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Abstract. This paper gives spectral characterizations of two closely related graph functions: the Lov´asz number
ϑ and a generalizationϑ1 of Delsarte’s linear programming bound. There are many known characterizations of
the Lovász numberϑ , and each one corresponds to a similar characterization ofϑ1 obtained by extremizing over
a larger or smaller class of objects.

The spectral characterizations ofϑ andϑ1 given here involve the largest eigenvalue of a type of weighted
Laplacian that Fan Chung introduced.
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1. Introduction

Many graph functions, such as the chromatic number and the clique number, have been
devised to encode information about the geometry, topology, or combinatorics of a graph.
Here we study two graph functions that have been around for a few decades and that are
closely related to each other. One, known as the Lov´asz number, was first introduced by
Lovász [6] in 1979 as an upper bound for a quantity called the Shannon capacity; the other,
introduced by McEliece, Rodemich, Rumsey [8], and Schrijver [9], is a generalization of
Delsarte’s linear programming upper bound for the independence number. In his original
paper, Lovász gave several different characterizations of his graph invariant; still others
were developed later. The second invariant considered here also has many different charac-
terizations; in fact, each is similar to a corresponding characterization of the Lov´asz number,
except that it is obtained by extremizing over a larger or smaller class of objects (see the
Table of characterizations in §3). Besides its famous application to the Shannon capacity of
a graph, much of the interest in the Lov´asz number results from its diverse characterizations,
according to Knuth [5].

This paper establishes for each of the two graph invariants yet another characterization,
involving the spectrum of a type of weighted Laplacian introduced by Fan Chung [1]. She
defined a spectral graph invariant in order to bound the chromatic number from below, and
we show that it is exactly the same graph invariant considered by McEliece, Rodemich,
Rumsey, and Schrijver. This work was motivated by a study of Chung’s spectral graph
invariant and an attempt to relate it to other known graph invariants.

The author conducted this research while visiting AT&T Labs-Research, Murray Hill, N.J.
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This paper is arranged as follows: In §2, we define basic terms. In §3, we introduce
the two graph invariants and summarize their known characterizations. In §4, we define
the weighted Laplacian and state our main theorem. After establishing some properties of
weighted Laplacians in §§5–6, we prove the theorem in §§7-8.

2. Preliminary definitions and notation

In this paper,G is a graph onn vertices. The vertices ofG are labelled 1, 2, . . . ,n. The
notationi ∼ j indicates that vertexi is adjacent to vertexj ; the notationi ∼/ j indicates
either thati = j or that i and j are distinct non-adjacent vertices. The graphḠ is the
complement ofG. Theclique number of G, denoted byω(G), is the size of a largest clique
that is a subgraph ofG. The independence number of G, denoted byα(G), is the size of
a largest subsetY of the vertex set ofG such that no two vertices inY are adjacent. The
independence number and the clique number are related byω(G) = α(Ḡ). Thechromatic
number of G, denoted byχ(G), is the smallest number of colors needed to color the vertices
of G so that no two adjacent vertices have the same color.

We use the notationSn to denote the set of real symmetricn× n matrices, andS+n to
denote the set of real symmetricn× n matrices all of whose entries are non-negative. For
anyA ∈ Sn, let3(A) denote the largest eigenvalue ofA. (This is not necessarily the largest
in absolute value, sinceA may have a negative eigenvalue whose absolute value exceeds
3(A).) The smallest eigenvalue ofA is−3(−A). We use the notation Spec(A) to denote
the set of eigenvalues. We say that a vectorv ∈ Rn is positiveif each of its components is
a positive number. The Euclidean inner product of vectorsu, v ∈ Rn is denoted byu · v.

If N is some natural number, then a mappinga : {1, . . . ,n} → RN is called anN-labelling
of the graphG on n vertices. We usually writeaj instead ofa( j ). An N-labelling ofG is
called alabelling with acute(resp. right, obtuse) anglesif ai · aj ≥ 0 (resp.= 0,≤ 0) for
all i ∼ j ; it is called anN-orthogonal labellingif ai · aj = 0 wheneveri and j are distinct
non-adjacent vertices inG; and it is called anN-orthonormal labellingif it is orthogonal
and if‖ai ‖ = 1 for eachi .

3. Characterizations ofϑ andϑ1

In the late 1970’s, Lov´asz [6] introduced a graph invariant,ϑ, as an upper bound for the
Shannon capacity of a graph. He used it to determine the Shannon capacity of the five
cycle and went on to give many alternative characterizations ofϑ . He also showed that
ω(G) ≤ ϑ(Ḡ) ≤ χ(G), inspiring the title of Knuth’s survey [5].

Building on the work of Lovász, the authors McEliece, Rodemich, and Rumsey [8]
introduced a slightly different function that was a bound on the independence number of a
graph. They showed that for a certain class of graphs that arises naturally in information
theory, their function was identical to the so-called Delsarte linear programming bound.
They called their function one of two “Lov´asz bounds” (their other “Lov´asz bound” being
ϑ). For the sake of uniqueness of names we will call it the “Delsarte number” and denote it
byϑ1. McEliece, Rodemich, and Rumsey show in [8] thatϑ1(G) ≥ α(G) or, equivalently,
ϑ1(Ḡ) ≥ ω(G).
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Schrijver [9] considered the same function and found some of the same results that are
contained in [8]. The work of Schrijver also built upon that of Lov´asz but was independent
of that of McEliece, Rodemich, and Rumsey.

Below, we summarize the previously known characterizations ofϑ(Ḡ) andϑ1(Ḡ) for
a graphG having at least one edge. Lov´asz gave the first five characterizations ofϑ and
proved their equivalence in his first paper on the topic [6]. The sixth and seventh characteri-
zations ofϑ appear in [9] and [2], respectively. Definitions ofϑ1 were given independently
in [9] (second and third characterizations below) and [8] (sixth characterization). To prove
that the first, fourth, fifth, and seventh characterizations ofϑ1 below are equivalent to the
others, one can mimic the proofs establishing the corresponding characterizations ofϑ . We
omit the straightforward details; a readable and thorough reference for proofs aboutϑ is
Knuth’s survey [5].

Table of characterizations ofϑ andϑ1 ([2, 6, 8, 9])

1. ϑ(1)(Ḡ) = min{maxi
1

(b·ai )2
: ‖b‖ = 1,a ∈ A(1)}

A1 = {a : a = labelling ofG with obtuse angles,‖ai ‖ = 1 for all i }
A = {a : a = labelling ofG with right angles,‖ai ‖ = 1 for all i }
= {a : a = o.n. labelling ofḠ}

2. ϑ(1)(Ḡ) = min{3(A) : A ∈ A(1)}

A1 = {A = (aij ) ∈ Sn : aij ≥ 1 wheneveri = j or i ∼ j }
A = {A = (aij ) ∈ Sn : aij = 1 wheneveri = j or i ∼ j }.

3. ϑ(1)(Ḡ) = maxD∈D(1)
∑n

i, j=1 dij = maxa∈B(1)
∑

i, j ai · aj = maxa∈B(1) ‖S(a)‖2

D1 = {D ∈ S+n : Tr(D)= 1, D positive semidefinite, dij > 0 only if i ∼ j or i = j }
D = {D ∈ Sn : Tr(D) = 1, D positive semidefinite, dij 6= 0 only if i ∼ j or i = j }

B1 =
{

a : a = orthogonal labelling ofG with acute angles,
n∑

j=1

‖aj ‖2 = 1

}

B =
{

a : a = orthogonal labelling ofG,
n∑

j=1

‖aj ‖2 = 1

}
, S(a) =

∑
j

aj

4. ϑ(1)(Ḡ) = max{∑n
i=1 xi : x ∈ C(1)}

C1 = {((d · ai )
2) ∈ Rn : ‖d‖RN = 1,a = N-orthonormal labelling ofG with acute

angles}
C = {((d · ai )

2) ∈ Rn : ‖d‖RN = 1,a = N-orthonormal labelling ofG}.
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5. ϑ(1)(Ḡ) = 1+max{ 3(B)
3(−B) : B ∈ B(1)}

B1 = {0 6= B = (bij ) ∈ S+n : bij 6= 0 only if i ∼ j }
B = {0 6= B = (bij ) ∈ Sn : bij 6= 0 only if i ∼ j }

6. ϑ(1)(Ḡ) = min{1/λ(A) : A ∈ Ä(1)}

λ(A) = min

{
xT Ax : x ∈ Rn,

∑
i

xi = 1

}
Ä1 = {A = (aij ) ∈ Sn : aii = 1,aij ≤ 0 if i ∼ j, A positive semidefinite}
Ä = {A = (aij ) ∈ Sn : aii = 1,aij = 0 if i ∼ j, A positive semidefinite}.

7. ϑ(1)(Ḡ) = max{3(C) : C ∈ C(1)}

C1 = {C ∈ S+n : C positive semidefinite,cij − δij 6= 0 only if i ∼ j }
C = {C ∈ Sn : C positive semidefinite,cij − δij 6= 0 only if i ∼ j }

Warning. Some sources call this quantityϑ(G) instead ofϑ(Ḡ). In [8], ϑ(G) is denoted
ϑL(Ḡ). Our notation here is consistent with that of Knuth’s survey [5] and that of some
work by Lovász and others [2], but not with that of Lov´asz’s first paper on the subject [6].

Comparing the sets over which we extremize in order to obtain eitherϑ1(Ḡ) or ϑ(Ḡ),
we see immediately thatϑ1(Ḡ) ≤ ϑ(Ḡ). This leads to an “extended sandwich”

ω(G) ≤ ϑ1(Ḡ) ≤ ϑ(Ḡ) ≤ χ(G).

In [9], Schrijver also cites M.R. Best’s example of a graphḠ for whichϑ(Ḡ) 6= ϑ1(Ḡ).
The vertices of the graph̄G are all vectors in{0, 1}6 and two such vertices are adjacent if
and only if they differ in at most three of the six coordinate places.

4. Weighted graph Laplacian

Fan Chung recently introduced a weighted graph Laplacian [1] that turns out to yield yet
another pair of characterizations ofϑ andϑ1. We define the Laplacian and state the new
characterizations ofϑ andϑ1 in this section, deferring the proofs until later.

Let G be a graph with its vertices labelled from 1 ton. Assume for now thatG has at least
one edge. In the definition below,W1 is a class of weight matrices that Chung considered,
whileW is a larger class introduced in this paper.

Definition 1 If W = (wij ) ∈ Sn then let

wi =
n∑

j=1

wij .
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Let

W1 = {0 6= (wij ) ∈ S+n : wij > 0 only if i ∼ j } and

W = {0 6= (wij ) ∈ Sn : wij 6= 0 only if i ∼ j ; wi ≥ 0∀i ;
wi = 0 only if wij = 0∀ j }.

ClearlyW1 ⊆W. Elements ofW are calledweight matrices for G. The setsW andW1

are nonempty as long asG has at least one edge.

Definition 2 We define theweighted Laplacianof G with weight matrixW ∈ W1 to be
then× n matrix LW with entries

(LW)ij =


1 if i = j andwi 6= 0

− wij√
wiw j

if i ∼ j andwiw j 6= 0

0 otherwise.

Observe thatLW(
√
w1, . . . ,

√
wn)

T= 0. Also, if W is in the smaller setW1 then LW

is positive semidefinite [1]. IfW is inW but not inW1, then (unlike most discrete and
continuous operators that go by the name “Laplacian”)LW is not necessarily positive
semidefinite.

Our main result is the following:

Theorem 1 If G has at least one edge then

ϑ(Ḡ) = 1+max

{
1

3(LW)− 1
: W ∈W, LW positive semidefinite

}
(1)

and

ϑ1(Ḡ) = 1+max

{
1

3(LW)− 1
: W ∈W1

}
(2)

where3(LW) is the largest eigenvalue of LW.

We will prove this theorem in Sections 7 and 8.

5. Properties of graph invariant σ

Using the notation that Fan Chung introduced in [1], we have
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Definition 3 The graph invariant

σ(G)
def= 1+max

{
1

3(LW)− 1
: W ∈W1

}
if G has at least one edge. IfG has no edges, then defineσ(G) = 1.

Our first goal will be to establish the relationship betweenσ of a graph andσ of its
various connected components. This will result in a convenient set of criteria to determine
when a given graph function is identically equal toσ .

Lemma 1 Let H be a subgraph of G. Then

σ(H) ≤ σ(G).

Furthermore, if H is obtained from G by removing isolated vertices thenσ(H) = σ(G).

Evaluatingσ for a subgraph is equivalent to optimizing over a smaller set of matrices. We
omit the straightforward details involved in proving the lemma.

Lemma 2 If G is the disjoint union of graphs G1 and G2, then

σ(G) = max{σ(G1), σ (G2)}.

Proof: If either G1 or G2 contains no edges then the statement is a consequence of
Lemma 1. If eachGi contains an edge them Lemma 1 still impliesσ(Gi )≤ σ(G) for both
i = 1, 2. To show that equality holds for eitheri = 1 or i = 2, consider the matrixK that
achieves the max in the definition ofσ(G). Then L is formed from blocksL1 and L2

corresponding to Laplacians ofG1 andG2, respectively. By renumbering we may assume
that3(L) = 3(L1), which implies

σ(G) = 1+ 1

3(L)− 1
= 1+ 1

3(L1)− 1
≤ σ(G1) ≤ σ(G). 2

Remark Using the preceding lemmas, we can computeσ(G) for any graph by computing
σ(Gi ) for each connected componentGi . Furthermore, we have the following immediate
useful consequence of Lemma 2:

Lemma 3 Let σ̃ be a graph function. If
(H1) σ̃ (G) = σ(G) whenever G is connected; and
(H2) σ̃ (G) = max{σ̃ (G1), σ̃ (G2)} whenever G is the disjoint union of G1 and G2,
thenσ(G) = σ̃ (G) for all G.

6. Weight matrices and induced Laplacians

The following lemma allows us to computeσ using a more convenient class of weight
matrices.
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Lemma 4 Assume that G is connected. Then

sup
W∈W1

1

3(LW)− 1
= sup

W∈W◦
1

3(LW)− 1
(3)

whereW1 = {0 6= (wij ) ∈ S+n : wij > 0 only if i ∼ j } andW◦ = {0 6= (wij ) ∈ S+n : wij >

0 if and only if i ∼ j }.

Proof: This proof is essentially a continuity argument. If we interpret the condition
wi = 0 as a “pretense” that vertexi is isolated, then we will approximate an isolated vertex
by a vertex connected to certain others but with very small weights on those connecting
edges. Similarly, ifwij = 0 corresponds to pretending that thei, j edge is not there, then
we will approximate that situation by ani, j edge with very small weight.

SinceW◦ ⊆W1, (3) is true if we replace “=” by “≥”. To show the reverse inequality, it
suffices to show that for anyW ∈W1 there are matrices inW◦whose maximum eigenvalues
are arbitrarily close to3(W). We will do this in two steps, addressing first the issue of
positive row sumswi =

∑
j wij and then the question of positive weights on all edges ofG.

Let W ∈W1 and assume thatwi = 0 for i = k+ 1, . . . ,n andwi > 0 for i = 1, . . . , k.
Then we can writeW in the block form

W =
(

A 0

0 0

)

whereA ∈ S+k andai =
∑k

j=1 aij is strictly positive for eachi = 1, . . . , k.
For anyε > 0, let

W′ε =
(

A Bε
BT
ε 0

)

where the entries ofBε are defined to beε if i ∼ j and 0 otherwise. SinceG is connected,B
is not identically zero. Then each row sum ofW′ε is positive and there are positive integers
ci independent ofε such that

(W′ε)i =
{

ai + ci ε i = 1, . . . , k

ci ε i = k+ 1, . . . ,n.

Sinceai > 0, a straightforward computation ofLW′ε shows that

LW =
(

L A 0

0 0

)
and

limε→0 LW′ε =
(

L A 0

0 I

)
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where the convergence is with respect to the EuclideanRn2
norm, for example. Since3 is

a continuous function,

lim
ε→0

3(LW′ε ) = 3
(

lim
ε→0

LW′ε

)
= max{3(LW), 1} = 3(LW).

We remark thatW′ε is not in the classW◦, but as in the next step it may be approximated
by matrices inW◦.

To address the issue of positive weights on all edges ofG, we proceed in a similar
way. Starting from anyW= (wij )∈W with positive row sums but not necessarily positive
weights on all edges ofG, define

(Wε)ij =
{
ε i ∼ j andwij = 0

wij otherwise.

Note thatWε ∈W◦. Also, limε→0 LWε
= LW and hence limε→03(LWε

)=3(LW). The
two approximations from this proof, used in conjunction, show that the supremum of
1/(3(LW)−1) can be approached through Laplacians with weight matrices in the subclass
W◦. 2

The next proposition characterizes those matrices that occur as Laplacians of a given
graph.

Proposition 1 Let G be a graph with no isolated vertices. Let
W◦ = {0 6= (wij ) ∈ S+n : wij > 0 if and only if i ∼ j };
B◦ = {B ∈W◦ : B has a positive fixed vector}; and
B′ = {B ∈ Sn : bij 6= 0 only if i ∼ j in G, B has a positive fixed vector}.

Then

{LW : W ∈W◦} = {I − B : B ∈ B◦}

and

{LW : W ∈W andwi > 0 for all i } = {I − B : B ∈ B′}.

Proof: We will prove only the first conclusion; the proof of the second is similar. To show
the inclusion{LW : W ∈W◦} ⊆ {I − B : B ∈ B◦} we need to find a positive fixed vector
of I − LW. But as observed in the text following Definition 2,(

√
w1, . . . ,

√
wn)

T is a null
vector ofLW and it is positive ifW ∈W◦. The remaining requirements forI − LW to be
in B◦ follow from the definitions ofLW andW◦.

To show that{I − B : B ∈ B◦} ⊆ {LW : W ∈W◦}, let B ∈ B◦. Let v = (vi ) be a
positive fixed vector ofB,which exists by assumption. Define then× n matrixW = (wij )

by

wij =
{
vi v j bij if i ∼ j

0 otherwise.
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ThenW ∈W◦ and for eachi = 1, . . . ,n,

wi =
∑

j

wij = vi

∑
j∼i

v j bij = vi (Bv)i = v2
i .

Thusvi = √wi sincevi is positive. By the definition of weighted Laplacians, whenever
i ∼ j we have

(LW)ij = − wij√
wiw j

= −vi v j bij

vi v j
= −bij = (I − B)ij .

Checking that(LW)ij = (I − B)ij = δij wheneveri ∼/ j , we see thatI − B = LW. 2

7. Characterizingϑ1 using Laplacians

Now we are ready to prove half of the main result:

Proof of (2) in Theorem 1 Using the the fifth characterization ofϑ1(Ḡ) given in the
Table in Section 3, we will show that

σ(G) = 1+ sup
B∈B1(G)

3(B)

3(−B)
(4)

where

B1(G) = {0 6= B = (bij ) ∈ S+n : bij 6= 0 only if i ∼ j in G}.

First assume thatG is connected and has at least one edge. By Lemma 4,

σ(G) = 1+ sup
W1

1

3(LW)− 1
= 1+ sup

W◦

1

3(LW)− 1
= 1+ sup

W◦

1

3(LW − I )
.

Using Proposition 1 we can write

σ(G) = 1+ sup
B◦

1

3(−B)

where we recall thatB◦ = {B = (bij ) ∈ S+n : B has a positive fixed vector andbij > 0 if
and only if i ∼ j }.

Furthermore, ifB∈S+n satisfies3(B)= 1 andbij > 0 if and only if i ∼ j , then the
Perron-Frobenius Theorem implies thatB has a positive eigenvectorv. By the Perron-
Frobenius Theorem, a positive eigenvector for a non-negative matrix must correspond to
the largest eigenvalue. Therefore we can phrase our formula as

σ(G)= 1+ sup

{
1

3(−B)
: B ∈ S+n ,3(B) = 1, bij > 0 if and only if i ∼ j

}
. (5)



140 GALTMAN

All of the matrices(bij ) ∈ S+n that satisfybij > 0 if and only if i ∼ j have trace zero and
hence a positive largest eigenvalue. Since for such matrices the expression3(B)/3(−B)
is unchanged ifB is multiplied by a positive scalar, we may undo the normalization and
write

σ(G) = 1+ sup

{
3(B)

3(−B)
: B ∈ S+n , bij > 0 if and only if i ∼ j

}
.

Finally, since3 is a continuous function the supremum above is unchanged if we allow the
matrices in question to have zeros corresponding to some, but not all, of the edges ofG.
Removing the “if” clause from the above expression and then explicitly excluding the zero
matrix, we conclude thatϑ1(Ḡ) = σ(G) for connected graphsG.

Now suppose thatG is the disjoint union ofG1 andG2, where at least oneGi has an
edge, and that vertices 1, . . . , k of G are exactly the vertex set ofG1. We would like to
establish hypothesis (H2) of Lemma 3.

If G1 has an edge butG2 does not, then the nonemptiness ofB1(G1) 3 B and the fact
that3(−B),3(B) > 0 imply thatϑ1(G1) ≥ 1 = ϑ1(G2). Also, anyB ∈ B1(G) has the
form

B =
(

B1 0

0 0

)
whereB1 ∈ B+(G1). Thus Spec(B) =Spec(B1) ∪ {0}. Since Tr(B) = 0 andB 6= 0, zero
is neither the largest nor the smallest eigenvalue ofB. This means that3(B)/3(−B) =
3(B1)/3(−B1) and henceϑ1(Ḡ) = ϑ1(G1) = max{ϑ1(G1), ϑ

1(G2)}.
If eachGi for i = 1, 2 has an edge then anyB ∈ B1(G) has the form

B =
(

B1 0

0 B2

)
whereBi ∈ B+(Gi ) is a square block. By writingB in this form we see that3(B) =
max{3(B1),3(B2)}and−3(−B)= min{−3(−B1),−3(−B2)}.Assume for convenience
that3(B) = 3(B1).

If 3(−B) = 3(−B1) then

1+ 3(B)

3(−B)
= 1+ 3(B1)

3(−B1)
≤ max

i=1,2
{ϑ1(Gi )}.

If, on the other hand,3(−B) = 3(−B2) then3(−B2) ≥ 3(−B1) > 0 and hence

1+ 3(B)

3(−B)
= 1+ 3(B1)

3(−B2)
≤ 1+ 3(B1)

3(−B1)
≤ max

i=1,2
ϑ1(Gi ).

If we had3(B)=3(B2) to start with, then the same argument would show that again
1+3(B)/3(−B) ≤ maxi=1,2 ϑ

1(Gi ). Taking the supremum overB1(G) we get

ϑ1(Ḡ) ≤ max
i=1,2

ϑ1(Gi ).
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Since any Bi ∈B1(Gi ) gives rise to an elementB∈B1(G) with 3(Bi )/3(−Bi )=
3(B)/3(−B), we also have

ϑ1(Ḡ) ≥ max
i=1,2

ϑ1(Gi ).

Thus hypothesis (H2) holds in all cases. Since we have already proved hypothesis (H1),
we now conclude from Lemma 3 thatϑ1(Ḡ) = σ(G). 2

8. Characterizingϑ using Laplacians

Lemma 5 If A ∈ Sn and A1 is a principal submatrix of A then3(A1) ≤ 3(A) and
−3(−A1) ≥ −3(−A).

The lemma is part of the Interlacing Eigenvalues Theorem. Its proof relies on the vari-
ational characterizations of eigenvalues: that is,3(A) = supv 6=0

〈Av,v〉
〈v,v〉 and−3(−A) =

infv 6=0
〈Av,v〉
〈v,v〉 .

Proof of (1) in Theorem 1 Using the fifth characterization ofϑ(Ḡ) given in the Table in
Section 3, we will show that the right side of (1) equals

1+ sup
B∈B(G)

3(B)

3(−B)

where

B(G) = {0 6= B = (bij ) ∈ Sn : bij 6= 0 only if i ∼ j in G}.

We first show that this is true if ‘=’ is replaced by ‘≥’. Let W ∈W be such thatL = LW

is positive semidefinite. If some diagonal entryLii is zero then by the definition of the
Laplacian thei th row and column must be identically zero. Without loss of generality
assume that all zero rows are grouped at the bottom ofL and that rows 1, . . . , k are not
identically zero. We can write

L =
(

A 0

0 0

)

whereA is a positive semidefinite Laplacian matrix for the induced subgraph ofG obtained
by retaining vertices 1, . . . , k. By definition ofk, Aii = 1 for i = 1, . . . , k. Define

L ′ =
(

A 0

0 In−k

)
, B = In − L ′.



142 GALTMAN

Since3(L) > 1,3(L) = 3(L ′). SinceA is a positive semidefinite Laplacian,3(−A) = 0
and so3(−L ′) = 0. Furthermore,B ∈ B and3(B) = 1+3(−L ′) = 1. Thus

ϑ(Ḡ) ≥ 1+ 3(B)

3(−B)
= 1+ 1

3(L ′)− 1
= 1+ 1

3(L)− 1
.

Taking the supremum over all allowableW we see thatϑ(Ḡ) is greater than or equal to the
right side of (1).

To show the reverse inequality, letB ∈ B. Since we are usingB to computeϑ(Ḡ) via
the fifth characterization in the Table of Section 3, we sacrifice no generality by assuming
that3(B)= 1. Letv= (vi ) be a vector such thatBv= v. Define the diagonaln× n matrix
D by settingDii = 1 if vi ≥ 0 andDii = −1 if vi < 0. Then(Dv)i = |vi | for eachi and
D−1 = D. Notice thatDBD−1 has the same eigenvalues asB and is still inB. Thus by
replacingB by DBD−1 andv by Dv if necessary, we may assume without loss of generality
thatv has all non-negative entries. We may also assume thatvi is strictly positive for all
i = 1, . . . , k and thatvi = 0 for i > k.

Let L = I − B and, as in the proof of Proposition 1, define weights

wij =
{
−vi v j L ij if i ∼ j

0 otherwise.

Notice thatwij = 0 if i > k or j > k. If i ≤ k then

wi = −vi

∑
j∼i

v j L ij = −vi (Lv − vi L ii ) = (vi )
2.

Using the fact thatvi > 0 for i ≤ k, we can now check thatW = (wij ) ∈ W. Let LW be
the Laplacian with weights(wij ). If i, j ≤ k andi ∼ j , then as in the proof of Proposition
1 we have(LW)ij = Lij . Furthermore, if we write

L =
(

A1 A2

AT
2 A3

)
then LW =

(
A1 0

0 0

)
.

We claim that LW is positive semidefinite:−3(−LW)= min{0,−3(−A1)} and
−3(−A1) ≥ −3(−L) = −3(B − I ) = −3(B) + 1 = 0. Therefore−3(−LW) = 0.
Finally, sinceA1 6= I and Tr(A1) = k we have 1< 3(LW) = 3(A1) ≤ 3(L). Then
0 < 3(LW) − 1 ≤ 3(L − I ) = 3(−B) so that(3(LW) − 1)−1 ≥ (3(−B))−1. Taking
the supremum over all allowableB yields the result. 2
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