';:‘ Journal of Algebraic Combinatorid (2000), 131-143

(© 2000 Kluwer Academic Publishers. Manufactured in The Netherlands.

Spectral Characterizations of the Lovdsz Number
and the Delsarte Number of a Graph

A. GALTMAN
Department of Mathematics, Stanford University Stanford, California 94305-2125, USA

Received May 15, 1998; Revised May 24, 1999

Abstract. This paper gives spectral characterizations of two closely related graph functions: #sz lnovber
© and a generalizationi! of Delsarte’s linear programming bound. There are many known characterizations of
the Lovdsz numbe#, and each one corresponds to a similar characterizatiéh obtained by extremizing over
a larger or smaller class of objects.

The spectral characterizations #fand 9 given here involve the largest eigenvalue of a type of weighted
Laplacian that Fan Chung introduced.
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1. Introduction

Many graph functions, such as the chromatic number and the clique number, have been
devised to encode information about the geometry, topology, or combinatorics of a graph.
Here we study two graph functions that have been around for a few decades and that are
closely related to each other. One, known as thealsawiumber, was first introduced by
Lovasz [6] in 1979 as an upper bound for a quantity called the Shannon capacity; the other,
introduced by McEliece, Rodemich, Rumsey [8], and Schrijver [9], is a generalization of
Delsarte’s linear programming upper bound for the independence number. In his original
paper, Loasz gave several different characterizations of his graph invariant; still others
were developed later. The second invariant considered here also has many different charac-
terizations; in fact, each is similar to a corresponding characterization of tleessz ovimber,
except that it is obtained by extremizing over a larger or smaller class of objects (see the
Table of characterizations in 83). Besides its famous application to the Shannon capacity of
agraph, much of the interest in the lasZ number results from its diverse characterizations,
according to Knuth [5].

This paper establishes for each of the two graph invariants yet another characterization,
involving the spectrum of a type of weighted Laplacian introduced by Fan Chung [1]. She
defined a spectral graph invariant in order to bound the chromatic number from below, and
we show that it is exactly the same graph invariant considered by McEliece, Rodemich,
Rumsey, and Schrijver. This work was motivated by a study of Chung’s spectral graph
invariant and an attempt to relate it to other known graph invariants.
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This paper is arranged as follows: In 82, we define basic terms. In §3, we introduce
the two graph invariants and summarize their known characterizations. In 84, we define
the weighted Laplacian and state our main theorem. After establishing some properties of
weighted Laplacians in §85—6, we prove the theorem in §87-8.

2. Preliminary definitions and notation

In this paperG is a graph om vertices. The vertices db are labelled 12,...,n. The
notationi ~ | indicates that vertek is adjacent to vertex; the notation ~+ | indicates
either thati = j or thati and j are distinct non-adjacent vertices. The graphs the
complement of5. Theclique number of Gdenoted by (G), is the size of a largest clique
that is a subgraph d&. Theindependence number of, @enoted byx(G), is the size of

a largest subset of the vertex set o such that no two vertices i are adjacent. The
independence number and the clique number are related®y = «(G). Thechromatic
number of Gdenoted by (G), is the smallest number of colors needed to color the vertices
of G so that no two adjacent vertices have the same color.

We use the notatioss, to denote the set of real symmetrick n matrices, ands; to
denote the set of real symmetricx n matrices all of whose entries are non-negative. For
anyA € Sy, let A(A) denote the largest eigenvalue/f (This is not necessarily the largest
in absolute value, sincA may have a negative eigenvalue whose absolute value exceeds
A(A).) The smallest eigenvalue @éfis —A(—A). We use the notation Spe&)to denote
the set of eigenvalues. We say that a veeter R" is positiveif each of its components is
a positive number. The Euclidean inner product of veamrs€ R" is denoted by - v.

If N is some natural number, thenamappangl, . .., n} — RN is called arN -labelling
of the graphG onn vertices. We usually writa; instead ofa(j). An N-labelling ofG is
called alabelling with acute(resp. right obtus¢ anglesif & - a; > 0 (resp.= 0, < 0) for
alli ~ j; itis called anN-orthogonal labellingf & - a; = 0 whenever andj are distinct
non-adjacent vertices i6; and it is called arN-orthonormal labellingf it is orthogonal
and if||g;|| = 1 for each.

3. Characterizations of¢ and 9t

In the late 1970's, Loasz [6] introduced a graph invariart, as an upper bound for the
Shannon capacity of a graph. He used it to determine the Shannon capacity of the five
cycle and went on to give many alternative characterizations. oHe also showed that
w(G) < ¥(G) < x(G), inspiring the title of Knuth’s survey [5].

Building on the work of Loasz, the authors McEliece, Rodemich, and Rumsey [8]
introduced a slightly different function that was a bound on the independence number of a
graph. They showed that for a certain class of graphs that arises naturally in information
theory, their function was identical to the so-called Delsarte linear programming bound.
They called their function one of two “L@sz bounds” (their other “Lasz bound” being
¥). For the sake of unigueness of names we will call it the “Delsarte number” and denote it
by ©#1. McEliece, Rodemich, and Rumsey show in [8] th&tG) > «/(G) or, equivalently,
P1G) > w(G).



SPECTRAL CHARACTERIZATIONS OF LOXSZ AND DELSARTE NUMBERS 133

Schrijver [9] considered the same function and found some of the same results that are
contained in [8]. The work of Schrijver also built upon that of laez but was independent
of that of McEliece, Rodemich, and Rumsey.

Below, we summarize the previously known characterization$(&) and#(G) for
a graphG having at least one edge. LasZ gave the first five characterizationsjofnd
proved their equivalence in his first paper on the topic [6]. The sixth and seventh characteri-
zations ofy appear in [9] and [2], respectively. Definitionsibf were given independently
in [9] (second and third characterizations below) and [8] (sixth characterization). To prove
that the first, fourth, fifth, and seventh characterizationgobelow are equivalent to the
others, one can mimic the proofs establishing the corresponding characterization&/ef
omit the straightforward details; a readable and thorough reference for proofsfamut
Knuth's survey [5].

Table of characterizations ofd and 9* ([2, 6, 8, 9])

1. ¥®(G) = minfmax gz : IIbll = 1, a € A®)

Al = {a: a = labelling of G with obtuse anglega; || = 1 for alli}
A = {a: a = labelling of G with right angles||a; || = 1 for alli}
= {a:a = o.n. labelling ofG}

2. 9D(G) = min{A(A) : Ae AD}

Al = [A= () € S : @ > Lwhenevei = j ori ~ j}
A= {A=(g) e S,:a; =1whenever = jori~ j}.

3. 9P (G) = MaXpepw Y i j_1 Gj = Magepm Y ; | & - &) = Maegn [|S?2

Dl={De S 1 Tr(D) =1, D positive semidefinited; > O only ifi ~ j ori = j}
D ={D € &, : Tr(D) = 1, D positive semidefinited;; # O only ifi ~ j ori = j}

n
B! = !a : a = orthogonal labelling o6 with acute anglesz lajl? = 1}
=

n
B= :a : a = orthogonal labelling oG, Z lajl? = 1}, S@ = Zaj

j=1 j
4. 9D (G) =maxYl, % : x e CD}

cl={(d-a)? e R" : ||d||gn = 1, a = N-orthonormal labelling ofs with acute
angles
C={((d-a)% eR" :|d|gn = 1, a = N-orthonormal labelling of5}.
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5 9M(G) = 1+ ma{ 5 : B € BY)

B'={0#B=(bj) €S b #0onlyifi ~ j}
BI{O;E B:(bij)ESanij ;EOOI'“yifi N]}

6. ¥ (G) = min{1/A(A) : Ae Q)

AA) =min{xTAX:x eR" ) x =1
i

Ql={A= (@) € Sn g =18 <0ifi ~ J, Apositive semidefinitg
Q={A=(gj) €Sn:a =1a; =0ifi ~ j, Apositive semidefinitg.

7. 9W(G) = max{A(C) : C e CV}

C' = {C € ST : C positive semidefiniteg — & # 0 only ifi ~ j}
C = {C e Sy : C positive semidefinitegj — 8; # 0 only if i ~ j}

Warning. Some sources call this quantityG) instead of? (G). In [8], #(G) is denoted

9L (G). Our notation here is consistent with that of Knuth’s survey [5] and that of some

work by Lovasz and others [2], but not with that of LasZ’s first paper on the subject [6].
Comparing the sets over which we extremize in order to obtain eith@®) or ¥ (G),

we see immediately that!(G) < #(G). This leads to an “extended sandwich”

w(G) < ¥HG) < #(G) < x(G).

In[9], Schrijver also cites M.R. Best's example of a gr&plor which# (G) # 9#1(G).
The vertices of the grap@ are all vectors if{0, 1}° and two such vertices are adjacent if
and only if they differ in at most three of the six coordinate places.

4. Weighted graph Laplacian

Fan Chung recently introduced a weighted graph Laplacian [1] that turns out to yield yet
another pair of characterizations ®fand . We define the Laplacian and state the new
characterizations of and#? in this section, deferring the proofs until later.

Let G be a graph with its vertices labelled from IntoAssume for now tha has at least
one edge. In the definition belowy* is a class of weight matrices that Chung considered,
while W is a larger class introduced in this paper.

Definition 1 If W = (wjj) € S, then let

n
wj = Z Wij -
j=1
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Let

W = {0 # (wj) € ST wj > 0onlyifi ~ j} and
WZ{O#(wij)ESniwij ;ﬁOonIyifi Nj; wi > 0Vi;
wi = 0only if wj =0Vj}.

Clearlyyw* € W. Elements oV are calledveight matrices for G The set$V andW?
are nonempty as long & has at least one edge.

Definition 2 We define thaveighted Laplaciamf G with weight matrixW e W?* to be
then x n matrix Ly with entries

1 ifi =jandw; #0
w" . . .
(Lw)j = wi"wj if i ~jandwjw; #0
0 otherwise.

Observe that w(,/w1, ..., /wn)' =0. Also, if W is in the smaller sexV* thenLy
is positive semidefinite [1]. I is in W but not inW?, then (unlike most discrete and
continuous operators that go by the name “Laplacidny) is not necessarily positive
semidefinite.

Our main result is the following:

Theorem 1 If G has at least one edge then

W e W, Lw positive semidefini%a 1)

- 1

and

9HG) =1+ max{ "W e wl} 2)

1
AlLw) —1
whereA (L) is the largest eigenvalue ofy

We will prove this theorem in Sections 7 and 8.

5. Properties of graph invariant o

Using the notation that Fan Chung introduced in [1], we have
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Definition 3 The graph invariant

def 1
O'(G) = 1+max{m

‘W e Wl}
if G has at least one edge.® has no edges, then defiagG) = 1.

Our first goal will be to establish the relationship betweenf a graph andr of its
various connected components. This will result in a convenient set of criteria to determine
when a given graph function is identically equabto

Lemmal LetH be asubgraphofG. Then
o(H) <0(G).
Furthermore if H is obtained from G by removing isolated vertices thdi) = o (G).

Evaluatingo for a subgraph is equivalent to optimizing over a smaller set of matrices. We
omit the straightforward details involved in proving the lemma.

Lemma 2 If G is the disjoint union of graphs Gand G;, then
0(G) = maxo (Gy), 0 (G)}.

Proof: If either G; or G, contains no edges then the statement is a consequence of
Lemma 1. If eaclG; contains an edge them Lemma 1 still implie&5;) < o (G) for both

i =1, 2. To show that equality holds for eithee= 1 ori =2, consider the matriX that
achieves the max in the definition 6fG). ThenL is formed from blocks_; and L,
corresponding to Laplacians &f; andG,, respectively. By renumbering we may assume
thatA(L) = A(L1), which implies

14— 4Gy <o) D

=TT A1 S

Remark Usingthe preceding lemmas, we can comput@) for any graph by computing
o (G;j) for each connected componeat. Furthermore, we have the following immediate
useful consequence of Lemma 2:

Lemma3 Lets be a graph function. If

(H1) 6 (G) = 0(G) whenever G is connectgand

(H2) 6 (G) = maxX6(G1), 6(G2)} whenever G is the disjoint union of;@Gnd G;,
theno (G) = ¢ (G) forall G.

6. Weight matrices and induced Laplacians

The following lemma allows us to compute using a more convenient class of weight
matrices.
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Lemma4 Assume that G is connected. Then

1
SUp ———— = SUp ———— 3
Wgy\?l A(Lw) —1 wa/\[/)v A(bw) -1 ©

whereW?! = {0 # (wj) € S : wjj > 0onlyifi ~ j}andW° = {0 # (wj) € S : wj >
Oifand only ifi~ j}.

Proof: This proof is essentially a continuity argument. If we interpret the condition
w; = 0 as a “pretense” that vertéxs isolated, then we will approximate an isolated vertex
by a vertex connected to certain others but with very small weights on those connecting
edges. Similarly, ifw; = 0 corresponds to pretending that ihg edge is not there, then
we will approximate that situation by anj edge with very small weight.

Sincew® € W1, (3) is true if we replace=" by “ >". To show the reverse inequality, it
suffices to show that for angy € WW?* there are matrices /° whose maximum eigenvalues
are arbitrarily close to\ (W). We will do this in two steps, addressing first the issue of
positive row sumsu; = Zj wjj and then the question of positive weights on all edges.of

LetW € W' and assume that; = Ofori =k+1,...,nandw; > Ofori =1,...,k.
Then we can writ&V in the block form

“=(o o

whereA € S anda, = Y_¥_, a; is strictly positive for each = 1, ... k.
For anye > 0, let

. (A B
We=\sr o

where the entries d8, are defined to beif i ~ j and 0 otherwise. Sind® is connectedB
is not identically zero. Then each row sumwf is positive and there are positive integers
¢ independent of such that

a+ce i=1...,k

W) =
(Wi {Cie i=k+1,...,n.

Sincea > 0, a straightforward computation ofy, shows that

L—LAO and
Vv_oo>

La O
limeoLlw =
otw= (7))
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where the convergence is with respect to the Euclid&Emorm, for example. Sinca is
a continuous function,

lim A(Lw,) = A( |imOLWé) = max{A(Lw), 1} = A(Lw).

We remark thatV, is not in the clas3V°, but as in the next step it may be approximated
by matrices inVe.

To address the issue of positive weights on all edge& ofve proceed in a similar
way. Starting from anyV = (wj;) € VW with positive row sums but not necessarily positive
weights on all edges @&, define

€ i~ ] andwij =0
Woij = .

wj otherwise.
Note thatW, e W°. Also, lim._,oLw, =Lw and hence lin,o A(Lw, ) =A(Lw). The
two approximations from this proof, used in conjunction, show that the supremum of
1/(A(Lw)—1) can be approached through Laplacians with weight matrices in the subclass
we. O

The next proposition characterizes those matrices that occur as Laplacians of a given
graph.

Proposition 1 Let G be a graph with no isolated vertices. Let

We ={0+# (wj) € S : wj > 0ifand only ifi ~ j};

B° = {B € W : B has a positive fixed vectprand

B ={BeS,:bj #0onlyifi ~ jin G, B has a positive fixed vectyr
Then

{Lw:WeW°l={l —B:BeB)
and
{Lw:WeWandw; >0 foralli}={l —B:BeB}.

Proof: We will prove only the first conclusion; the proof of the second is similar. To show
the inclusion{Ly : W € W°} C {I — B : B € °} we need to find a positive fixed vector
of | — Lw. Butas observed in the text following DefinitionQ/wy, . . ., \/w_n)T is a null
vector ofLy and it is positive ifW € WW°. The remaining requirements for— Ly, to be
in B° follow from the definitions ofL\y andW°.

To show that{l — B : B € B°} C {Lw:WeW°}, letB € B°. Letv = (v;) be a
positive fixed vector 0B, which exists by assumption. Define thex n matrixW = (wjj)
by

{vivjbij ifi ~j
wij = .
0 otherwise.



SPECTRAL CHARACTERIZATIONS OF LOXSZ AND DELSARTE NUMBERS 139

ThenW e W° and foreach =1,...,n,
wi = Zwij = v Zvjbij = (Bv); = viz.
j j~i
Thusv; = ,/w; sincev; is positive. By the definition of weighted Laplacians, whenever
i ~ j we have

(Lw)j = — e L —bj = (I — B)j.
Wi Wj Vi Vj

Checking thatLw)j = (I — B)j = §; whenevei +j, we see that — B = L. O

7. Characterizing 9! using Laplacians
Now we are ready to prove half of the main result:

Proof of (2) in Theorem 1 Using the the fifth characterization of'(G) given in the
Table in Section 3, we will show that

A(B)
c(G)=14+ su
sopi A(—B)

“4)
where

BYG) ={0# B = (bj) €S : by #0onlyifi ~ jinG).
First assume thab is connected and has at least one edge. By Lemma 4,

1 1
c(G)=14+sup——=14+sup———=1+sup————.
W A(Lw) — 1 A Lw) — 1 W AL — 1)

Using Proposition 1 we can write

c(G)=1+ Sglpr(— B)

where we recall thaB° = {B = (bj) € S; : B has a positive fixed vector arg} > 0 if
and only ifi ~ j}.

Furthermore, ifB e S, satisfiesA(B)=1 andb; >0 if and only ifi ~ j, then the
Perron-Frobenius Theorem implies tHathas a positive eigenvecter By the Perron-
Frobenius Theorem, a positive eigenvector for a non-negative matrix must correspond to
the largest eigenvalue. Therefore we can phrase our formula as

g(G)= 1+sup{

A(iB) :B e S, A(B) =1,b; > 0ifand only ifi ~ j}. (5)
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All of the matrices(b;) € S, that satisfyb; > 0 if and only ifi ~ j have trace zero and
hence a positive largest eigenvalue. Since for such matrices the expras&ipnA (—B)
is unchanged iB is multiplied by a positive scalar, we may undo the normalization and
write

A(B)

o(G)=1+sup{A(_B) : B e S, bj > 0ifand only ifi ~ j}.

Finally, sinceA is a continuous function the supremum above is unchanged if we allow the
matrices in question to have zeros corresponding to some, but not all, of the edges of
Removing the “if” clause from the above expression and then explicitly excluding the zero
matrix, we conclude that'(G) = o (G) for connected graphs.

Now suppose thab is the disjoint union ofG; andG,, where at least on€&; has an
edge, and that vertices 1., k of G are exactly the vertex set &;. We would like to
establish hypothesis (H2) of Lemma 3.

If G; has an edge bu®, does not, then the nonemptinessii{G;) > B and the fact
that A(—B), A(B) > 0 imply that91(G1) > 1 = 91(G,). Also, anyB e B(G) has the

form
By O
2= (o o)
0O O

whereB; € BT (G;). Thus SpetB) =SpecB;) U {0}. Since T(B) = 0 andB # 0, zero
is neither the largest nor the smallest eigenvalud ofThis means thah (B)/A(—B) =
A(By)/A(—By) and henc@(G) = 91(Gy) = maxd*(Gy), »X(Gy)}.

If eachG; fori = 1, 2 has an edge then al/e B*(G) has the form

By O
B =
0 B

whereB; € B*(G;) is a square block. By writindd in this form we see that (B) =
max{A(B;), A(By)}and—A(—B) = min{—A(—By), —A(—B5)}. Assume for convenience
that A(B) = A(By).
If A(—B) = A(—B;) then
A(B) A(By)

_ e
1+ e = 1 acey S MGl

If, on the other handA (—B) = A(—B,) thenA(—B,) > A(—By) > 0 and hence

1 MLy Ay BB e,

ACB) - A(By - TACED -

If we had A(B) = A(By) to start with, then the same argument would show that again
1+ A(B)/A(—B) < max_1,91(G;j). Taking the supremum ovéd' (G) we get

?1(G) < irgg;ﬂl(e_o.
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Since anyB; € BY(G;) gives rise to an elemenB e BY(G) with A(B))/A(—Bj)=
A(B)/A(—B), we also have

9H(G) = max?'(G).
=1,

Thus hypothesis (H2) holds in all cases. Since we have already proved hypothesis (H1),
we now conclude from Lemma 3 that(G) = o (G). O

8. Characterizing ¥ using Laplacians

Lemma5 If A € S, and A is a principal submatrix of A thei(A;) < A(A) and
—A(=A) = —A(=A).

The lemma is part of the Interlacing Eigenvalues Theorem. Its proof relies on the vari-
ational characterizations of eigenvalues: thatgA) = sup,_.q % and—A(—A) =

H (Av,v)

inf,o TR

Proof of (1) in Theorem 1  Using the fifth characterization &f(G) given in the Table in
Section 3, we will show that the right side of (1) equals

A(B)
1+ su
BeB(r()B) A(—B)

where
B(G)={0#B= (bij) e Sn: bij ;éOonIyifi ~ ] in GJ.
We first show that this is true i’ is replaced by =’. Let W € W be such that. = Ly
is positive semidefinite. If some diagonal entry is zero then by the definition of the
Laplacian theith row and column must be identically zero. Without loss of generality

assume that all zero rows are grouped at the bottoin ahd that rows 1..., k are not
identically zero. We can write

A0
L=
00
whereA is a positive semidefinite Laplacian matrix for the induced subgraghaiftained
by retaining vertices 1 .., k. By definition ofk, Aj = 1fori =1, ..., k. Define

A 0
L/: ) B: In_ L/.
0 In—k
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SinceA(L) > 1,A(L) = A(L’). SinceAis a positive semidefinite Laplacian(—A) = 0
and soA(—L") = 0. FurthermoreB € BandA(B) =1+ A(—L’) = 1. Thus
A(B) 1 1

e N R VI S RN S L

Taking the supremum over all allowablé we see that (G) is greater than or equal to the
right side of (1).

To show the reverse inequality, IBt € B. Since we are using to computes (G) via
the fifth characterization in the Table of Section 3, we sacrifice no generality by assuming
thatA(B) = 1. Letv = (v;) be a vector such th&v = v. Define the diagonal x n matrix
D by settingDjj = 1 if v > 0 andD; = —1if v; < 0. Then(Dv); = |vj| for eachi and
D! = D. Notice thatDBD™! has the same eigenvaluesBsand is still in3. Thus by
replacingB by DBD~* andv by Dv if necessary, we may assume without loss of generality
thatv has all non-negative entries. We may also assumevthatstrictly positive for all
i=1,...,kand that; = O0fori > k.

LetL = | — B and, as in the proof of Proposition 1, define weights
o —UinLij if i ~ j
"= o otherwise.

Notice thatw; = 0ifi > kor j > k. Ifi <kthen

wi = — Zvj Lj = —vi(Lv —viLi) = )%
j~i

Using the fact that; > O fori < k, we can now check thaW = (wj) € W. Let Ly be
the Laplacian with weightéw;j). If i, j < kandi ~ j, then as in the proof of Proposition
1 we have(Lw)j = Lj. Furthermore, if we write

Al A2 A]_ 0
L= T then Ly = .
A, Ag 0O o0

We claim that L, is positive semidefinite:—A(—Lw) = min{0, —A(—A;)} and
—A(—=A) > —A(-L) = —-A(B—-1) = —A(B) + 1 = 0. Therefore~A(—Lw) = 0.
Finally, sinceA; # | and T(A;) = k we have 1< A(Lw) = A(A1) < A(L). Then
0<A(Lw)—1<A(L —1)=A(—B)sothat(A(Lw) — 1)t > (A(—B))~L. Taking
the supremum over all allowabk yields the result. O
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