On Mod-p Alon-Babai-Suzuki Inequality

JIN QIAN
qian@math.ohio-state.edu
D.K. RAY-CHAUDHURI
dijen@math.ohio-state.edu

Department of Mathematics, The Ohio State University
Received October 15, 1998; Revised April 27, 1999

Abstract. Alon, Babai and Suzuki proved the following theorem:
Let p be a prime and let K, L be two disjoint subsets of $\{0,1, \ldots, p-1\}$. Let $|K|=r,|L|=s$, and assume $r(s-r+1) \leq p-1$ and $n \geq s+k_{r}$ where k_{r} is the maximal element of K. Let \mathcal{F} be a family of subsets of an n-element set. Suppose that
(i) $|F| \in K(\bmod p)$ for each $F \in \mathcal{F}$;
(ii) $|E \cap F| \in L(\bmod p)$ for each pair of distinct sets $E, F \in \mathcal{F}$.

Then $|\mathcal{F}| \leq\binom{ n}{s}+\binom{n}{s-1}+\cdots+\binom{n}{s-r+1}$.

They conjectured that the condition that $r(s-r+1) \leq p-1$ in the theorem can be dropped and the same conclusion should hold. In this paper we prove that the same conclusion holds if the two conditions in the theorem, i.e. $r(s-r+1) \leq p-1$ and $n \geq s+k_{r}$ are replaced by a single more relaxed condition $2 s-r \leq n$.

Keywords: combinatorial, inequality

1. Introduction

In this paper, we let n be a positive integer, $I_{n}=\{1,2, \ldots, n\}, X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be an n-element set, p be a prime number and $L \subseteq I_{p-1} \cup\{0\}=\{0,1, \ldots, p-1\}$ be an s-element set for some positive integer $s<p$. We call a family \mathcal{F} of subsets of X a $\bmod p$ L-intersection family if $|E \cap F| \in L(\bmod p), \forall E, F \in \mathcal{F}$ with $E \neq F$. Here $n \in L(\bmod p)$ means there exists $l \in L$ for which $n \equiv l(\bmod p)$.
For any $0 \leq i \leq j \leq n$, let $I_{n}(i, j)$ be the 0 -1 incidence matrix of $\mathbb{P}_{i}(X)$ and $\mathbb{P}_{j}(X)$ with rows (columns) indexed by $\mathbb{P}_{i}(X)\left(\mathbb{P}_{j}(X)\right.$). The (A, B)-entry of $I_{n}(i, j)$ is 1 if $A \subseteq B$ and 0 otherwise for any $A \in \mathbb{P}_{i}(X)$ and $B \in \mathbb{P}_{j}(X)$.
Convention: Throughout the paper, unless otherwise specified, all vector spaces are assumed to be over \mathbb{F}_{p} which we abbreviate as \mathbb{F}. Therefore for the sake of brevity $\operatorname{rank}\left(I_{n}(i, j)\right)$ will denote the rank of $I_{n}(i, j)$ considered as a matrix over \mathbb{F}.
Alon, Babai and Suzuki [1] proved the following inequality which generalizes the classic Frankl-Ray-Chaudhuri-Wilson Inequality [3].

Theorem Let p be a prime and K, L be two disjoint subsets of $\{0,1, \ldots, p-1\}$. Let $|K|=r,|L|=s$, and assume $r(s-r+1) \leq p-1$ and $n \geq s+k_{r}$ where k_{r} is the maximal element of K. Let \mathcal{F} be a family of subsets of an n-element set. Suppose that
(i) $|F| \in K(\bmod p)$ for each $F \in \mathcal{F}$;
(ii) $|E \cap F| \in L(\bmod p)$ for each pair of distinct sets $E, F \in \mathcal{F}$.

Then $|\mathcal{F}| \leq\binom{ n}{s}+\binom{n}{s-1}+\cdots+\binom{n}{s-r+1}$.
They went on and conjectured that the condition $r(s-r+1) \leq p-1$ in the statement of the above theorem can be dropped and the conclusion of the theorem will still hold. Snevily [7] confirmed and improved the conjecture when n is sufficiently large. He showed that when n is sufficiently large, then $|\mathcal{F}| \leq\binom{ n}{s}+\binom{n}{s-2}+\binom{n}{s-4}+\cdots+\left(\begin{array}{c}n-2\lfloor s / 2\rfloor\end{array}\right)$. The main result of this paper is the following theorem which confirms the conjecture of Alon, Babai and Suzuki to a large extent.

Theorem 1 Let p be a prime number, r, s be two positive integers with $2 s-r \leq n, L$ be an s-subset of $I_{p-1} \cup\{0\}$ and K be an r-subset of $I_{p-1} \cup\{0\}$ with $L \cap K=\emptyset$. If \mathcal{F} is a $\bmod p L$ intersectionfamily and $|E| \in K(\bmod p), \forall E \in \mathcal{F}$, then $|\mathcal{F}| \leq\binom{ n}{s}+\binom{n}{s-1}+\cdots+\binom{n}{s-r+1}$.

We note that in some instances the condition $2 s-r \leq n$ holds but Alon, Babai and Suzuki's condition $n \geq s+k_{r}$ does not. For instance, if $n=9, p=7, K=\{2,5,6\}$ and $L=\{0,1,3,4\}$, then it is clear that $2 s-r=2 \cdot 4-3=5 \leq 9=n$, but $k_{r}+s=$ $6+4>9=n$. In some other instances, however, the Alon, Babai and Suzuki's condition holds but the condition $2 s-r \leq n$ does not. For example, $Y=\{1,2,3,4,5,6,7,8,9\}$, $p=7, K=\{1\}, L=\{0,2,3,4,5,6\}, \mathcal{F}=\{\{9\},\{1,2,3,4,5,6,7,8\}\}$. It is clear that $k_{r}+s=7<9$ but $2 s-r=11>9$.

2. Proof of Theorem 1

For the proof of the theorem we need the following lemma which is mentioned by Frankl in [2].

Lemma 1 If $0 \leq a \leq b<p$ and $a+b \leq n$, then $\operatorname{rank}_{p}\left(I_{n}(a, b)\right)=\binom{n}{a}$.
Proof: We may assume $a \neq 0$. The proof is by induction on $a+b+n$. Note that $a+b+n \geq 4$. It is clear that the lemma holds when $a+b+n=4$.

Suppose it holds when $a+b+n<l$. Now we consider the case $a+b+n=l$. We distinguish two cases.

Case $1 a+b=n$. In this case, it is easy to verify that $\mathbb{P}_{b}(X)$ is an L^{\prime}-intersection family with $L^{\prime}=\{n-2 a, n-2 a+1, \ldots, n-a-1\}$ and $b=n-a$ and $b \notin L^{\prime}(\bmod p)$. Now we use the following result of Frankl and Wilson [3]:

IfG $\subseteq \mathbb{P}_{k}(X)$ is a $\bmod p$ L-intersectionfamilyfor some set L consisting ofnon-negative integers with $k \notin L(\bmod p)$ and $\binom{k-i}{l-i} \not \equiv 0(\bmod p)$ for $i=0,1, \ldots, l$, then $|\mathcal{G}| \leq$ $\operatorname{rank}\left(I_{n}(l, \mathcal{G})\right)$, where $l=|L|$ and $I_{n}(l, \mathcal{G})$ is a $0-1$ incidence matrix whose rows and
columns are indexed by $\mathbb{P}_{l}(X)$ and \mathcal{G} respectively and the (A, F)-entry of $I_{n}(l, \mathcal{G})$ is 1 if $A \subseteq F$ and 0 otherwise for any $A \in \mathbb{P}_{l}(X)$ and $F \in \mathcal{G}$.

Notice that if we take $\mathcal{G}=\mathbb{P}_{b}(X)$, then $I_{n}(a, \mathcal{G})=I_{n}(a, b)$. So by the above result we have $\binom{n}{b}=\left|\mathbb{P}_{b}(X)\right| \leq \operatorname{rank}\left(I_{n}(a, b)\right)$. On the other hand, it is clear that $\operatorname{rank}\left(I_{n}(a, b)\right) \leq$ $\binom{n}{b}$. So $\operatorname{rank}\left(I_{n}(a, b)\right)=\binom{n}{b}$, which implies $\operatorname{rank}\left(I_{n}(a, b)\right)=\binom{n}{a}$ since $b=n-a$ in this case. This proves the lemma in the first case.
Case $2 a+b<n$. In this case, we partition $\mathbb{P}_{b}(X)$ into two families: one consists of all those s-subsets of X not containing x_{n}, the other one consists of all those containing x_{n}. We do the same thing to $\mathbb{P}_{a}(X)$. It is clear that

$$
I_{n}(a, b)=\left(\begin{array}{cc}
I_{n-1}(a, b) & B \\
0 & I_{n-1}(a-1, b-1)
\end{array}\right) \quad \text { for some matrix } B
$$

We observe that in this case $a+b \leq n-1$ and $a-1+b-1 \leq n-1$. By the induction hypothesis, $\operatorname{rank}\left(I_{n-1}(a, b)\right)=\binom{n-1}{a}$ and $\operatorname{rank}\left(I_{n-1}(a-1, b-1)\right)=\binom{n-1}{a-1}$, i.e. both the rows of $I_{n-1}(a, b)$ and the rows of $I_{n-1}(a-1, b-1)$ are linearly independent. So the rows of $I_{n}(a, b)$ are linearly independent, which implies that $\operatorname{rank}\left(I_{n}(a, b)\right)=\binom{n}{a}$ and hence the proof of the lemma is complete.

Remark By Lemma 1, it is clear that the row vectors of $I_{n}(a, b)$ can be expanded into a basis of $\mathbb{F}^{\binom{n}{b}}$ by adding some other $\binom{n}{b}-\binom{n}{a}$ vectors in $\mathbb{F}^{\binom{n}{b}}$.

Following the idea of Ramanan [6], we associate a variable x_{F} for each $F \in \mathcal{F}$. For $I \subseteq X$, we define the linear form L_{I} by

$$
L_{I}=\sum_{F \in \mathcal{F}, I \subseteq F} x_{F} .
$$

Now let us prove a lemma which is useful in the proof of the theorem.
Lemma 2 For any positive integers u, v with $u<v<p$ and $u+v \leq n$, we have

$$
\operatorname{dim}\left(\frac{\left\langle L_{J}: J \in \mathbb{P}_{v}(X)\right\rangle}{\left\langle\sum_{J \in \mathbb{P}_{v}(X), I \subseteq J} L_{J}: I \in \mathbb{P}_{u}(X)\right\rangle}\right) \leq\binom{ n}{v}-\binom{n}{u} .
$$

Here $\frac{A}{B}$ is the quotient space of two vector spaces A and B with $B \subseteq A$ and $\left\langle L_{J}: J \in \mathbb{P}_{v}(X)\right\rangle$ is the vector space spanned by $\left\{L_{J}: J \in \mathbb{P}_{v}(X)\right\}$.

Proof: Let $V=\left\langle L_{J}: J \in \mathbb{P}_{v}(X)\right\rangle$. We define the following linear mapping $\left.f: \mathbb{F}^{(}{ }_{v}^{n}\right) \rightarrow V$ as follows. We view a vector $\underline{\mathrm{w}}$ in $\left.\mathbb{F}^{(}{ }_{v}^{n}\right)$ as a mapping from $\mathbb{P}_{v}(X)$ to \mathbb{F}. For each vector $\underline{\mathrm{w}} \in \mathbb{F}^{\binom{n}{v}}$ whose J 'th component is a_{J}, we define $f(\underline{\mathrm{w}})=\sum_{J \in \mathbb{P}_{v}(X)} a_{J} L_{J}$.

Let W be the vector space generated by the rows of $I_{n}(u, v)$. It is clear that f is a surjective map that maps W to $\left\langle\sum_{J \in \mathbb{P}_{v}(X), I \subseteq J} L_{J}: I \in \mathbb{P}_{u}(X)\right\rangle$. By linear algebra

$$
\begin{aligned}
& \operatorname{dim}\left(\frac{\left\langle L_{J}: J \in \mathbb{P}_{v}(X)\right\rangle}{\left\langle\sum_{J \in \mathbb{P}_{v}(X), I \subseteq J} L_{J}: I \in \mathbb{P}_{u}(X)\right\rangle}\right) \\
& \leq \operatorname{dim}\left(\frac{f\left(\mathbb{F}^{(n)} v\right.}{f(W)}\right) \\
& \leq \operatorname{dim}\left(\frac{\left.\mathbb{F}^{(n} v_{v}^{n}\right)}{W}\right) \\
& \leq\binom{ n}{v}-\binom{n}{v} \quad \text { by the above remark. }
\end{aligned}
$$

This proves Lemma 2.

Consider the system of linear equations:

$$
\begin{equation*}
\left\{L_{I}=0, \quad \text { where } I \text { runs through } \bigcup_{i=0}^{s} \mathbb{P}_{i}(X)\right\} \tag{*}
\end{equation*}
$$

By the method employed in Qian and Ray-Chaudhuri [4] or [5], we have the following propostion.

Proposition Assume that $L \cap K=\emptyset$. If \mathcal{F} is an mod p L-intersection family with $|E| \in K$ $(\bmod p)$ for any $E \in \mathcal{F}$, then the only solution of the above system of linear equations is the trivial solution.

Proof: Let $\left(v_{E}\right)$ be a solution of $(*)$. We need to show that $\left(v_{E}\right)$ is the all-zero solution. Suppose on the contrary that not all of v_{E} 's are 0 . Let E_{0} be an element in \mathcal{F} with $v_{E_{0}} \neq 0$. Let \mathbb{F} be the finite field containing p elements. Since $\binom{x}{0},\binom{x}{1}, \ldots,\binom{x}{s}$ form a basis for the vector space spanned by all the polynomials in $\mathbb{F}(X)$ of degrees at most s, there exist $a_{0}, a_{1}, \ldots, a_{s} \in \mathbb{F}$ with

$$
\sum_{i=0}^{s} a_{i}\binom{x}{i}=\prod_{j=1}^{s}\left(x-l_{j}\right)
$$

We denote $\prod_{j=1}^{s}\left(x-l_{j}\right)$ by $g(x)$. Next we prove the following identity,

$$
\sum_{i=0}^{s} a_{i} \sum_{I \in \mathbb{P}_{i}(X), I \subseteq E_{0}} L_{I}=\sum_{F \in \mathcal{F}} g\left(\left|F \wedge E_{0}\right|\right) x_{F}
$$

We prove it by comparing the coefficients of both sides. For any $F \in \mathcal{F}$, the coefficient of x_{F} in the left hand side is

$$
\sum_{i=0}^{s} a_{i}\left|\left\{I \in \mathbb{P}_{i}(X): I \subseteq E_{0}, I \subseteq F\right\}\right|=\sum_{i=0}^{s} a_{i}\binom{\left|F \wedge E_{0}\right|}{i}
$$

which is equal to $g\left(\left|F \wedge E_{0}\right|\right)$ by the definition of $g(x)$. This proves the above identity.
Specializing $x_{E}=v_{E}$ for all $E \in \mathcal{F}$ in the above identity, we have

$$
\sum_{i=0}^{s} a_{i} \sum_{I \in \mathbb{P}_{i}(X), I \subseteq E_{0}} L_{I}\left(\left(v_{E}\right)\right)=\sum_{F \in \mathcal{F}} g\left(\left|F \wedge E_{0}\right|\right) v_{F} .
$$

It is clear that left hand side is 0 since $\left(v_{E}\right)$ is a solution of $(*)$. For $F \in \mathcal{F}$ with $F \neq E_{0}$, $\left|F \wedge E_{0}\right| \in L(\bmod p)$ and so $g\left(\left|F \wedge F_{0}\right|\right)=0$. So the right hand side of the above identity is equal to $g\left(\left|E_{0}\right|\right) v_{E_{0}}$. So $0=g\left(\left|E_{0}\right|\right) v_{E_{0}}$. Since $L \cap K=\emptyset$, We have $g\left(\left|E_{0}\right|\right) \neq 0$ and so $v_{E_{0}}=0$. This is a contradiction to the definition of E_{0} and thus it proves the proposition.

As a result of this proposition, we have:

$$
\begin{equation*}
|\mathcal{F}| \leq \operatorname{dim}\left(\left\{L_{I}: I \in \bigcup_{i=0}^{s} \mathbb{P}_{i}(X)\right\}\right) \tag{1}
\end{equation*}
$$

where $\operatorname{dim}\left(\left\{L_{I}: I \in \bigcup_{i=0}^{s} \mathbb{P}_{i}(X)\right\}\right)$ is defined to be the dimension of the space spanned by $\left\{L_{I}: I \in \bigcup_{i=0}^{s} \mathbb{P}_{i}(X)\right\}$.

The following lemma is of critical importance in the proof of the theorem.
Lemma 3 For any $i \in\{0,1, \ldots, s-r+1\}$ and every $I \in \mathbb{P}_{i}(X)$, the linear form $\sum_{H \in \mathbb{P}_{i+r}(X), I \subseteq H} L_{H}$ is linearly dependent on the set of linear forms $\left\{L_{H}: i \leq|H| \leq\right.$ $i+r-1, H \subseteq X\}$ over \mathbb{F}.

Proof of Lemma 3: We distinguish two cases.
Case $1 \quad i \notin K(\bmod p)$. In this case $\forall k_{j} \in K, k_{j}-i \neq 0$ in \mathbb{F} and so $c=(-1)^{r+1}\left(k_{1}-i\right)$ $\left(k_{2}-i\right) \cdots\left(k_{r}-i\right) \neq 0$ in \mathbb{F}. It is clear that there exist $a_{1}, a_{2}, \ldots, a_{r-1} \in \mathbb{F}, a_{r}=r!\in$ $\mathbb{F}-\{0\}$ such that

$$
\begin{aligned}
& a_{1}\binom{x}{1}+a_{2}\binom{x}{2}+\cdots+a_{r}\binom{x}{r} \\
& \quad=\left(x-\left(k_{1}-i\right)\right)\left(x-\left(k_{2}-i\right)\right) \cdots\left(x-\left(k_{r}-i\right)\right)+c,
\end{aligned}
$$

since the polynomial in the right hand side has constant term equal to 0 .
Next we show that

$$
\begin{equation*}
\sum_{j=1}^{r} a_{j} \sum_{H \in \mathbb{P}_{i+j}(X), I \subseteq H} L_{H}=c \cdot L_{I} . \tag{2}
\end{equation*}
$$

In fact both sides are linear forms in x_{E} 's, $E \in \mathcal{F}$. The coefficient of x_{E} in the left hand side is $\sum_{j=1}^{r} a_{j}|\{H|I \subseteq H \subseteq E,|H|=i+j\} \mid$. So it is equal to 0 if $I \nsubseteq E$ and $a_{1}\binom{|E|-i}{1}+a_{2}\binom{|E|-i}{2}+\cdots+a_{r}\binom{(E \mid-i}{r}$ if $I \subseteq E$. By the above polynomial identity,

$$
\begin{aligned}
& a_{1}\binom{|E|-i}{1}+a_{2}\binom{|E|-i}{2}+\cdots+a_{r}\binom{|E|-i}{r} \\
& \quad=\left(|E|-i-\left(k_{1}-i\right)\right)\left(|E|-i-\left(k_{2}-i\right)\right) \cdots\left(|E|-i-\left(k_{r}-i\right)\right)+c \\
& \quad=c \quad \text { since }|E| \in K(\bmod p) .
\end{aligned}
$$

The coefficient of x_{E} 's in the right hand side is obviously the same. This proves (2).
Writing (2) in a different way, we have

$$
\sum_{H \in \mathbb{P}_{i+r}(X), I \subseteq H} L_{H}=\frac{1}{r!}\left(c L_{I}-\sum_{j=1}^{r-1} a_{j} \sum_{H \in \mathbb{P}_{i+j}(X), I \subseteq H} L_{H}\right)
$$

This proves the lemma in case 1.
Case $2 i \in K(\bmod p)$. In this case, the constant term of $\left(x-\left(k_{1}-i\right)\right)\left(x-\left(k_{2}-i\right)\right) \cdots$ $\left(x-\left(k_{r}-i\right)\right)$ is $0 \in \mathbb{F}$. So there exists $a_{1}, a_{2}, \ldots, a_{r-1} \in \mathbb{F}, a_{r}=r!\in \mathbb{F}-\{0\}$ such that

$$
a_{1}\binom{x}{1}+a_{2}\binom{x}{2}+\cdots a_{r}\binom{x}{r}=\left(x-\left(k_{1}-i\right)\right)\left(x-\left(k_{2}-i\right)\right) \cdots\left(x-\left(k_{r}-i\right)\right) .
$$

As a consequence we have

$$
\sum_{j=1}^{r} a_{j} \sum_{H \in \mathbb{P}_{i+j}(X), I \subseteq H} L_{H}=0 \quad \forall I \in \mathbb{P}_{i}(X),
$$

i.e. we have

$$
\sum_{H \in \mathbb{P}_{i+r}(X), I \subseteq H} L_{H}=-\frac{1}{r!}\left(\sum_{j=1}^{r-1} a_{j} \sum_{H \in \mathbb{P}_{i+j}(X), I \subseteq H} L_{H}\right) \quad \forall I \in \mathbb{P}_{i}(X) .
$$

This finishes the proof of this lemma.
From the above lemma, we easily deduce the following corollary.
Corollary With the same condition as in Lemma 3, we have

$$
\begin{aligned}
& \left\langle L_{H}: H \in \bigcup_{j=i}^{i+r-1} \mathbb{P}_{H}(X)\right\rangle \\
& \quad=\left\langle L_{H}: H \in \bigcup_{j=i}^{i+r-1} \mathbb{P}_{H}(X)\right\rangle+\left\langle\sum_{H \in \mathbb{P}_{i+r}(X), I \subseteq H} L_{H}: I \in \mathbb{P}_{i}(X)\right\rangle
\end{aligned}
$$

Next we prove our last lemma.

Lemma 4 For any $i \in\{0,1, \ldots, s-r+1\}$,

$$
\begin{aligned}
& \binom{n}{i}+\binom{n}{i+1}+\binom{n}{i+r-1}+\operatorname{dim}\left(\frac{\left\langle L_{H}: H \in \bigcup_{j=i}^{s} \mathbb{P}_{j}(X)\right\rangle}{\left\langle L_{H}: H \in \bigcup_{j=i}^{i+r-1} \mathbb{P}_{j}(X)\right\rangle}\right) \\
& \quad \leq\binom{ n}{s-r+1}+\binom{n}{s-r+2}+\cdots+\binom{n}{s}
\end{aligned}
$$

Proof of Lemma 4: We induct on $s-r+1-i$. It is clearly true when $s-r+1-i=0$, i.e. $i=s-r+1$. Suppose the lemma holds for $s-r+1-i<l$ for some positive integer l. Now we want to show that it holds for $s-r+1-i=l$.

Let us recall two well-known linear algebra facts:
Fact 1. Let A, B, C be vector spaces with $C \subseteq B$. Then $\operatorname{dim}\left(\frac{A+B}{A+C}\right) \leq \operatorname{dim}\left(\frac{B}{C}\right)$.
Fact 2. Let $C \subseteq B \subseteq A$ be three vector spaces. Then $\operatorname{dim}\left(\frac{A}{C}\right) \stackrel{A+C}{=} \operatorname{dim}\left(\frac{B}{C}\right)+\operatorname{dim}\left(\frac{A}{B}\right)$.
We observe that $i+i+r \leq(s-r)+(s-r)+r \leq n$ by the condition in the theorem. By the above corollary, we have

$$
\begin{aligned}
& \operatorname{dim}\left(\frac{\left\langle L_{H}: H \in \bigcup_{j=i}^{i+r} \mathbb{P}_{j}(X)\right\rangle}{\left\langle L_{H}: H \in \bigcup_{j=i}^{i+r-1} \mathbb{P}_{j}(X)\right\rangle}\right) \\
& \quad=\operatorname{dim}\left(\frac{\left\langle L_{H}: H \in \bigcup_{j=i}^{i+r-1} \mathbb{P}_{j}(X)\right\rangle+\left\langle L_{H}: H \in \mathbb{P}_{i+r}(X)\right\rangle}{\left\langle L_{H}: H \in \bigcup_{j=i}^{i+r-1} \mathbb{P}_{j}(X)\right\rangle+\left\langle\sum_{H \in \mathbb{P}_{i+r}(X), I \subseteq H} L_{H}: I \in \mathbb{P}_{i}(X)\right\rangle}\right) \\
& \quad \leq \operatorname{dim}\left(\frac{\left\langle L_{H}: H \in \mathbb{P}_{i+r}(X)\right\rangle}{\left\langle\sum_{H \in \mathbb{P}_{i+r}(X), I \subseteq H} L_{H}: I \in \mathbb{P}_{i}(X)\right\rangle}\right) \text { by fact } 1 \text { above } \\
& \quad \leq\binom{ n}{i+r}-\binom{n}{i} \quad \text { by Lemma } 2 \text { with } u=i \text { and } v=i+r .
\end{aligned}
$$

In summary, we have

$$
\begin{equation*}
\operatorname{dim}\left(\frac{\left\langle L_{H}: H \in \bigcup_{j=i}^{i+r} \mathbb{P}_{j}(X)\right\rangle}{\left\langle L_{H}: H \in \bigcup_{j=i}^{i+r-1} \mathbb{P}_{j}(X)\right\rangle}\right) \leq\binom{ n}{i+r}-\binom{n}{i} \tag{3}
\end{equation*}
$$

Now we are ready for the key part of the proof of the lemma.

$$
\begin{aligned}
& \binom{n}{i}+\binom{n}{i+1}+\cdots+\binom{n}{i+r-1}+\operatorname{dim}\left(\frac{\left\langle L_{H}: H \in \bigcup_{j=i}^{s} \mathbb{P}_{j}(X)\right\rangle}{\left\langle L_{H}: H \in \bigcup_{j=i}^{i+r-1} \mathbb{P}_{j}(X)\right\rangle}\right) \\
& =\binom{n}{i}+\binom{n}{i+1}+\cdots+\binom{n}{i+r-1}+\operatorname{dim}\left(\frac{\left\langle L_{H}: H \in \bigcup_{j=1}^{i+r} \mathbb{P}_{j}(X)\right\rangle}{\left\langle L_{H}: H \in \bigcup_{j=i}^{i+r-1} \mathbb{P}_{j}(X)\right\rangle}\right) \\
& \quad+\operatorname{dim}\left(\frac{\left\langle L_{H}: H \in \bigcup_{j=1}^{s} \mathbb{P}_{j}(X)\right\rangle}{\left\langle L_{H}: H \in \bigcup_{j=i}^{i+r} \mathbb{P}_{j}(X)\right\rangle}\right) \quad \text { by fact } 2 \text { above }
\end{aligned}
$$

$$
\begin{aligned}
= & \binom{n}{i}+\binom{n}{i+1}+\cdots+\binom{n}{i+r-1}+\operatorname{dim}\left(\frac{\left\langle L_{H}: H \in \bigcup_{j=i}^{i+r} \mathbb{P}_{j}(X)\right\rangle}{\left\langle L_{H}: H \in \bigcup_{j=i}^{i+r-1} \mathbb{P}_{j}(X)\right\rangle}\right) \\
& +\operatorname{dim}\left(\frac{\left\langle L_{H}: H \in \mathbb{P}_{i}(X)\right\rangle+\left\langle L_{H}: H \in \bigcup_{j=i+1}^{s} \mathbb{P}_{j}(X)\right\rangle}{\left\langle L_{H}: H \in \mathbb{P}_{i}(X)\right\rangle+\left\langle L_{H}: H \in \bigcup_{j=i+1}^{i+r} \mathbb{P}_{j}(X)\right\rangle}\right) \\
\leq & \binom{n}{i}+\binom{n}{i+1}+\cdots+\binom{n}{i+r-1}+\operatorname{dim}\left(\frac{\left\langle L_{H}: H \in \bigcup_{j=i}^{i+r} \mathbb{P}_{j}(X)\right\rangle}{\left\langle L_{H}: H \in \bigcup_{j=i}^{i+r-1} \mathbb{P}_{j}(X)\right\rangle}\right) \\
& +\operatorname{dim}\left(\frac{\left\langle L_{H}: H \in \bigcup_{j=i+1}^{s} \mathbb{P}_{j}(X)\right\rangle}{\left\langle L_{H}: H \in \bigcup_{j=i+1}^{i+r} \mathbb{P}_{j}(X)\right\rangle}\right) \text { by fact } 1 \text { above } \\
\leq & \binom{n}{i}+\binom{n}{i+1}+\cdots+\binom{n}{i+r-1}+\binom{n}{i+r}-\binom{n}{i} \quad \text { by }(3) \text { above } \\
& +\operatorname{dim}\left(\frac{\left\langle L_{H}: H \in \bigcup_{j=i+1}^{s} \mathbb{P}_{j}(X)\right\rangle}{\left\langle L_{H}: H \in \bigcup_{j=i+1}^{i+r} \mathbb{P}_{j}(X)\right\rangle}\right) \\
= & \binom{n}{i+1}+\cdots+\binom{n}{i+r}+\operatorname{dim}\left(\frac{\left\langle L_{H}: H \in \bigcup_{j=i+1}^{s} \mathbb{P}_{j}(X)\right\rangle}{\left\langle L_{H}: H \in \bigcup_{j=i+1}^{i+r} \mathbb{P}_{j}(X)\right\rangle}\right) \\
\leq & \binom{n}{s-r+1}+\cdots+\binom{n}{s},
\end{aligned}
$$

where the last step is by the induction hypothesis since $s-r+1-(i+1)\langle s-r+1-i=l$. This completes the proof of the Lemma 4.

Now it is easy to prove Theorem 1. By (1) we have

$$
\begin{aligned}
|\mathcal{F}| & \leq \operatorname{dim}\left(\left\langle L_{H}: H \in \bigcup_{i=0}^{s} \mathbb{P}_{i}(X)\right\rangle\right) \\
\leq & \operatorname{dim}\left(\left\langle L_{H}: H \in \bigcup_{i=0}^{r-1} \mathbb{P}_{i}(X)\right\rangle\right) \\
& +\operatorname{dim}\left(\frac{\left\langle L_{H}: H \in \bigcup_{j=0}^{s} \mathbb{P}_{j}(X)\right\rangle}{\left\langle L_{H}: H \in \bigcup_{j=0}^{r-1} \mathbb{P}_{j}(X)\right\rangle}\right) \quad \text { by fact } 2 \text { above } \\
\leq & \binom{n}{0}+\binom{n}{1}+\binom{n}{r-1}+\operatorname{dim}\left(\frac{\left\langle L_{H}: H \in \bigcup_{j=0}^{s} \mathbb{P}_{j}(X)\right\rangle}{\left\langle L_{H}: H \in \bigcup_{j=0}^{r-1} \mathbb{P}_{j}(X)\right\rangle}\right) \\
\leq & \binom{n}{s-r+1}+\binom{n}{s-r+2}+\cdots+\binom{n}{s} \quad \text { by taking } i=0 \text { in Lemma 4, }
\end{aligned}
$$

which completes the proof of the theorem.

References

1. N. Alon, L, Babai, and H. Suzuki, "Multilinear polynomials and Frankl-Ray-Chaudhuri-Wilson type intersection theorems," J. Combinatorial Theory (A) 58 (1991), 165-180.
2. P. Frankl, "Intersection theorems and mod p rank inclusion matrices," J. Combinatorial Theory (A) $\mathbf{5 4}$ (1990), 85-94.
3. P. Frankl and R.M. Wilson, "Intersection theorem with geometric consequences," Combinatorica 1(4) (1981), 357-368.
4. J. Qian and D.K. Ray-Chaudhuri, "Frankl-Füredi type inequalities for polynomial semi-lattices," Electronic Journal of Combinatorics 4 (1997), 28.
5. J. Qian and D.K. Ray-Chaudhuri, "Extremal case of Frankl-Ray-Chaudhuri-Wilson inequality," J. Statist. Plann. Inference, to be published.
6. G.V. Ramanan, "Proof of a conjecture of Frankl and Füredi," J. Combin. Theory Ser. A 79(1) (1997), 53-67.
7. H.S. Snevily, "On Generalizations of the deBruijn-Erdos Theorem," JCT-A 68(1) (1994), 237-238.
