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Abstract. Alon, Babai and Suzuki proved the following theorem:

Let p be a prime and let KL be two disjoint subsets ¢0, 1, ..., p — 1}. Let|K| =r, |[L| = s, and assume
r(s—r+1) < p-—1landn> s+ k: where k is the maximal element of K. L&t be a family of subsets of an
n-element set. Suppose that

(i) |F| € K (mod p) for each Fe F;
(i) |ENF| e L (mod p) for each pair of distinct sets BF € F.

ThenlF| < (9) + (g) + -+ (g_rrq):

They conjectured that the condition thas —r + 1) < p — 1 in the theorem can be dropped and the same
conclusion should hold. In this paper we prove that the same conclusion holds if the two conditions in the
theoremi.e.r(s—r +1) < p—1andn > s+ k: are replaced by a single more relaxed conditier-2 < n.
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1. Introduction

In this paper, we leh be a positive integerl, = {1,2,...,n}, X = {Xg, X2, ..., Xn}
be ann-element setp be a prime number and € [,_1U{0} = {0,1,..., p— 1} be
an s-element set for some positive integee p. We call a familyF of subsets ofX a
mod p L-intersection familyif |[E N F| € L (mod p), VE, F € F with E # F. Here
n € L(mod p) means there existse L for whichn = I (mod p).

Forany O<i < j <n,letl,(, j) be the 0-1 incidence matrix & (X) andP; (X) with
rows (columns) indexed ; (X) (P; (X)). The(A, B)-entry of 4@, j)is1if A< B and
0 otherwise for anyA € P; (X) andB € P;(X).

Convention Throughout the paper, unless otherwise specified, all vector spaces are
assumed to be ovef, which we abbreviate a§. Therefore for the sake of brevity
rank(l,(i, j)) will denote the rank of (i, j) considered as a matrix over

Alon, Babai and Suzuki [1] proved the following inequality which generalizes the classic
Frankl-Ray-Chaudhuri-Wilson Inequality [3].

Theorem Let p be a prime and KL be two disjoint subsets ¢0, 1,..., p — 1}. Let
IK| =r, L] =s,andassume(@s—r +1) < p—1and n> s+k; where k is the maximal
element of K. Lef be a family of subsets of an n-element set. Suppose that
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() |F| € K (mod p) for each Fe F;
(i) [EN F| e L (modp) for each pair of distinct sets B € F.

Then|Fl < (D + (") ++ (st 1)

They went on and conjectured that the conditiga—r + 1) < p— 1 in the statement of
the above theorem can be dropped and the conclusion of the theorem will still hold. Snevily
[7] confirmed and improved the conjecture whers sufficiently large. He showed that
whenn is sufficiently large, thenF| < (2) + (")) + (") + - + (S—ZTS/ZJ)' The main
result of this paper is the following theorem which confirms the conjecture of Alon, Babai
and Suzuki to a large extent.

Theorem1 Let p beaprime number, s be two positive integers wiis—r < n, L bean
s-subsetofd_, U {0} and K be anr-subsetofl, U{O}with LN K = ¢. If Fisamodp L-
intersection family an¢E| € K (modp), VE € F, then|F| < (';)+(Sfl)+- . -+(H“+l).

We note that in some instances the conditien2r < n holds but Alon, Babai and
Suzuki's conditionn > s + k. does not. For instance,if =9, p =7, K = {2,5, 6}
andL = {0, 1, 3,4}, thenitisclearthat—r =2-4—-3=5<9=n, butk, +s =
6+ 4 > 9 = n. In some other instances, however, the Alon, Babai and Suzuki’s condition
holds but the condition®2—r < n does not. For exampl&, = {1, 2,3,4,5, 6, 7, 8, 9},
p=7,K={1},L=1{0,23,4,56}, F = {{9},{1,2,3,4,5,6,7,8}}. Itis clear that
k +s=7<9butxd—r =11> 9.

2. Proof of Theorem 1

For the proof of the theorem we need the following lemma which is mentioned by Frankl
in[2].

Lemmal If 0<a<b< panda+b <n,thenrank(l,(a, b)) = (2).

Proof: We may assuma # 0. The proof is by induction oa + b + n. Note that
a+ b+ n=> 4. ltisclearthat the lemma holds whan- b + n = 4.

Suppose it holds whea+ b+ n < |. Now we consider the case+ b+n =1. We
distinguish two cases.

Case 1 at+ b =n. Inthis case, it is easy to verify th&(X) is anL’-intersection family
withLl ' ={n—-2a,n—-2a+1,...,.n—a—1andb=n—-aandb ¢ L’ (mod p).
Now we use the following result of Frankl and Wilson [3]:
If G C P«(X)isamod p L-intersection family for some set L consisting of non-negative
integers with kg L (mod p) and('l‘:i') %0 (modp)fori =0,1,...,1, then|G| <
rank(I,({, G)), where | = |L| and k(, G) is a 0-1 incidence matrix whose rows and
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columns are indexed B8 (X) andG respectively and theA, F)-entry of L(, G) is 1 if
A C F andO otherwise for any A P (X) and F € G.

Notice that if we tak&; = P,(X), thenl,(a, G) = In(a, b). So by the above result we
have(g) = |Pp(X)| < rank(ln(a, b)). Onthe other hand, itis clear thank(l,(a, b)) <
(5). Sorank(Ix(a, b)) = (), which impliesrank(ln(a, b)) = (3) sinceb = n—ain
this case. This proves the lemma in the first case.

Case 2 at b < n. Inthis case, we patrtitioft, (X) into two families: one consists of all
thoses-subsets of X not containing,, the other one consists of all those contairning
We do the same thing 8, (X). Itis clear that

In—l(av b) B
Ih(a,b) = for some matrixB.
0 lh-i@—1,b-1)

We observe thatin thiscaserb <n—1anda—1+b—1 < n— 1. By the induction
hypothesistank(l,_1(a, b)) = (“*1)andrank(ln 1@=1,b—1) = (2-1,i.e. boththe
rows ofl,_;1(a, b) and the rows of,_;(a— 1, b— 1) are linearly independent. So the rows
of I,(a, b) are linearly independent, which implies thatk(I,(a, b)) = (1) and hence the
proof of the lemma is complete. O

Remark By Lemma 1, it is clear that the row vectors k@(a b) can be expanded into a
basis offb’ by adding some othet)) — () vectors inF‘b’.

Following the idea of Ramanan [6], we associate a variapléor eachF € F. For
I C X, we define the linear form, by

L, = Z XE.

FeF,ICF

Now let us prove a lemma which is useful in the proof of the theorem.

Lemma 2 For any positive integers,w with u < v < p and u+ v < n, we have

dim (Ly:d e Py(X)) ; <n> B (n)
(ZJEPL.(X),IQJ Lyl € Py(X)) v u

Here§ is the quotient space of two vector spaces A and B with Band(L ;: J € P, (X))
is the vector space spanned fly; : J € P, (X)}.

Proof: LetV ={(L;:J e P,(X)). We define the following linear mappiniy: F(») — V
as foIIows We view a vector wn F(v ) as a mapping fron®,(X) to F. For each vector
We F() whoseJ'th component isa;, we definef (w) = 3 ;5 ) asLs.
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Let W be the vector space generated by the rows,¢d, v). It is clear thatf is a
surjective map that maps/ to (3 _;.p (x).1cy Lo € Pu(X)). By linear algebra

. (Ly:d e Py(X)
dim
((ZJE]P’L(X),IQJ Ly:l e Pu(x)>>

)
gdim(f(]F )>
f (W)

R ath)
§d|m< W )
< (n) - (n) by the above remark.
v v

This proves Lemma 2. O

Consider the system of linear equations:
S
{L. =0, wherel runs throughU IP’i(X)}. (%)
i=0

By the method employed in Qian and Ray-Chaudhuri [4] or [5], we have the following
propostion.

Proposition Assume that D K =@. If 7isan mod p L-intersection family witlE| € K
(mod p) for any E € F, then the only solution of the above system of linear equations is
the trivial solution.

Proof: Let (vg) be a solution of (*). We need to show that:) is the all-zero solution.
Suppose on the contrary that not alkgfs are 0. LetEg be an element itF with vg, # 0.
Let F be the finite field containing elements. Sinceg), (’{), e ();) form a basis for
the vector space spanned by all the polynomialB(iK) of degrees at mos, there exist
ag, ay, ..., as € Fwith

S

Za(1) =l

j=1
We denotq_[?zl(x —1;) by g(x). Next we prove the following identity,
S

d>a Y Li=)_ d(F A EoDxe.

i=0 1ePi (X),I C€Eg FeF
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We prove it by comparing the coefficients of both sides. Forlny F, the coefficient of
Xg in the left hand side is

S s F E
Zai|{| eP(X):1 CEg | C F”:Zai(' AI o|>7

i=0 i=0

which is equal tay(|F A Eg|) by the definition ofg(x). This proves the above identity.
Specializingxg = vg for all E € F in the above identity, we have

S

Ya Y Litwe) =Y g(F A Eolue.

i=0  1€P;(X),ICEy Fer

Itis clear that left hand side is O sin¢er) is a solution of (*). ForF € F with F # E,

|F A Egl € L (mod p) and sog(|F A Fol) = 0. So the right hand side of the above identity

is equal tog(|Eg|)ve,. S0 0= g(|Ep|)vg,. SinceL N K = @, We haveg(|Eg|) # 0 and so

vg, = 0. This is a contradiction to the definition & and thus it proves the proposition.
O

As a result of this proposition, we have:

|]-‘|§dim(iL,:l eOPi(X)}). (1)
i=0

where din{L, : | € Ufzo P (X)}) is defined to be the dimension of the space spanned by
L1 e U_oPi(X)).
The following lemma is of critical importance in the proof of the theorem.

Lemma 3 Foranyi € {0,1,...,s—r + 1} and every le P;(X), the linear form
2 Hep,., 0.1cH L is linearly dependent on the set of linear forflsy :i < [H| <
i+r—1 H C X}overF.

Proof of Lemma 3: We distinguish two cases.

Case 1l i¢g K (modp). Inthis caserkj € K, k; —i # 0inF and sac = (=D (ky —1)
(ko —i)---(k —1) #0inTF. Itis clear that there exist;, as, ..., a_1 € F,a =r!l €
F — {0} such that

a ") +af )+ +al
1) 722 &\r
=X—(k—1)x—(kg =) - (x—=(k —i)) +c,
since the polynomial in the right hand side has constant term equal to 0.

Next we show that

r

> 4 > Lu=c-L. 2)

j=1  HePij(X),IcH
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In fact both sides are linear forms ix’s, E € F. The coefficient ofxg in the left
hand side iSer:lajHH [l CHCE,|H|=i+]j}|. Soitisequalto0iff Z E and
a('"F) + a5 4+ +a (F7if I € E. By the above polynomial identity,

a1<|E|1—i>+a2<|E|2—i>+,..+ar<|E|r—i>

=(El=i—(k—=I)(El =i —=(kag=i))---([E| =i = (ke —1))+C
=c¢ sincelE| € K (modp).

The coefficient ofkg’s in the right hand side is obviously the same. This proves (2).
Writing (2) in a different way, we have

1 r—1
Z Ly = r—' cL, — . a; Z Ly
HePi,, (X),1 CH : j=1  HePi(X).ICH

This proves the lemma in case 1.
Case 2 ie K (mod p). In this case, the constant term@f— (ky —i))(x — (ko —i)) - - -
(X—(k —i))is0e . Sothere exista, ap, ..., & _1 € F,a =r! € F— {0} such that

al(i)+a2<>2‘>+...ar<f) =X—(a—iNx=(=1)) - (x= (K =1)).

As a consequence we have
r
> 4 > Lu=0 VIeP(X),
j=1 HePij(X),ICH
i.e. we have
1 r-1
> L :_E(Za,- > LH> vl € Pi(X).

HePi 4 (X).1 CH i=L  HeP.j(X).1cH

This finishes the proof of this lemma. O
From the above lemma, we easily deduce the following corollary.

Corollary  With the same condition as in Lemraawe have

i4+r—1
<LH:H € U IPH(X)>

j=i

i4+r—1
=<LH:H € U IP’H(X)>+< Z Lyl e]P’i(X)>.
HePi . (X),ICH

=

Next we prove our last lemma.
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Lemma4 Foranyie{0,1,...,s—r +1},
Ly:H S Pi(X
() (, 7)) (0 (Lt Ui
[ i+1 i+r—1 (Lu:H e UL P(X)

() )

Proof of Lemma4: We inductors—r +1—i. Itis clearly true whes—r +1—i =0,
i.,e. i =s—r + 1. Suppose the lemma holds fer + 1 —i < | for some positive
integerl. Now we want to show that it holds fer—r +1—i =1.

Let us recall two well-known linear algebra facts:

Fact 1.Let A B, C be vector spaces with C B. Thendim(4£8) < dim(&).
Fact 2. Let C < B C A be three vector spaces. Théim(£) = dim(2) + dim(%).

We observe thdt+i +r < (s—r)+(s—r)+r < n by the condition in the theorem. By
the above corollary, we have

dim( (Lu:H e UZ PyX)) >
(Lu:H e U Bi0)
_dim< (Lu:H e U P00 + (Lt H € B (X)) )
<LH ‘He Uij—:i_lpj(x))+<ZHePi+r(x),|gH Lu:l e ]P’i(X))
. (Ly:H e Py (X))
< dim
((ZHEPW(X),ICH Lyl e Pi(X))

) by fact 1 above

n n
< <i+r>_<i> by Lemma 2 withu =i andv =i +r.

In summary, we have

o (LuiH e UT Pi(X)) _( n
dlm((LH:HeUij”i_l]P’j(X)) _<i+r)_<i>' ©

Now we are ready for the key part of the proof of the lemma.

(0o ) ootz

- (T) " <i —tl) e <i +:— 1) " dim((&H: HHeeLLJJ*:‘iPI;’%Z))

j=i
+dim((LH ‘H e Ui Pi(X)

(Lu:H e U Pyx)

) by fact 2 above
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(n) ( > < ) [ {LuH e U Pj0)

=\ + + dim i+r—1

i i+1 i+r—1 (LH H€U+ IP’j(X))
+dim((LH ‘HeP(X)+(Ly:He U?ZiHP,-(X)))

(Lu:H e Pi(X) +(Lu:H e Ui Pj(X)

()20t o)
+dim(<LH H e U]

(Ly:H e UijJ;riHPi(X))

§<?>+<iJr:l>+m+<i+?—1>+(i—tr>_<ri1> by (3) above

san( Lt =V P50

(Lu:H e U5, PiX)

O e B
i+1 i+ (Lh:H € UjJ;HlPi(X))
< n +---+ n

_(s—r+1> (5>

where the last step is by the induction hypothesis ssnee+1— (i +1)(s—r +1—i =1.
This completes the proof of the Lemma 4.
Now it is easy to prove Theorem 1. By (1) we have

) by fact 1 above

|F| < dim<<LH ‘He OIP’i(X)>>

i=0

< dim<<LH ‘He :U:IP%(X)»

+dim((LH H e U5_oPj(X))
(Lu:H e UZP(X))

Lu:H S _oPj(X
§<n>+(n>+< " >+dim (Ln GUJj %)
0 1 r—1 (LH:H GUG:OPJ(X))
n n n o
= (S—r+1)+<s—r+2)+”'+(s> by takingi = 0 in Lemma 4,

which completes the proof of the theorem. O

) by fact 2 above
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