 and n≥ s+ kr where kr is the maximal element of K . LetF be a family of subsets of an
n-element set. Suppose that

(i) |F | ∈ K (mod p) for each F∈ F;
(ii) |E ∩ F | ∈ L (mod p) for each pair of distinct sets E, F ∈ F .

Then|F | ≤ ( n
s )+ (

n
s−1 )+ · · · + (

n
s−r+1 ).

They conjectured that the condition thatr (s − r + 1) ≤ p − 1 in the theorem can be dropped and the same
conclusion should hold. In this paper we prove that the same conclusion holds if the two conditions in the
theorem, i.e. r (s− r + 1) ≤ p− 1 andn ≥ s+ kr are replaced by a single more relaxed condition 2s− r ≤ n.

Keywords: combinatorial, inequality

1. Introduction

In this paper, we letn be a positive integer,In = {1, 2, . . . ,n}, X = {x1, x2, . . . , xn}
be ann-element set,p be a prime number andL ⊆ I p−1∪ {0} = {0, 1, . . . , p − 1} be
an s-element set for some positive integers< p. We call a familyF of subsets ofX a
mod p L-intersection familyif |E ∩ F | ∈ L (mod p), ∀E, F ∈ F with E 6= F . Here
n ∈ L(mod p) means there existsl ∈ L for whichn ≡ l (mod p).

For any 0≤ i ≤ j ≤ n, let In(i, j ) be the 0-1 incidence matrix ofPi (X) andP j (X) with
rows (columns) indexed byPi (X) (P j (X)). The(A, B)-entry of In(i, j ) is 1 if A ⊆ B and
0 otherwise for anyA ∈ Pi (X) andB ∈ P j (X).

Convention: Throughout the paper, unless otherwise specified, all vector spaces are
assumed to be overFp which we abbreviate asF. Therefore for the sake of brevity
rank(In(i, j )) will denote the rank ofIn(i, j ) considered as a matrix overF.

Alon, Babai and Suzuki [1] proved the following inequality which generalizes the classic
Frankl-Ray-Chaudhuri-Wilson Inequality [3].

Theorem Let p be a prime and K, L be two disjoint subsets of{0, 1, . . . , p − 1}. Let
|K | = r , |L| = s, and assume r(s− r +1) ≤ p−1 and n≥ s+kr where kr is the maximal
element of K . LetF be a family of subsets of an n-element set. Suppose that
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(i) |F | ∈ K (mod p) for each F∈ F;
(ii) |E ∩ F | ∈ L (mod p) for each pair of distinct sets E, F ∈ F .
Then|F | ≤ ( n

s )+ ( n
s− 1)+ · · · + ( n

s− r + 1).

They went on and conjectured that the conditionr (s− r +1) ≤ p−1 in the statement of
the above theorem can be dropped and the conclusion of the theorem will still hold. Snevily
[7] confirmed and improved the conjecture whenn is sufficiently large. He showed that
whenn is sufficiently large, then|F | ≤ ( n

s )+ ( n
s−2)+ ( n

s−4)+ · · · + ( n
s−2bs/2c ). The main

result of this paper is the following theorem which confirms the conjecture of Alon, Babai
and Suzuki to a large extent.

Theorem 1 Let p be a prime number, r, s be two positive integers with2s−r ≤ n, L be an
s-subset of Ip−1∪ {0}and K be an r-subset of Ip−1∪ {0}with L∩ K = ∅. IfF is amodp L-
intersection family and|E| ∈ K (modp),∀E ∈ F, then|F | ≤ ( n

s )+( n
s−1)+· · ·+( n

s−r + 1).

We note that in some instances the condition 2s − r ≤ n holds but Alon, Babai and
Suzuki’s conditionn ≥ s+ kr does not. For instance, ifn = 9, p = 7, K = {2, 5, 6}
andL = {0, 1, 3, 4}, then it is clear that 2s− r = 2 · 4− 3 = 5 ≤ 9 = n, but kr + s =
6+ 4> 9= n. In some other instances, however, the Alon, Babai and Suzuki’s condition
holds but the condition 2s− r ≤ n does not. For example,Y = {1, 2, 3, 4, 5, 6, 7, 8, 9},
p = 7, K = {1}, L = {0, 2, 3, 4, 5, 6}, F = {{9}, {1, 2, 3, 4, 5, 6, 7, 8}}. It is clear that
kr + s= 7< 9 but 2s− r = 11> 9.

2. Proof of Theorem 1

For the proof of the theorem we need the following lemma which is mentioned by Frankl
in [2].

Lemma 1 If 0≤ a ≤ b < p and a+ b ≤ n, then rankp(In(a, b)) = ( n
a ).

Proof: We may assumea 6= 0. The proof is by induction ona + b + n. Note that
a+ b+ n ≥ 4. It is clear that the lemma holds whena+ b+ n = 4.

Suppose it holds whena + b+ n < l . Now we consider the casea + b+ n = l . We
distinguish two cases.

Case 1 a+ b = n. In this case, it is easy to verify thatPb(X) is anL ′-intersection family
with L ′ = {n − 2a, n − 2a + 1, . . . ,n − a − 1} andb = n − a andb 6∈ L ′ (mod p).
Now we use the following result of Frankl and Wilson [3]:

If G ⊆ Pk(X) is a mod p L-intersection family for some set L consisting of non-negative
integers with k6∈ L (mod p) and ( k−i

l−i ) 6≡ 0 (mod p) for i = 0, 1, . . . , l , then|G| ≤
rank(In(l ,G)), where l = |L| and In(l ,G) is a 0-1 incidence matrix whose rows and
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columns are indexed byPl (X) andG respectively and the(A, F)-entry of In(l ,G) is 1 if
A ⊆ F and0 otherwise for any A∈ Pl (X) and F ∈ G.

Notice that if we takeG = Pb(X), thenIn(a,G) = In(a, b). So by the above result we
have( n

b ) = |Pb(X)| ≤ rank(In(a, b)). On the other hand, it is clear thatrank(In(a, b)) ≤
(

n
b ). Sorank(In(a, b)) = ( n

b ), which impliesrank(In(a, b)) = ( n
a ) sinceb = n− a in

this case. This proves the lemma in the first case.
Case 2 a+ b < n. In this case, we partitionPb(X) into two families: one consists of all

thoses-subsets of X not containingxn, the other one consists of all those containingxn.
We do the same thing toPa(X). It is clear that

In(a, b) =
(

In−1(a, b) B

0 In−1(a− 1, b− 1)

)
for some matrixB.

We observe that in this casea+ b ≤ n− 1 anda− 1+ b− 1≤ n− 1. By the induction
hypothesis,rank(In−1(a, b)) = ( n− 1

a ) andrank(In−1(a−1, b−1)) = ( n− 1
a− 1), i.e. both the

rows of In−1(a, b) and the rows ofIn−1(a−1, b−1) are linearly independent. So the rows
of In(a, b) are linearly independent, which implies thatrank(In(a, b)) = ( n

a ) and hence the
proof of the lemma is complete. 2

Remark By Lemma 1, it is clear that the row vectors ofIn(a, b) can be expanded into a
basis ofF(

n
b ) by adding some other( n

b )− ( n
a ) vectors inF(

n
b ).

Following the idea of Ramanan [6], we associate a variablexF for eachF ∈ F . For
I ⊆ X, we define the linear formL I by

L I =
∑

F∈F,I⊆F

xF .

Now let us prove a lemma which is useful in the proof of the theorem.

Lemma 2 For any positive integers u, v with u< v < p and u+ v ≤ n, we have

dim

(
〈L J : J ∈ Pv(X)〉〈∑

J∈Pv(X),I⊆J L J : I ∈ Pu(X)
〉) ≤ (n

v

)
−
(

n

u

)
.

Here A
B is the quotient space of two vector spaces A and B with B⊆ A and〈L J : J ∈ Pv(X)〉

is the vector space spanned by{L J : J ∈ Pv(X)}.

Proof: Let V =〈L J : J ∈ Pv(X)〉. We define the following linear mappingf :F(
n
v )→V

as follows. We view a vector win F(
n
v ) as a mapping fromPv(X) to F. For each vector

w∈F( n
v ) whoseJ’th component isaJ , we definef (w) =∑J∈Pv(X) aJ L J .
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Let W be the vector space generated by the rows ofIn(u, v). It is clear that f is a
surjective map that mapsW to 〈∑J∈Pv(X),I⊆J L J : I ∈ Pu(X)〉. By linear algebra

dim

(
〈L J : J ∈ Pv(X)〉〈∑

J∈Pv(X),I⊆J L J : I ∈ Pu(X)
〉)

≤ dim

(
f
(
F(

n
v )
)

f (W)

)

≤ dim

(
F(

n
v )

W

)

≤
(

n

v

)
−
(

n

v

)
by the above remark.

This proves Lemma 2. 2

Consider the system of linear equations:{
L I = 0, whereI runs through

s⋃
i=0

Pi (X)

}
. (∗)

By the method employed in Qian and Ray-Chaudhuri [4] or [5], we have the following
propostion.

Proposition Assume that L∩ K =∅. If F is an mod p L-intersection family with|E| ∈ K
(mod p) for any E∈ F, then the only solution of the above system of linear equations is
the trivial solution.

Proof: Let (vE) be a solution of (*). We need to show that(vE) is the all-zero solution.
Suppose on the contrary that not all ofvE ’s are 0. LetE0 be an element inF with vE0 6= 0.
Let F be the finite field containingp elements. Since( x

0), (
x
1), . . . , (

x
s ) form a basis for

the vector space spanned by all the polynomials inF(X) of degrees at mosts, there exist
a0,a1, . . . ,as ∈ F with

s∑
i=0

ai

(
x

i

)
=

s∏
j=1

(x − l j ).

We denote
∏s

j=1(x − l j ) by g(x). Next we prove the following identity,

s∑
i=0

ai

∑
I∈Pi (X),I⊆E0

L I =
∑
F∈F

g(|F ∧ E0|)xF .
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We prove it by comparing the coefficients of both sides. For anyF ∈ F , the coefficient of
xF in the left hand side is

s∑
i=0

ai |{I ∈ Pi (X) : I ⊆ E0, I ⊆ F}| =
s∑

i=0

ai

( |F ∧ E0|
i

)
,

which is equal tog(|F ∧ E0|) by the definition ofg(x). This proves the above identity.
SpecializingxE = vE for all E ∈ F in the above identity, we have

s∑
i=0

ai

∑
I∈Pi (X),I⊆E0

L I ((vE)) =
∑
F∈F

g(|F ∧ E0|)vF .

It is clear that left hand side is 0 since(vE) is a solution of (*). ForF ∈ F with F 6= E0,
|F ∧ E0| ∈ L (mod p) and sog(|F ∧ F0|) = 0. So the right hand side of the above identity
is equal tog(|E0|)vE0. So 0= g(|E0|)vE0. SinceL ∩ K = ∅, We haveg(|E0|) 6= 0 and so
vE0 = 0. This is a contradiction to the definition ofE0 and thus it proves the proposition.

2

As a result of this proposition, we have:

|F | ≤ dim

({
L I : I ∈

s⋃
i=0

Pi (X)

})
. (1)

where dim({L I : I ∈⋃s
i=0Pi (X)}) is defined to be the dimension of the space spanned by

{L I : I ∈⋃s
i=0Pi (X)}.

The following lemma is of critical importance in the proof of the theorem.

Lemma 3 For any i ∈ {0, 1, . . . , s − r + 1} and every I∈Pi (X), the linear form∑
H∈Pi+r (X),I⊆H L H is linearly dependent on the set of linear forms{L H : i ≤ |H | ≤

i + r − 1, H ⊆ X} overF.

Proof of Lemma 3: We distinguish two cases.

Case 1 i 6∈ K (mod p). In this case∀kj ∈ K , kj − i 6= 0 inF and soc = (−1)r+1(k1− i )
(k2 − i ) · · · (kr − i ) 6= 0 in F. It is clear that there exista1,a2, . . . ,ar−1 ∈ F, ar = r ! ∈
F− {0} such that

a1

(
x

1

)
+ a2

(
x

2

)
+ · · · + ar

(
x

r

)
= (x − (k1− i ))(x − (k2− i )) · · · (x − (kr − i ))+ c,

since the polynomial in the right hand side has constant term equal to 0.
Next we show that

r∑
j=1

aj

∑
H∈Pi+ j (X),I⊆H

L H = c · L I . (2)
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In fact both sides are linear forms inxE ’s, E ∈ F . The coefficient ofxE in the left
hand side is

∑r
j=1 aj |{H | I ⊆ H ⊆ E, |H | = i + j }|. So it is equal to 0 ifI 6⊆ E and

a1(
|E|−i

1 )+ a2(
|E|−i

2 )+ · · · + ar (
|E|−i

r ) if I ⊆ E. By the above polynomial identity,

a1

( |E| − i

1

)
+ a2

( |E| − i

2

)
+ · · · + ar

( |E| − i

r

)
= (|E| − i − (k1− i ))(|E| − i − (k2− i )) · · · (|E| − i − (kr − i ))+ c

= c since|E| ∈ K (mod p).

The coefficient ofxE ’s in the right hand side is obviously the same. This proves (2).
Writing (2) in a different way, we have

∑
H∈Pi+r (X),I⊆H

L H = 1

r !

(
cLI −

r−1∑
j=1

aj

∑
H∈Pi+ j (X),I⊆H

L H

)

This proves the lemma in case 1.
Case 2 i∈ K (mod p). In this case, the constant term of(x − (k1− i ))(x − (k2− i )) · · ·
(x− (kr − i )) is 0∈ F. So there existsa1,a2, . . . ,ar−1 ∈ F, ar = r ! ∈ F−{0} such that

a1

(
x

1

)
+ a2

(
x

2

)
+ · · ·ar

(
x

r

)
= (x− (k1− i ))(x− (k2− i )) · · · (x− (kr − i )).

As a consequence we have

r∑
j=1

aj

∑
H∈Pi+ j (X),I⊆H

L H = 0 ∀I ∈ Pi (X),

i.e. we have∑
H∈Pi+r (X),I⊆H

L H = − 1

r !

(
r−1∑
j=1

aj

∑
H∈Pi+ j (X),I⊆H

L H

)
∀I ∈ Pi (X).

This finishes the proof of this lemma. 2

From the above lemma, we easily deduce the following corollary.

Corollary With the same condition as in Lemma3, we have〈
L H : H ∈

i+r−1⋃
j=i

PH (X)

〉

=
〈

L H : H ∈
i+r−1⋃

j=i

PH (X)

〉
+
〈 ∑

H∈Pi+r (X),I⊆H

L H : I ∈ Pi (X)

〉
.

Next we prove our last lemma.
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Lemma 4 For any i ∈ {0, 1, . . . , s− r + 1},(
n

i

)
+
(

n

i + 1

)
+
(

n

i + r − 1

)
+ dim

( 〈
L H : H ∈⋃s

j=i P j (X)
〉〈

L H : H ∈⋃i+r−1
j=i P j (X)

〉)

≤
(

n

s− r + 1

)
+
(

n

s− r + 2

)
+ · · · +

(
n

s

)
.

Proof of Lemma 4: We induct ons− r +1− i . It is clearly true whens− r +1− i = 0,
i.e. i = s− r + 1. Suppose the lemma holds fors− r + 1− i < l for some positive
integerl . Now we want to show that it holds fors− r + 1− i = l .

Let us recall two well-known linear algebra facts:

Fact 1. Let A, B, C be vector spaces with C⊆ B. Thendim( A+B
A+C ) ≤ dim( B

C ).
Fact 2. Let C⊆ B ⊆ A be three vector spaces. Thendim( A

C ) = dim( B
C )+ dim( A

B ).

We observe thati + i + r ≤ (s− r )+ (s− r )+ r ≤ n by the condition in the theorem. By
the above corollary, we have

dim

( 〈
L H : H ∈⋃i+r

j=i P j (X)
〉〈

L H : H ∈⋃i+r−1
j=i P j (X)

〉)

= dim

( 〈
L H : H ∈⋃i+r−1

j=i P j (X)
〉+ 〈L H : H ∈ Pi+r (X)〉〈

L H : H ∈⋃i+r−1
j=i P j (X)

〉+ 〈∑H∈Pi+r (X),I⊆H L H : I ∈ Pi (X)
〉)

≤ dim

(
〈L H : H ∈ Pi+r (X)〉〈∑

H∈Pi+r (X),I⊆H L H : I ∈ Pi (X)
〉) by fact 1 above

≤
(

n

i+r

)
−
(

n

i

)
by Lemma 2 withu = i andv = i + r .

In summary, we have

dim

( 〈
L H : H ∈⋃i+r

j=i P j (X)
〉〈

L H : H ∈⋃i+r−1
j=i P j (X)

〉) ≤ ( n

i + r

)
−
(

n

i

)
. (3)

Now we are ready for the key part of the proof of the lemma.(
n

i

)
+
(

n

i + 1

)
+ · · · +

(
n

i + r − 1

)
+ dim

( 〈
L H : H ∈⋃s

j=i P j (X)
〉〈

L H : H ∈⋃i+r−1
j=i P j (X)

〉)

=
(

n

i

)
+
(

n

i + 1

)
+ · · · +

(
n

i + r − 1

)
+ dim

( 〈
L H : H ∈⋃i+r

j=i P j (X)
〉〈

L H : H ∈⋃i+r−1
j=i P j (X)

〉)

+ dim

(〈
L H : H ∈⋃s

j=i P j (X)
〉〈

L H : H ∈⋃i+r
j=i P j (X)

〉) by fact 2 above
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=
(

n

i

)
+
(

n

i + 1

)
+ · · · +

(
n

i + r − 1

)
+ dim

( 〈
L H : H ∈⋃i+r

j=i P j (X)
〉〈

L H : H ∈⋃i+r−1
j=i P j (X)

〉)

+ dim

( 〈L H : H ∈ Pi (X)〉 +
〈
L H : H ∈⋃s

j=i+1P j (X)
〉

〈L H : H ∈ Pi (X)〉 +
〈
L H : H ∈⋃i+r

j=i+1P j (X)
〉)

≤
(

n

i

)
+
(

n

i + 1

)
+ · · · +

(
n

i + r − 1

)
+ dim

( 〈
L H : H ∈⋃i+r

j=i P j (X)
〉〈

L H : H ∈⋃i+r−1
j=i P j (X)

〉)

+ dim

(〈
L H : H ∈⋃s

j=i+1P j (X)
〉〈

L H : H ∈⋃i+r
j=i+1P j (X)

〉) by fact 1 above

≤
(

n

i

)
+
(

n

i + 1

)
+ · · · +

(
n

i + r − 1

)
+
(

n

i + r

)
−
(

n

i

)
by (3) above

+ dim

(〈
L H : H ∈⋃s

j=i+1P j (X)
〉〈

L H : H ∈⋃i+r
j=i+1P j (X)

〉)

=
(

n

i + 1

)
+ · · · +

(
n

i + r

)
+ dim

(〈
L H : H ∈⋃s

j=i+1P j (X)
〉〈

L H : H ∈⋃i+r
j=i+1P j (X)

〉)

≤
(

n

s− r + 1

)
+ · · · +

(
n

s

)
,

where the last step is by the induction hypothesis sinces− r +1− (i +1)〈s− r +1− i = l .
This completes the proof of the Lemma 4.

Now it is easy to prove Theorem 1. By (1) we have

|F | ≤ dim

(〈
L H : H ∈

s⋃
i=0

Pi (X)

〉)

≤ dim

(〈
L H : H ∈

r−1⋃
i=0

Pi (X)

〉)

+ dim

(〈
L H : H ∈⋃s

j=0P j (X)
〉〈

L H : H ∈⋃r−1
j=0P j (X)

〉) by fact 2 above

≤
(

n

0

)
+
(

n

1

)
+
(

n

r − 1

)
+ dim

(〈
L H : H ∈⋃s

j=0P j (X)
〉〈

L H : H ∈⋃r−1
j=0P j (X)

〉)

≤
(

n

s− r + 1

)
+
(

n

s− r + 2

)
+ · · · +

(
n

s

)
by takingi = 0 in Lemma 4,

which completes the proof of the theorem. 2
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