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Abstract. We give two generalizations of some known constructions of relative difference sets. The first one is
a generalization of a construction of RDS by Chen, Ray-Chaudhuri and Xiang using the Gald@s:than).

The second one generalizes a construction of RDS by Ma and Schmidt from the setting of chain rings to a setting
of more general rings.
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1. Introduction

Let N <« G be finite groups such théN| = n and|G| = mn. A k-subsetR of G is called
an (m, n, k, 1) relative difference set (RDS) db relative toN if the differencesrlrz‘1
(r1,r2 € R) represent each element Gf\ N exactly times but represent no element of
N\{e}. If we identify R with deR g € Z[G], thenRis an(m, n, k, ) RDS relative toN

if and only if the equation

RR™Y = ke+ A(G\N) (1.1)

is satisfied in the group ring[G], where RV = deR g~l. WhenG is abelian, (1.1)
holds if and only if for every character of G,

K?, if x is principal,
Ix(R)|?>={ k—an, if x is principal onN but not onG, (1.2)
K, if x is not principal onN.

An (m,n, Kk, A) RDS withk=An is called semi-regular. ThuR is an(m, n, k, k/n)
semi-regular RDS in a finite abelian groGurelative toN if and only if for every character
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x of G,

k2, if x is principal,
Ix(R)2=1{0, if x is principal onN but not onG, (1.3)
k if x is not principal onN.

The RDS'’s constructed in this paper are semi-regular.

For a survey of results on relative difference sets up to 1995, we refer the reader to Pott
[11]. Since then, there have been some new constructions of relative difference sets in
abelian groups using certain ring structures on the groups. Roughly speaking, the required
ring structure on an abelian groW enables us to generate all additive characters of
from any “nondegenerate” character. Chen, Ray-Chaudhuri and Xiang [2] constructed a
family of RDS in abelian 2-groups using Galois rings. Get= GR(4, 2t + 1) x W, where
GR(4, 2t + 1) is the Galois ring of characteristic 4 and siZe4 andwW = Ly x (Zp x Z2)%,

r +s =t. Theirresultis afamily of RDS d& relative to the maximal ideal @R(4, 2t +1).

We will generalize this construction BR(4, m) x W, wherem is not necessarily odd and

W is any abelian 2-group withW| < 2™ and expN < 4. Another recent construction of

RDS was by Ma and Schmidt [8] using finite commutative principal ideal local rings. We
shall see that their construction can be generalized to a larger class of rings—finite rings
with a unique minimal left ideal. The purpose of this paper is not only to provide more
general ways to construct RDS'’s but also to demonstrate some connections between RDS
and other interesting topics such as quasi-Frobenius rings and generalized bent functions.
The reader will find that the proofs here differ from those in [2] and [8] considerably.

2. A generalized construction of RDS using the Galois ringsR(4, m)

Let pbe aprimef > 0andf e Zy[x] a monic polynomial of degree whose imagef in
Zp[Xx] is irreducible. The ring structure &y[x]/(f) depends only om. Zy[x]/(f) is
called a Galois ring of characteristi¢ and is denoted b@R(pt, m). We refer the reader to
McDonald [9] for a comprehensive treatment of Galois rings. For the role of Galois rings
in some recent important discoveries in coding theory, we refer the reader to [1, 5].

The Galois ring needed hered@d(4, m). Itis alocal ring with maximal ideal@R(4, m).
The group of unitssR(4, m)* of GR(4, m) contains a unique cyclic subgrody of order
2" —1. T=T* U {0} is called the Teichmuller set d6R(4, m). GR(4, m)/2GR(4, m)
is the Galois fieldGF(2™) and T is a system of coset representatives &Re4, m) in
GR(4, m). Each elemen& € GR(4, m) has a unique 2-adic representat@mnr= Xg + 2X;
wherexg, X1 € T. The map : GR(4, m) — GR(4, M) : X+ 2X1 > X3 +2X? (X0, X1 € T)
is the Frobenius map @R(4, m). ¢ is an automorphism @&R(4, m) of ordermand(c) is
the full automorphism o6&6R(4, m).The trace of5R(4, m) is the map Tr GR(4, m) — Z4
defined by Tta) = Y. o' (a).

Leté = /—1. Thenforxg € T*andx, € T,

Z gTr((XD"FZXl)X) — g—Tr<><1/><o) Z ETr(X)- (2.1)

XeT xeT
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This is a result of Calderbank whose proof can be found in [2]. The exponential sum
Y wer £ was determined up to 4 possibilities in [1] and was completely determined in
[12]. For our purpose here, we shall only need the fact that

Z ETr(x)

xeT

=2m2, (2.2)

Let W be a finite abelian group artd: W — T any function. LetG = GR(4, m) x W
and

R= [ J(@+2hw)T.w) cG. (2.3)

weW

We shall explore conditions oW andh that will makeR a semi-regular RDS i relative
to N = 2GR(4, m) x {0}. We need the following notion of generalized bent functions [6].

Definition 2.1 Let A be a finite abelian group with character grodpand letS' = {z €
C: |z = 1}. Afunction f : A— Stis called a bent function if for every € A*,

D 00X 0| =AY (2.4)

xXeA

Theorem 2.2 The set R in(2.3)is a semi-regular RDS of G relative to N if and only if
for each ze T, the function

f,: W— S
w > £TT)+22hw) (2.5)

is a bent function on W.

Proof: Sufficiency. Assume x A is a nonprincipal character @ wherey anda are
characters o66R(4, m) andW respectively.

Case 1.y is principal on R4, m). Theny (-) = £""®) for somea € 2GR(4, m). Then

(XX DR = > a(w) Y grradanemmo (2.6)

weW XeT

— Z A(w) - ZETr(ax)-

weW xeT

If a € 2GR(4, m)\{0}, then)", .; £7"@) =0; if a = 0, thenx is nonprincipal oW and
> ew A(w) = 0. Thus we always have

(x xA)(R) =0 (2.7)

in this case.
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Case 2.y is nonprincipal on BR(4, m). Theny (-) = £""®) for somea = Xo + 2X; where
Xo € T*, X, € T. Then

(X X )L)(R) — Z )\.(w) ZETr(a(l+2h(w))x)

weW XeT
— Z Aw) Z g TrA+20w@)+2)%) (2.8)
weW XeT

wherez = x;/Xo. Note thah(w)+z = h(w)+2z+20""1(zh(w)) (mod ZGR(4, m)) and
thath(w) + z + 26™ 1(zh(w)) = (6™ *(h(w)) + c™1(2))? € T, sinceT consists of
all the squares dBR(4, m). Using (2.1) and (2.2) in (2.8), we have

|(X x )\,)(R)l — )\'(w) 3 %_—Tr(h(w)+z+20m*1(zh(w))) STF(X)
— 2m/2 )\.(U)) . Sle'(h(w)+22h(w))
=221 % " (w) fo(w)
weW
= 2M2\w| Y2, (2.9)

ThereforeR is a semi-regular RDS db relative toN.

Necessity. It follows from (2.9). O
For anyx € T, the 2-adic expansion of Tx) € Z, is known (cf. [5]):
Tr(x) = (totrom)(X) + 2Q((X)). (2.10)

In (2.10),7 : GR4, m) - GR(4, m)/2GR(4, m) = GF(2™M) is the canonical projection;
tr : GF(2™) — Z, is the trace ofF(2™); 1: Z, — {0, 1} C Z4 is the obvious inclusion;
Q:GF(2™ — Z, is given by

Q)= > A ye'w. (2.11)

O<i<j<m-1

wherep is the Frobenius map @&F(2™). Q is a quadratic function oGF(2™) = Z3'. For
eacha e GF(2™M), the functionD, Q : GF(2™) — Z, is defined by D, Q) (y) = Q(y+a) —
Q(y), y € GF(2M). It's easy to determine that

dim{a e GF2™ : D.Q=0 (modZ,)} = 0. ifmiseven, (2.12)
© PPk = 2= 1, if mis odd. '
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(In fact, {faec GF(2™ :D,Q = 0 (modZ,)} is {0} for evenm and isZ, for odd m.)
Then using the well-known canonical forms of quadratic function€3rfcf. [4]), we can
identify GF(2™) with Z2' suitably such that

Q(X1, ..., Xm) = X1Xo + X3Xgq + - - - + Xoym/2j—1X2(my2) + (X1, ..., Xm) (2.13)

for all (Xq,...,Xm) € GF(2™), wherel (X1, ..., Xm) is a linear function of(Xy, ..., Xm).
Let

tr(Xg, ..., Xm) = QX1 + - - - + a&nXm, (X1, ..., Xm) € GF2™M), (2.14)
wherea, € Z,. Note that whemm is odd,a, # 0. (To see this, one only has to check that
D, Q # tr(modZ,) for all a € GF(2™).) Therefore, by a suitable linear transformation of
(Xg, - . -, Xm) in (2.13), we may further assume, in addition to (2.13), that

tr(Xe, ..., Xm) = Xm for(xe, ..., Xm) € GF@2™). (2.15)

From now on, we assume thaf(2™) is so identified withZ]' such that both (2.13) and
(2.15) hold.

Corollary 2.3 Let W be a finite abelian group and:AV — T a function. Let
roh=(a1,...,am) : W— GF@2™ =Z7. (2.16)

Then R= {J,,cw((1 + 2h(w) T, w) € GR4, m) x W = G is a semi-regular RDS of G
relative t02GR(4, m) x {0} if and only if

Eloam (_ 1)a1a2+‘“+a2Lm/2j—la2Lm/2J +a1o1+--+amom (217)

is a bent function on W for allay, . .., am) € Z3.

Proof: By (2.10), (2.13), (2.15) and (2.16), for eazle T, w € W,

ETr(h(w)-ﬁ-ZZh(w)) — sTr(h(w))(_1)tr(n(z)7r(h(w)))
— g(Lotronoh)(w)+2(Qonoh)(w)(_1)tl’(7r(z)n(h(w)))

— sz(am(w)) (— 1)061(w)az(w)+'“JrOtsz/zJ_l(w)asz/zJ (w)+agas (w)+-++8mom(w)

(2.18)
where(ay, ..., am) € Z3'is determined by. Aszruns overT, (ay, . .., am) runs overzy'.
Thus the corollary follows from Theorem 2.2. O

In order for the construction of RDS in Corollary 2.3 to work, we only have to find func-
tionsay, ..., om: W — Z; such that the function (2.17) is bent @ for all (a, ..., am)
eZ3.
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Lemma 2.4
() Leta :Z, — Z, be a bijection and & Z,. Theng***(—1)2 is bent onZ,.
(i) Let (a1, ap):Zp— Z% be such thatw, is a bijection and @ a; € Z,. Thengt°*
(=1)xneztaatae jg hent onZ,.
(i) Let (o, o) : Z2 — 72 be a bijection and @ ay € Z,. Thengoz(—1)meetac+ae: jg
2 2
bent onZ3.
(iv) Let (a1, ap) : Zs — 72 be a bijection such that»(0) = «»(2) and &, a; € Zy. Then
2
glove (—]yxeetaientae: g hent onZy.
(v) Let W=7Z3 or Zs, (o1,02):W — Z2 a bijection and @ a € Z. Then
(=1)netamte g hent on W,

(vi) Letr be a permutation oS and let(ay, . . ., azs) : Z5° — Z5° be defined by
(C{:L’ a35 sy aZS—lv a2’ a47 sy 0525)()(1, ceey XZS)
= (le L ) XSv T[(XSJrl’ ceey XZS))v (Xla ceey XZS) € ng (219)

Thenforany @, ..., @y € Zp, (—1)*oet +ees-1dzstaiont+axts jg hent onZ%S.

Proof. (i)—(v) can be easily checked because the groups there are only of orders 2 and 4.
The function in (vi) is the well-known Maiorana-McFarland bent function [11]. O

Let Wy andW, be two finite abelian groups. If; is bent onW; and f; is bent onW,
then f, - f, is bent oW, x W5 [6]. Another obvious fact is that any functidn: {0} — St
is bent on{0}. Using these two facts and Lemma 2.4, we conclude thati§ an abelian
2-group such thafw| < 2™ and expV < 4, there are many ways to choose functions
o1, ..., am: W — Zy such that the function (2.17) is bent @nfor all (ay, ..., am) € Z3.
For each suctW and each such choice af, ..., an, we have a semi-regular RDS of
GR(4, m) x W relative to ZR(4, m) x {0} by Corollary 2.3. The construction given here
generalizes the one in [2].

3. A generalized construction of RDS using local rings

Let R be a finite ring with identity. A character of (R, +) is called hondegenerate if
kerx does not contain any nonzero left idealRf (In the definition of a nondegenerate
character, the words “left ideal” can be replaced by “right ideal”.}y i6 a nondegenerate
character ofR, then x (a-) gives all the additive characters & asa runs overR and
the same is true fog (-a). For any subse$ of a ring R, the left and right annihilators of
Sare

I(S)={xe R:xs=0forallse S}, (3.1)
r(S ={xe R:sx=0forallse S}. (3.2)

The rings used for our construction of RDS are finite local rings with a nondegenerate
character. (Cf. [6] for the use of such rings for constructions of bent functions and partial
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difference sets.) In the following proposition, we list some characterizations and properties
of such rings without proof. (When the ring is commutative, the proof of Proposition 3.1
can be found in [6]. The proof in the noncommutative case is similar.)

Proposition 3.1 Let R be a finite ring with identity. Then the following are equivalent.
(i) Rislocal and has a nondegenerate character.
(i) R islocal and for any left ideal L and right ideal J of Ry (L)) = L, r((J)) = J.
Equivalently, R is local and quasi-Frobenius.
(i) R has a unique (nonzero) minimal left ideal.
(iv) R has a unique (nonzero) minimal right ideal.

Assume that one @i)—(iv) is satisfied, then the minimal left ideal and the minimal right
ideal of R coincidethey are tM) = (M), where M is the uniqgue maximal ideal of R.
Furthermore, for any leftideal L and rightideal J of R/RL) = L and R/I(J) = J as
abelian groups.

Theorem 3.2 Let R be a finite local ring with a nondegenerate charagterLet M be
the unique maximal ideal of R, A a system of coset representativeshdf B a system
of coset representatives of M(M), and f: A— R\M any function. For each & A,
define

Dao={(@u+b(f(@+u,u):ueM,beB}Cc M x M. (3.3)

Then we have the following conclusions.
(i) For each ae A and each character of M x M,
%, if A is principal,
[A+(Da)l = { O, if A is principal on r(M) x {0} but noton Mx M, (3.4)
Oor M|, if A is not principal on tM) x {0}.

Furthermore, ifs is not principal on (M) x {0}, there is exactly one a A such that
[A(Da)| = |M]. In the terminology of3, 7], {Da : a € A} form a(|M|?/|r (M)|,
[M], [r (M)]) building set of Mx M relative to r(M) x {0}.

(i) LetGD> M x M beanygroupsuchth@G: M x M]=|r(M)|and Mx M is contained
inthe center of G. Thenforany system of cosetrepresentétyea € A} of G/M x M,
(Uaca(a + Da) is a semi-regular RDS of G relative tg¥) x {O}.

Proof: (ii) is the well known construction of semi-regular RDS from building sets
[3, 7]. We only have to prove (i). Let be a character oM x M andae A. Theni =
x (@) x x(B8-) wherey is a nondegenerate charactefoénda, 8 € R.

Case 1.) is principal. Then

IM?

)&Da =Da= .
|4(Da)| = |Dal (M)

(3.5)
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Case 2.1 is principal orr (M) x {0} but not principal orM x M. Thena € M. If a €1 (M),
we have

MDa) = Y x(@awx(Bu) Y x(ab(f (@) +u))

ueM beB

=0. (3.6)

(Note that) ", g x (@b(f(a) + u)) = 0 sinceB(f (a) + u) is a system of coset repre-
sentatives oM /r (M) and («-) is a nonprincipal character & /r (M).) If @ € r (M),
theng & r (M) sincea is nonprincipal orM x M. Then we have

M(Da) =Bl Y x(Bu) =0. (3.7)

ueM

Case 3.x is not principal orr (M) x {0}. Thena € R\M. We have

2(Da) = ) x(abf(@) D x((@(@+b)+ Bu). (3.8)

beB ueM

Ifaz —B/a (mod M), the inner sumin (3.8) is O for dll € B, sincex(a+b)+ 8 ¢
r(M). If a=—8/a (mod M), there is a uniquéy € B such thathy = —a — S/«
(modr (M)), and

2(Da) = x (abo f ())IM]. (3.9)
Therefore

IA(Da)| = 0, ifa#—g/a (modM),

IM|, ifa=—B/a (modM). (3.10)

The proof of (i) is now completed. O

WhenRis a chainring, i.e., a finite commutative principal ideal local ring, the construc-
tion in Theorem 3.2 coincides with the construction by Ma and Schmidt [8]. However, the
category of finite rings with a unique minimal left ideal is much larger than the category of
chain rings. We give some examples of finite rings with a unique minimal left ideal without
proofs. In these examples, the rings are not chain rings in general.

Example 3.3 Let R be a finite ring with a unique minimal left idealand letny, .. ., ng
> 1 be integers. Then

R = RIX1, ..., Xl /(X5 .., X) (3.11)

is a finite ring with a unique minimal left ideal - X*~*. .. X!, whereX; is the image
of Xj inR.
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Example 3.4 Let R be a finite ring with a uniqgue minimal left ide&l. Let¢ € Aut(R).
Then

a b

=110 ¢@

a,beR (3.12)

is a finite ring with a unique minimal left ideal

o | L (3.13)

Example 3.5 Let R be a finite ring with a unique minimal left ide&l SinceR s local,
charR) = p* for some primep. Let G be any finitep-group. ThenR[G] is a finite ring
with a unique minimal leftideal - } ;¢ 0.
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