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Abstract. Block’s lemma states that the numbersm of point-classes andn of block-classes in a tactical decom-
position of a 2-(v, k, λ) design withb blocks satisfym≤ n ≤ m+b− v. We present a strengthening of the upper
bound for the case of Steiner systems (2-designs withλ = 1), together with results concerning the structure of the
block-classes in both extreme cases. Applying the results to the Steiner systems of points and lines of projective
spacePG(N,q), we obtain a complete classification of the groups inducing decompositions satisfying the upper
bound; answering the analog of a question raised by Cameron and Liebler (P.J. Cameron and R.A. Liebler,Lin.
Alg. Appl.46 (1982), 91–102) (and still open).
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1. Introduction

The notion of tactical decomposition of an incidence geometry is the natural combinatorial
generalisation of the notion of an automorphism group, in that any automorphism group of
an incidence geometry induces a tactical decomposition of it. In general, however, many
more tactical decompositions than collineation groups exist for a given incidence geometry.
In this paper we consider the question of which tactical decompositions of arbitrary Steiner
systems (2-designs withλ= 1) exist. We obtain a significant strengthening of Block’s lemma
for this case, along with a characterisation of the cases achieving equality. Applying this
result to the case of finite projective spaces, we give a characterisation of the groups which
occur in the extremal case, answering the natural analog of a question raised by Cameron
and Liebler in [2].

2. Tactical decompositions of Steiner systems

LetD = (V,B) be a 2-(v, k, λ) design withr blocks on each point andb blocks. Atactical
decompositionofD consists of partitionsV = {V1, . . . ,Vm} of V andB = {B1, . . . ,Bn} of
B with the property that for eachi, j , 1≤ i ≤ m, 1≤ j ≤ n, the incidence structure with
point-setVi and blocks, the intersections of blocks ofB j with Vi is a tactical configuration
(that is, each point ofVi is on the same number of blocks ofB j , and each block ofB j contains
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the same number of points ofVi ). As was mentioned in the introduction, any automorphism
groupG of D induces such a decomposition, with partitions the various orbits ofG onV
andB. A natural question to ask concerning tactical decompositions is, for what values of
m andn can they occur? An answer is supplied byBlock’s lemma(see [3]), which states
that m ≤ n ≤ m+ b − v (the trivial decomposition ofD, with just one point- and one
line-class, showsb ≥ v, and thus Block’s lemma is a generalisation of Fisher’s inequality).
Moreover, the result is sharp in the sense that there exist decompositions satisfying both the
upper and lower bounds: the aforementioned trivial decomposition gives an example for
the lower bound, and the decomposition with all point- and line-classes singletons, gives
an example satisfying the upper bound. Furthermore, other decompositions withm= n
(symmetric tactical decompositions) of arbitrary designs exist, for example thepunctured
decomposition with point classes{V} andV\{V} and block classes(V) andB\{(V)} for
V ∈ V (here and elsewhere,(V) denotes the set of blocks containingV ∈ V). However,
there appear to be no other ‘obvious’ examples of decompositions satisfying the upper
bound, and thus the question of sharpening this bound arises. (The question of classifying
the decompositions satisfying the lower bound is very difficult even in specific cases—see
[2].) We do this here in the case of Steiner systems, that is 2-designs withλ = 1. Since
all decompositions of symmetric designs are symmetric, we may assume thatD is not
symmetric, that is, thatb > v.

To any tactical decomposition(V,B) of (V,B), there exist two associatedm×n integral
matrices,A = (ai j ) andB = (bi j ), whereai j = |Vi ∩ l | for l ∈ B j andbi j = |(V) ∩ B j |
for V ∈ Vi . SinceD is a design, these matrices both have rankm (see [3]). Thus then× n
productH = Bt A also has rankm. PutH = (hcd).

Lemma 2.1 The entries of H have the following interpretation: hcd is the number of
triples (m,V, l ) where m∈ Bc and V ∈ m∩ l for a specific l∈ Bd.

We omit the proof of this lemma, since it is a similar (but simpler) argument to the one
which proves Lemma 2.3 below.

Lemma 2.2 We have trace(H) ≥ nk, with equality if and only if each element ofB is a
set of pairwise skew blocks.

Proof: We simply note that ifc = d, exactlyk triples(l ,V, l ) occur, one for eachV ∈ l ,
and therefore the previous lemma implies thathcc ≥ k, with equality if and only if each
block of Bc\{l } is skew tol . Since the decomposition is tactical, this is independent of
choice ofl ∈ Bc, and since this holds for eachc, 1≤ c ≤ n, the result follows. 2

We also note that, sinceD is a Steiner system,hcd is just the number of blocks ofBc

which intersect a given block ofBd whenc 6= d. This implies that for allc, d, |Bd|hcd

is the number of intersections of lines ofBc with lines ofBd (if c= d, each line ofBc is
interpreted as intersecting itselfk times); therefore we have

n∑
i=1

|Bi |hci = |Bc|kr,
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sokr is an eigenvalue ofH with eigenvector(|B1|, . . . , |Bn|)t. To find the other eigenvalues
of H , we make use of the following lemma.

Lemma 2.3 The matrix H satisfies H2= (r − 1)H + kM, where M= (mcd) has mcd =
|Bc|.

Proof: Lemma 2.1 above, together with a simple count, shows thathci hid is the number of
quintuples(n,W,m,V, l )whereW ∈ n ∩ m, V ∈ m ∩ l , for arbitraryn ∈ Bc, m ∈ Bi and
a fixedl ∈ Bd. Therefore the(c, d)-entry ofH2 is the number of such quintuples where now
m is an arbitrary block ofD. SinceD is a Steiner system, the number of such quintuples can
be counted, as follows. For anyn ∈ Bc which is skew tol , there are exactlyk2 choices for
m, each giving rise to exactly one quintuple. Therefore there are(|Bc| − hcd)k2 quintuples
with n skew tol if c 6= d, and(|Bc| − 1− (hcc− k))k2 such ifc = d. Eachn 6= l which
intersectsl (necessarily in exactly one point) is included in exactly(k−1)2 quintuples with
W 6= n ∩ l 6= V , r −2 quintuples withW = V = n ∩ l butn 6= m 6= l , and 2k quintuples
with n = m or l = m, for a total ofk2 + r − 1. Thus we have(k2 + r − 1)hcd quintuples
with n 6= l intersectingl whenc 6= d, and(k2 + r − 1)(hcd − k) whenc = d. Finally, if
c = d there is the possibilityn = l , which contributes(r −1)k+k2 quintuples. Adding the
possibilities shows that in both cases, the(c, d)-entry of H2 is |Bc|k2+ (r − 1)hcd, which
gives the result. 2

Lemma 2.2 shows that a special role is played by sets of pairwise disjoint blocks. When
D is the design of points and lines ofPG(3,q), such sets are called partial spreads. Accord-
ingly, we define apartial spreadofD to be a set of pairwise disjoint blocks. A partial spread
whose blocks partition the point-set ofD will be called aspread. One more definition will
be convenient: a setS of blocks will be calledtight if the number of blocks ofS which
intersect a given blockB ∈ B depends only on whether or notB ∈ S. The name ‘tight sets’
was first applied to certain subsets of generalized quadrangles by S. Payne in [8]; such sets
are directly analogous to the ‘Cameron-Liebler line classes’ introduced in [2] (see [4]); the
above definition is the natural generalisation of this result to Steiner systems, as Theorem
2.2 below shows. Before proving Theorem 2.2 we must obtain a few facts concerning tight
sets in arbitrary Steiner systems.

Theorem 2.1 Suppose thatD = (V, B) is a2-(v, k, 1) design with b blocks and r blocks
on each point. If S1 ⊂ B is a set of s blocks ofD, the average numberδ of blocks of S1\{B}
which intersect a given block B∈ S1 satisfies

δ ≤ r − k− 1+ sk

r
.

Equality is achieved if and only if S1 is a tight set.

Proof: If A is a block-block adjacency matrix ofD (with zeroes on the main diagonal),
counting shows thatA satisfiesA2 = A(r −2k−1)+ k(r − k−1)I + k2J, whereJ is the
all-one matrix. Thus the eigenvalues ofA are(r − 1)k with multiplicity one,r − k− 1 and
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−k. SetS2 = B\S1. The partition{S1, S2} of B induces a partition ofA into four matrices
A11, A12, A21, A22; if δi j is the average row sum ofAi j thenδi j is the average number of
blocks ofSi which intersect a given block ofSj . Furthermore, we haveδi 2 = (r −1)k− δi 1

for i = 1, 2, and

δ21 = s

b− s
((r − 1)k− δ11).

These facts imply that the eigenvalues of the matrix(δi j ) areδ11− δ21 and(r − 1)k. Now
Haemer’s generalisation of the Higman-Sims technique (see [6]) implies that the eigenvalues
of the matrix(δi j ) interlace the eigenvalues ofA; sinceδ11− δ21 ≤ (r − 1)k, we must have
δ11− δ21 ≤ r − k− 1. The bound onδ = δ11 follows by manipulating the above equation
(using the fact thatvr = bk). Furthermore, equality holds in Haemer’s theorem exactly when
eachAi j has constant row sums; this is clearly equivalent toS1 being tight. 2

Corollary 2.1 A set S of blocks is tight if and only if for each B∈ B there are exactly
(r − k − 1)χS(B) + sk/r blocks of S distinct from B which intersect B, whereχS is the
characteristic function of S. A tight set has x(r/gcd(r, k)) elements for some integer x.

Theorem 2.2 The numbers m and n of point- and block-classes of an arbitrary tactical
decomposition of the Steiner systemD with parametersv, k, r, b satisfies

m≤ n ≤ r + (m− 1)(r − 1)

k
.

The lower bound is satisfied if and only if all block classes are tight sets, and the upper
bound is satisfied if and only if all block classes are partial spreads.

Proof: The previous lemma shows thatH and M commute, so their eigenspaces coin-
cide. Now M , having rank one, has just one non-zero eigenvalue,b, with eigenvector
(|B1|, . . . , |Bn|)t. As noted above, the eigenvalue ofH for this vector isrk. All other
eigenspaces ofH must be in the kernel ofM , and thus their eigenvaluesρ must satisfy
ρ = 0 orρ = r − 1, by the same lemma. SinceH has rankm, exactlym− 1 eigenvalues
of H must ber −1, whilen−m are zero, so the trace ofH is exactlyrk+ (m−1)(r −1).
But the interpretation ofH given by Lemma 2.1 implies that this trace is at leastkn, with
equality if and only if all block-classes are partial spreads.

Now if m= n, the matrixH is non-singular, and in factH − (r − 1)I is identically zero
on the kernel ofM , which is the set of vectors whose entries sum to zero. This implies
that all entries in a given row ofH − (r − 1)I are the same, so the number of blocks of
eachBi which intersect a given blockB depends only on whether or notB ∈ Bi . Thus
m = n implies that all block classes are tight. Conversely, if all block-classes are tight,
the entries ofH are given by Corollary 2.1 (but note that the diagonal entries are in fact
r − 1+ sk/r , since the matrixH counts self-intersection of blocks), and it is clear in this
case thatH − (r −1)I is identically zero on the kernel ofM , soH has no zero eigenvalues,
hence is non-singular, som= n. 2
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Note that the decomposition with all points and lines forming singleton classes (m= v,
n = b) satisfies the upper bound, and that ifm<v, the upper bound is lower than the
n ≤ m+ b− v of Block’s lemma. Asm decreases, the difference between the two bounds
grows.

In fact, the above proof gives a bit more information concerning the possible number
of tight sets and partial spreads which can occur in arbitrary tactical decompositions, as
follows.

Corollary 2.2 Suppose that a tactical decomposition ofD has c block classes which are
tight sets and which together contain d blocks. Then we have

n ≤ r + (m− d − 1)(r − 1)

k
− c

r
+ d.

Corollary 2.3 Suppose that a tactical decomposition ofD has c block classes which are
partial spreads, and which together contain d blocks. Then we have

n ≥ k

r − 1

(
r − c+ d

r

)
− v

r − 1
+m+ c− 1.

3. Projective spaces

In this section we consider the special case whereD is the set of points and lines of the
N-dimensional projective spacePG(N,q). SincePG(2,q) is a symmetric design, all of its
decompositions satisfym = n, and therefore we assume thatN ≥ 3. In [2], the problem
of determining all collineation groups ofPG(N,q) with the same number of point- and
line-orbits was considered. This problem was eventually solved by Penttila [9] forN ≥ 5,
but is still open forN = 3, 4. The above work suggests an analogous problem, namely the
determination of the subgroups ofP0L(N + 1,q) which induce tactical decompositions
satisfying the upper bound in Theorem 2.2. The Steiner systemD of points and lines of
PG(N,q)hasv = qN+ · · · +1,k = q+1,b = (qN+ · · · +1)(qN−1+ · · · +1)/(q+1)and
r = qN−1+· · ·+1. Thus the maximum number of line-classes for a tactical decomposition
with m point-classes is

n = (qN + · · · + 1+mq(qN−2+ · · · + 1))

q + 1
, (1)

by Theorem 2.2. We now prove that non-trivial groups inducing such decompositions exist
if and only if N is odd, and determine the examples which occur in this case.

Lemma 3.1 Suppose that the collineation group G of PG(N,q) induces a tactical de-
composition satisfying Eq.(1). Then G acts regularly on each of its point-orbits.

Proof: If someg ∈ G fixes the pointP, theng must also fix all lines onP, since by
Theorem 2.2, the line-orbits ofG must all be partial spreads. Thereforeg is a central
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collineation (see [3]), but a central collineation ofPG(N,q) also has an axis—that is, a
hyperplaneH such thatg fixes every point ofH . But every line ofPG(N,q) intersectsH
in at least one point, so by the above reasoning every line ofPG(N,q) is fixed byg. Thus
g is the identity. 2

This implies that the size ofG divides the numberv=qN + · · · m + 1 of points of
PG(N,q). Put|G| = a (soa = (qN + · · · + 1)/m).

Lemma 3.2 Each non-identity element of G must fix exactly one line-spread of PG(N,q).

Proof: Applying the orbit counting lemma (see [1]) and Eq. (1) to the action ofG on the
lines ofPG(N,q) yields

(qN + · · · + 1+mq(qN−2+ · · · + 1))

q + 1
= 1

a

∑
g∈G

|fix(g)|.

Of course, the identity element fixes allb lines ofPG(N,q); taking this into account and
manipulating the above equation shows that the average number of lines fixed by a given
non-identity elementg ∈ G is exactly(qN + · · · + 1)/(q+ 1). Now any setS of pairwise
skew lines ofPG(N,q) has cardinality at most(qN + · · · + 1)/(q + 1), with equality if
and only ifS is a spread. But the intersection of two fixed lines is a fixed point, so the
fact thatG acts regularly on its point-orbits implies that no two lines fixed byg can meet.
Therefore no non-identity element ofG may fix more than(qN + · · · + 1)/(q + 1) lines,
so each must fix exactly this number, that is, each non-identity element ofG fixes exactly
one spread. 2

Now line-spreads ofPG(N,q) exist if and only ifN is odd [3], soG can be non-trivial
only if N = 2R+ 1 is odd. From now on, we assume thatD is the design of points and
lines ofPG(2R+ 1,q), R≥ 1. Note that the set of spreads fixed by non-identity elements
of G is also acted on byG—if g fixesS thenhS is fixed bygh−1. Now this action has
the property that each non-identity element ofG fixes exactly one spread; therefore by the
orbit counting lemma (or otherwise) we conclude that all elements ofG fix the same spread.
Now an easy geometric argument shows that a non-trivial collineation ofPG(2R+ 1,q)
which fixes a line spread cannot fix any points. Thus any such group must have size dividing
q + 1.

Examples are constructed as follows. D.G. Glynn in [5] observed that the line orbits
of the Singer group ofPG(3,q) are of two types: one regular spread, andq sets of lines
covering each point(q + 1) times. The regular spread is fixed by the unique subgroup of
G of orderq + 1. In fact, this analysis goes through for arbitrary odd dimension, and thus
there exist line spreads ofPG(2R+ 1,q) fixed by a cyclic group of sizeq + 1, and hence
for everya dividing q + 1 there exists a group of sizea inducing a decomposition ofD
satisfying the upper bound 1 and havinga(q2R+ q2R−2+ · · · + 1) point classes.

Now inPG(3,q) any line spread which is fixed by a non-trivial collineation is regular (the
kernel of the corresponding translation plane of orderq2 has size at least 2(q−1); since this
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number is a power ofq it must beq2, so the plane is desarguesian—see [7]). Furthermore,
if S is a line spread ofPG(2R+ 1,q) which is fixed by a non-trivial collineation groupG,
thenS has the property that any three-dimensional subspace ofPG(2R+ 1,q) contains 0,
1, or q2 + 1 lines ofS: any two lines ofS span a unique three-dimensional subspaceX
which is fixed by all elements ofG, and if a line ofS intersectsX in one point, this point is
fixed by any element ofG, soG is trivial. Now restricting to any of these three-dimensional
subspacesX shows that the spread contained inX must be regular, and therefore thatG is
cyclic of order dividingq+ 1 in the general case. IfX is a subspace ofPG(2R+ 1,q), we
will say thatX is a subspace ofS if the set of lines ofS contained inX form a spread ofX.

Theorem 3.1 Let S be a line spread of PG(2R+ 1,q) which is fixed by a non-trivial
collineation group G. Then the geometry whose points are the lines ofS and whose i
dimensional subspaces(i < R) are the2i + 1 dimensional subspaces ofS, is isomorphic
to PG(R,q2), and G is contained in a cyclic group of size q+ 1 which fixes all lines ofS.

Proof: We show first that the setS of lines, together with the set of(2R−1)-dimensional
subspaces ofS forms a design isomorphic to the design of points and lines ofPG(R,q2).
The comments preceeding the theorem show that any pair of elements ofV are contained
in exactly one three-space ofS. Let X be such a three-space. Ifl ∈ S is not contained in
X, l is disjoint fromX, so X ∨ l is a five-dimensional spaceY, and all elements ofG fix
Y, so (as the non-identity elements ofG act fixed-point freely)Y is a subspace ofS. Now
counting shows that any two lines ofS are contained in the same number of five dimensional
subspaces ofS, and continuing inductively we see that any two lines ofS are contained in
the same number of 2i + 1 dimensional subspaces ofS, for all i ≤ R− 1. This shows that
S and the set of(2R−1)-dimensional subspaces ofS is a designE . The lines of this design
are clearly the three-dimensional subspaces ofS, and since inPG(2R+ 1,q) any 2R− 1
dimensional subspace meets any three-dimensional subspace in at least a line, every line of
E meets every block ofE . Thus, by 2.1.22 of Dembowski [3, p. 67],E is the design of points
and hyperplanes of a projective geometry, which must bePG(R,q2) (this is clear from the
number of points on each block whenR≥ 3; whenR= 2 the plane is desarguesian since
it occurs as the point-residue of the following embedding ofAG(3,q2) in AG(6,q)). Now
whenPG(2R+ 1,q) is regarded as the hyperplaneH at infinity of anAG(2R+ 2,q), the
points of the affine geometry together with the planes whose intersections withH are lines
of S forms anAG(R+ 1,q2); the group ofq2 − 1 dilatations of this geometry induces a
cyclic group ofq+1 collineations fixing all lines ofS; clearlyG is contained in this group.

2

As far as the groups inducing tactical decompositions satisfying the upper bound in
Theorem 2.2, we have:

Theorem 3.2 Let G be a subgroup of P0L(N+1,q)which induces a tactical decompo-
sition of PG(N,q) satisfying Eq.(1). If N is even, G is the trivial group. If N is odd, G is
contained in a cyclic group of order q+1 which fixes all lines of a line spread of PG(N,q).
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