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Abstract. Block’s lemma states that the number®f point-classes and of block-classes in a tactical decom-
position of a 2¢v, k, A) design withb blocks satisfyn < n < m+b—v. We present a strengthening of the upper
bound for the case of Steiner systems (2-designsavithl), together with results concerning the structure of the
block-classes in both extreme cases. Applying the results to the Steiner systems of points and lines of projective
spacePG(N, q), we obtain a complete classification of the groups inducing decompositions satisfying the upper
bound; answering the analog of a question raised by Cameron and Liebler (P.J. Cameron and R.ALlriebler,

Alg. Appl. 46(1982), 91-102) (and still open).
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1. Introduction

The notion of tactical decomposition of an incidence geometry is the natural combinatorial
generalisation of the notion of an automorphism group, in that any automorphism group of
an incidence geometry induces a tactical decomposition of it. In general, however, many
more tactical decompositions than collineation groups exist for a given incidence geometry.
In this paper we consider the question of which tactical decompositions of arbitrary Steiner
systems (2-designs with= 1) exist. We obtain a significant strengthening of Block’s lemma

for this case, along with a characterisation of the cases achieving equality. Applying this
result to the case of finite projective spaces, we give a characterisation of the groups which
occur in the extremal case, answering the natural analog of a question raised by Cameron
and Liebler in [2].

2. Tactical decompositions of Steiner systems

LetD = (V, B) be a 2¢v, k, A) design withr blocks on each point arablocks. Atactical
decompositiof D consists of partition¥ = {Vy, ..., Vy}of VandB = {By, ..., B,} of
B with the property that foreadh j, 1 <i <m, 1 < j < n, the incidence structure with
point-sety; and blocks, the intersections of blocks®fwith V; is a tactical configuration
(thatis, each point df; is on the same number of blocksl8f, and each block df; contains
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the same number of points Bf). As was mentioned in the introduction, any automorphism
groupG of D induces such a decomposition, with partitions the various orbi oh V
and5. A natural question to ask concerning tactical decompositions is, for what values of
m andn can they occur? An answer is suppliedBipcK s lemma(see [3]), which states
thatm < n < m+ b — v (the trivial decomposition oD, with just one point- and one
line-class, showb > v, and thus Block’s lemma is a generalisation of Fisher’s inequality).
Moreover, the result is sharp in the sense that there exist decompositions satisfying both the
upper and lower bounds: the aforementioned trivial decomposition gives an example for
the lower bound, and the decomposition with all point- and line-classes singletons, gives
an example satisfying the upper bound. Furthermore, other decompositionswith
(symmetric tactical decompositionsf arbitrary designs exist, for example thenctured
decomposition with point class¢¥ } andV\{V} and block classe¢v) andB\{(V)} for
V e V (here and elsewher¢y) denotes the set of blocks containikge V). However,
there appear to be no other ‘obvious’ examples of decompositions satisfying the upper
bound, and thus the question of sharpening this bound arises. (The question of classifying
the decompositions satisfying the lower bound is very difficult even in specific cases—see
[2].) We do this here in the case of Steiner systems, that is 2-designs. witll. Since
all decompositions of symmetric designs are symmetric, we may assum® tisahot
symmetric, that is, thdt > v.

To any tactical decompositiaiy/, B) of (V, B), there exist two associatedx n integral
matrices,A = (g;) andB = (ljj), wherea;; = |V, Nl| forl € Bj andb;; = [(V) N B;j]
for V € V;. SinceD is a design, these matrices both have nanfsee [3]). Thus the@ x n
productH = B'A also has rankn. PutH = (h¢g).

Lemma 2.1 The entries of H have the following interpretatioh.q is the number of
triples (m, V, ) where me . and V € mn| for a specific e By.

We omit the proof of this lemma, since it is a similar (but simpler) argument to the one
which proves Lemma 2.3 below.

Lemma 2.2 We have tracéH) > nk, with equality if and only if each elementBfis a
set of pairwise skew blocks.

Proof: We simply note that it = d, exactlyk triples(l, V, |) occur, one for eacl €1,

and therefore the previous lemma implies that > k, with equality if and only if each
block of B:\{l} is skew tol. Since the decomposition is tactical, this is independent of
choice ofl € B., and since this holds for each1 < c < n, the result follows. O

We also note that, sincP is a Steiner systemnhq is just the number of blocks df;
which intersect a given block dfy whenc # d. This implies that for allc, d, |Bg|hcg
is the number of intersections of lines Bf with lines of B4 (if c=d, each line off3; is
interpreted as intersecting itséltimes); therefore we have

n
> " 1Bilhe = |Blkr,
i=1
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sokr is an eigenvalue ofi with eigenvector|B1|, . .., |Ba|)t. Tofind the other eigenvalues
of H, we make use of the following lemma.

Lemma 2.3 The matrix H satisfies B= (r — 1)H + kM, where M= (mq) has mq =
| Bl

Proof: Lemma 2.1 above, together with a simple count, showdihhy is the number of
quintuplegn, W, m, V, 1) whereW e nn'm,V € mn |, for arbitraryn € B;, m € 55 and
afixed e By. Therefore théc, d)-entry ofH? is the number of such quintuples where now
mis an arbitrary block oD. SinceD is a Steiner system, the number of such quintuples can
be counted, as follows. For amye B which is skew td, there are exactlg? choices for
m, each giving rise to exactly one quintuple. Therefore there|#g — h.q)k? quintuples
with n skew tol if ¢ # d, and(|Bc| — 1 — (hce — k))k? such ifc = d. Eachn # | which
intersects (necessarily in exactly one point) is included in exa¢kly- 1)? quintuples with
W#nnNIl#V,r—2quintupleswith?V =V =n N | butn £ m # I, and X quintuples
with n = mor| = m, for a total ofk? +r — 1. Thus we havek? +r — 1)hcg quintuples
with n # | intersecting whenc # d, and(k® +r — 1)(h¢eg — k) whenc = d. Finally, if

¢ = d there is the possibilitp = I, which contributegr — 1)k +k? quintuples. Adding the
possibilities shows that in both cases, thed)-entry of H? is |Bc|k? + (r — 1)hcg, which
gives the result. O

Lemma 2.2 shows that a special role is played by sets of pairwise disjoint blocks. When
D is the design of points and linesBE(3, q), such sets are called partial spreads. Accord-
ingly, we define gartial spreadof D to be a set of pairwise disjoint blocks. A partial spread
whose blocks partition the point-set Bfwill be called aspread One more definition will
be convenient: a s&t of blocks will be calledtight if the number of blocks o which
intersect a given blocB € B depends only on whether or nBte S. The name ‘tight sets’
was first applied to certain subsets of generalized quadrangles by S. Payne in [8]; such sets
are directly analogous to the ‘Cameron-Liebler line classes’ introduced in [2] (see [4]); the
above definition is the natural generalisation of this result to Steiner systems, as Theorem
2.2 below shows. Before proving Theorem 2.2 we must obtain a few facts concerning tight
sets in arbitrary Steiner systems.

Theorem 2.1 Suppose thdd = (V, B) is a2-(v, k, 1) design with b blocks and r blocks
on each point. If §C Bis a set of s blocks dP, the average numberof blocks of §\{B}
which intersect a given block B S satisfies

sk
8§r—k—1+7.

Equality is achieved if and only if;3s a tight set.
Proof. If Ais a block-block adjacency matrix @ (with zeroes on the main diagonal),

counting shows tha satisfiesA? = A(r — 2k — 1) + k(r —k —1)I +k2J, wherelJ is the
all-one matrix. Thus the eigenvaluesAfire(r — 1)k with multiplicity one,r —k —1 and
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—k. SetS, = B\S. The partition{S;, S} of B induces a partition oA into four matrices
Aqg, Ara, Ao, Aoy if §jj is the average row sum d;; theng;; is the average number of
blocks of§ which intersect a given block &;. Furthermore, we havg, = (r — Dk — 61
fori =1, 2, and

s
81 = m((r — Dk — 819).

These facts imply that the eigenvalues of the maiix ares;; — 821 and(r — L)k. Now
Haemer’s generalisation of the Higman-Sims technique (see [6]) implies that the eigenvalues
of the matrix(6;; ) interlace the eigenvalues éf sincedi; — 621 < (r — 1)k, we must have

811 — 821 <r — k — 1. The bound ord = §;; follows by manipulating the above equation
(using the fact thatr = bk). Furthermore, equality holds in Haemer’s theorem exactly when
eachA;; has constant row sums; this is clearly equivalerfitbeing tight. O

Corollary 2.1 A set S of blocks is tight if and only if for each 885 there are exactly
(r — k —1)xs(B) + sk/r blocks of S distinct from B which intersect Bhere xs is the
characteristic function of S. A tight set hag xgcd(r, k)) elements for some integer x.

Theorem 2.2 The numbers m and n of point- and block-classes of an arbitrary tactical
decomposition of the Steiner systénwith parameters, k, r, b satisfies

(M- -1

m<n<r+
- k

The lower bound is satisfied if and only if all block classes are tight setd the upper
bound is satisfied if and only if all block classes are partial spreads.

Proof: The previous lemma shows thelt and M commute, so their eigenspaces coin-
cide. Now M, having rank one, has just one non-zero eigenvabayith eigenvector
(IB1l, ..., |BaD!. As noted above, the eigenvalue if for this vector isrk. All other
eigenspaces dfl must be in the kernel oM, and thus their eigenvalugsmust satisfy
p=0o0rp =r —1, by the same lemma. Sin¢¢ has rankm, exactlym — 1 eigenvalues
of H mustbe — 1, whilen — m are zero, so the trace éf is exactlyrk + (m—1)(r — 1).
But the interpretation oH given by Lemma 2.1 implies that this trace is at ldastwith
equality if and only if all block-classes are partial spreads.

Now if m = n, the matrixH is non-singular, and in fadd — (r — 1)1 is identically zero
on the kernel ofM, which is the set of vectors whose entries sum to zero. This implies
that all entries in a given row dfl — (r — 1)1 are the same, so the number of blocks of
eachB; which intersect a given blocB depends only on whether or nBt € 5;. Thus
m = n implies that all block classes are tight. Conversely, if all block-classes are tight,
the entries ofH are given by Corollary 2.1 (but note that the diagonal entries are in fact
r — 14 sk/r, since the matriyd counts self-intersection of blocks), and it is clear in this
casethaH — (r — 1)1 is identically zero on the kernel ®fl, soH has no zero eigenvalues,
hence is non-singular, so = n. O
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Note that the decomposition with all points and lines forming singleton classes,
n = b) satisfies the upper bound, and thatvif< v, the upper bound is lower than the
n < m+ b — v of Block’s lemma. Aan decreases, the difference between the two bounds
grows.

In fact, the above proof gives a bit more information concerning the possible number
of tight sets and partial spreads which can occur in arbitrary tactical decompositions, as
follows.

Corollary 2.2 Suppose that a tactical decompositioridhas ¢ block classes which are
tight sets and which together contain d blocks. Then we have

R R

n<

Corollary 2.3 Suppose that a tactical decompositiorZdhas c block classes which are
partial spreadsand which together contain d blocks. Then we have

— r—1

k d v
nz—l r—c+r— ———+m+c—-1

3. Projective spaces

In this section we consider the special case wierie the set of points and lines of the
N-dimensional projective spa€(N, q). SincePG(2, q) is a symmetric design, all of its
decompositions satisfym = n, and therefore we assume thét> 3. In [2], the problem

of determining all collineation groups &G(N, q) with the same number of point- and
line-orbits was considered. This problem was eventually solved by Penttila [8] for5,

but is still open forN = 3, 4. The above work suggests an analogous problem, namely the
determination of the subgroups BT"L (N + 1, g) which induce tactical decompositions
satisfying the upper bound in Theorem 2.2. The Steiner sy&eauh points and lines of
PG(N,qhasv =g+ ---+1,k=q+1,b= @ +---+D)(@"1+---+1)/(q+1) and

r = qN~14...41. Thus the maximum number of line-classes for a tactical decomposition
with m point-classes is

@+ +1+ma@VN 2+ + 1)
q+1 ’

n=

1)

by Theorem 2.2. We now prove that non-trivial groups inducing such decompositions exist
if and only if N is odd, and determine the examples which occur in this case.

Lemma 3.1 Suppose that the collineation group G of @G q) induces a tactical de-
composition satisfying E1). Then G acts regularly on each of its point-orbits.

Proof: If someg € G fixes the pointP, theng must also fix all lines orP, since by
Theorem 2.2, the line-orbits d& must all be partial spreads. Therefayds a central
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collineation (see [3]), but a central collineationPG(N, q) also has an axis—that is, a
hyperplaneH such thag fixes every point oH. But every line ofPG(N, q) intersectsH

in at least one point, so by the above reasoning every lif39N, q) is fixed byg. Thus

g is the identity. |

This implies that the size of divides the numbep =qN + --- m + 1 of points of
PG(N, q). Put|G| =a(soa= (@@N +---+1)/m).

Lemma 3.2 Each non-identity element of G must fix exactly one line-spread GNP .

Proof: Applying the orbit counting lemma (see [1]) and Eq. (1) to the actio@ oh the
lines of PG(N, q) yields

N 4+ 14+maggN24+...+1 1 ,
@ qf(f ) _ =Y Ifix(@)l

geG

Of course, the identity element fixes bllines of PG(N, q); taking this into account and
manipulating the above equation shows that the average number of lines fixed by a given
non-identity elemeng € G is exactly(@N + - - - +1)/(q + 1). Now any setS of pairwise

skew lines ofPG(N, q) has cardinality at mosgN + - -- + 1)/(q + 1), with equality if

and only if S is a spread. But the intersection of two fixed lines is a fixed point, so the
fact thatG acts regularly on its point-orbits implies that no two lines fixedghyan meet.
Therefore no non-identity element &f may fix more than@" + --- + 1)/(q + 1) lines,

so each must fix exactly this number, that is, each non-identity eleméhfizés exactly

one spread. O

Now line-spreads dPG(N, q) exist if and only ifN is odd [3], soG can be non-trivial
only if N = 2R+ 1 is odd. From now on, we assume tfais the design of points and
lines of PG(2R + 1, ), R > 1. Note that the set of spreads fixed by non-identity elements
of G is also acted on bB—if g fixes S thenhsS is fixed bygh~. Now this action has
the property that each non-identity elementofixes exactly one spread; therefore by the
orbit counting lemma (or otherwise) we conclude that all elemen®&fof the same spread.
Now an easy geometric argument shows that a non-trivial collineati®Go2R + 1, q)
which fixes a line spread cannot fix any points. Thus any such group must have size dividing
q+1.

Examples are constructed as follows. D.G. Glynn in [5] observed that the line orbits
of the Singer group oPG(3, q) are of two types: one regular spread, ansets of lines
covering each pointg + 1) times. The regular spread is fixed by the unique subgroup of
G of orderq + 1. In fact, this analysis goes through for arbitrary odd dimension, and thus
there exist line spreads BIG(2R + 1, q) fixed by a cyclic group of sizg + 1, and hence
for everya dividing q + 1 there exists a group of sizeinducing a decomposition &
satisfying the upper bound 1 and havia@?*R + g°R~2 4 - .- + 1) point classes.

Now in PG(3, q) any line spread which is fixed by a non-trivial collineation is regular (the
kernel of the corresponding translation plane of ogfenas size at leastg — 1); since this
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number is a power aj it must beg?, so the plane is desarguesian—see [7]). Furthermore,
if Sis aline spread dPG(2R + 1, q) which is fixed by a non-trivial collineation grou,
thensS has the property that any three-dimensional subspaB&#R + 1, ) contains 0,

1, org? + 1 lines of S: any two lines ofS span a unique three-dimensional subspsce
which is fixed by all elements @, and if a line ofS intersectsX in one point, this point is
fixed by any element db, soG is trivial. Now restricting to any of these three-dimensional
subspaceX shows that the spread containeddrmust be regular, and therefore titais
cyclic of order dividingg + 1 in the general case. X is a subspace ?#G(2R + 1, q), we

will say thatX is a subspace & if the set of lines ofS contained inX form a spread oX.

Theorem 3.1 LetS be a line spread of P@R + 1, q) which is fixed by a non-trivial
collineation group G. Then the geometry whose points are the lingsafd whose i
dimensional subspacés < R) are the2i + 1 dimensional subspaces &f is isomorphic
to PG(R, g?), and G is contained in a cyclic group of sizetgl which fixes all lines of.

Proof: We show first that the s& of lines, together with the set 2R — 1)-dimensional
subspaces af forms a design isomorphic to the design of points and linedRG&(R, g?).
The comments preceeding the theorem show that any pair of elemewtarefcontained
in exactly one three-space 8f Let X be such a three-space.l IE S is not contained in
X, I 'is disjoint from X, so X Vv | is a five-dimensional spacé, and all elements o fix
Y, so (as the non-identity elements®fact fixed-point freely) is a subspace &. Now
counting shows that any two lines&fare contained in the same number of five dimensional
subspaces af, and continuing inductively we see that any two linesSadre contained in
the same number of 2+ 1 dimensional subspaces®ffor alli < R— 1. This shows that
S and the set of2R — 1)-dimensional subspaces®is a desigre. The lines of this design
are clearly the three-dimensional subspaceS,@ind since iPG(2R+ 1,g) any 2R — 1
dimensional subspace meets any three-dimensional subspace in at least a line, every line of
& meets every block &. Thus, by 2.1.22 of Dembowski [3, p. 6Zis the design of points
and hyperplanes of a projective geometry, which mu®R@¢R, g?) (this is clear from the
number of points on each block wh&> 3; whenR = 2 the plane is desarguesian since
it occurs as the point-residue of the following embeddind\&(3, g%) in AG(6, g)). Now
whenPG(2R + 1, q) is regarded as the hyperplaheat infinity of anAG(2R + 2, ), the
points of the affine geometry together with the planes whose intersectionsiveitk lines
of S forms anAG(R + 1, g?); the group ofg? — 1 dilatations of this geometry induces a
cyclic group ofg + 1 collineations fixing all lines of; clearly G is contained in this group.

O

As far as the groups inducing tactical decompositions satisfying the upper bound in
Theorem 2.2, we have:

Theorem 3.2 Let G be a subgroup of PL(N + 1, q) which induces a tactical decompo-
sition of PG N, q) satisfying Eq(1). If N is even, G is the trivial group. If N is od& is
contained in a cyclic group of order-¢ 1 which fixes all lines of a line spread of RS, q).
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