
Journal of Algebraic Combinatorics12 (2000), 155–161
c© 2000 Kluwer Academic Publishers. Manufactured in The Netherlands.

Cyclic Characters of Symmetric Groups
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Abstract. We consider characters of finite symmetric groups induced from linear characters of cyclic subgroups.
A new approach to Stembridge’s result on their decomposition into irreducible components is presented. In the
special case of a subgroup generated by a cycle of longest possible length, this amounts to a short proof of the
Kraśkiewicz-Weyman theorem.
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In a remarkable paper of 1987, Kra´skiewicz and Weyman described the decomposition of
certain characters of the symmetric groupSn into irreducible components [6]. LetC be a
subgroup generated by a cycleσ of ordern. Denote byψi the character ofC mappingσ
onto thei -th power of a primitiven-th root of unity. Then the multiplicity(ψi

Sn, ζ p)Sn of
the irreducible characterζ p indexed by the partitionp of n in ψi

Sn equals the number of
standard Young tableaux of shapep and major index congruenti modulon. Another proof
of this theorem has been given by Garsia [2], see also Chapter 8 in [8].

More generally, like Stembridge in [11] we consider charactersψSn over the fieldC of
complex numbers, whereψ is a linear character of an arbitrary cyclic subgroupZ. We call
themcyclic characters ofSn. In order to give a combinatorial description of the occurring
multiplicities(ψSn, ζ p)Sn we use the notion of amulti major index, which is a tuple of major
indices defined in segments. For the special caseZ = C we obtain exactly the result of
Kraśkiewicz and Weyman, hence giving a new proof of it.

The method we use is different from that presented by Stembridge: Making use of a certain
Lie idempotent introduced by Klyachko [5], our proof is based on thenoncommutative
character theory of symmetric groups, contained in the first author’s thesis [4] that is shortly
summarized in the first section. The second section contains the theorem and its proof.

1. The frame algebra

Let N (N0, resp.) be the set of all positive (nonnegative, resp.) integers andN∗ a free
monoid with alphabetN. A word q = q1 · · ·qk ∈ N∗ is called a composition ofn iff
q1+· · ·+qk = n. We denote byCq the conjugacy class containing all permutationsπ ∈ Sn
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whose cycle partition is a rearrangement ofq. Let chq be the class function ofSn such
that(χ, chq)Sn = χ(Cq) for all class functionsχ of Sn, i.e., up to a scalar factor chq is the
characteristic function ofCq in Sn. For the outer product• in the algebraC :=⊕n∈N C`CSn

of all class functions we then have the multiplication rule chq • chr = chqr for all q, r ∈ N∗.
Using this algebraC, the character theory of symmetric groups can be elegantly described.
For details, including a coproduct and hence a bialgebra structure onC, see [3].

In the first author’s thesis [4], a noncommutative analogue of this bialgebraC of class
functions is presented. The main idea behind it is to consider algebraic structures consisting
of Young tableaux: Let≤ be the partial order onZ × Z (Z the set of all integers) defined
by: (u, v) ≤ (x, y) iff u ≤ x andv ≤ y. A finite subsetR of Z× Z is called aframeif it
is convex with respect to≤. E.g.,S= {(1, 2), (1, 3), (2, 1), (2, 2)} is a frame and may be
illustrated by

.

The following version of a well known concept is convenient for our purposes. LetR
be a frame. Astandard Young tableauof shapeR is a permutationπ with the following
property: Filled intoR row by row, starting from bottom left and ending at top right,π

is increasing in rows (from left to right) and columns (downwards). The set of all these
permutations is denoted by SYTR. In the group ringCSn of Sn (wheren = |R|), we may
then form the sum of all elements of SYTR and set ZR := ∑

SYTR. For the frameS
mentioned above we have the following standard Young tableaux:

.

Hence, ZS = 1324+ 1423+ 2314+ 2413+ 3412∈ CS4.
Corresponding to any partitionp = p1 p2 · · · pk ∈ N∗ (p1 ≥ · · · ≥ pk) there is the frame

R(p) = {(i, j ) ∈ Z×Z | 1≤ i ≤ k, 1≤ j ≤ pi }. We write SYTp, Zp instead of SYTR(p),
ZR(p) resp. .

In [4] the linear subspaceR of CS :=⊕n∈N CSn is introduced as theC-linear span of
all elements ZR (R frame). Furthermore, a product• onR and an algebra epimorphism
c : (R, • )→ (C, • ) are defined such that(φ, ψ) = (c(φ), c(ψ))S for all φ,ψ ∈ R, where
the bilinear mapping on the left hand side is given by

(σ, τ ) :=
{

1 if σ = τ−1

0 if σ 6= τ−1 for all permutationsσ, τ

onCSand the one on the right hand side is the canonical orthogonal extension(·, ·)S of the
scalar products(·, ·)Sn .
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If q = q1q2 · · ·qk is a composition ofn ∈ N andR is the frame illustrated by

then the image of4q := ZR underc is the permutation characterξq = (1Y)
Sn related to

any Young subgroupY of typeq. Furthermore,4q •4r = 4qr for all q, r ∈ N∗. It should
be mentioned that the so-calledframe algebraR contains the direct sumD of all descent
algebrasDn = 〈4q |q composition ofn 〉C discovered by Solomon [9].

The crucial point is the fact thatc is an extension of Solomon’s epimorphism [9] and
c(Zp) = ζ p is the irreducible character ofSn corresponding top for any partitionp of n.

Now, letωn be the element ofCSn operating via Polya operation on any wordx1x2 · · · xn

of lengthn byωn x1x2 · · · xn = [[ · · · [[x1, x2], x3], · · ·], xn], where [x, y] = xy−yxdenotes
the Lie commutator ofx andy. By the Dynkin-Specht-Wever theorem [1, 10, 12]ωn is a Lie
idempotent (up to the factorn), i.e.,ωnωn= nωn. Furthermore,ωn=

∑n−1
k=0 (−1)k Z(n−k)1k

∈ R, andc(ωn) = chn.

2. Cyclic characters of symmetric groups

First of all, we present a construction of inverse images of the elements chq ∈ C (q ∈ N∗)
underc based on Lie idempotents. Recall thate∈ CSn is a Lie idempotent up to the factor
n iff ωne= neandeωn = nωn.

Proposition 1 For all n ∈ N, let en ∈ Dn such that1
nen is a Lie idempotent. Then, we

have c(eq1
• · · · •eqk) = chq for all q = q1 · · ·qk ∈ N∗.

Proof: Let n ∈ N. Then,

c(en) = 1

n
c(ωnen) = 1

n
c(ωn)c(en) = 1

n
c(en)c(ωn) = 1

n
c(enωn) = c(ωn) = chn

asc is an homomorphism with respect to the inner multiplication ofDn andC`CSn by
Solomon [9]. For anyq = q1 · · ·qk ∈ N∗, it follows that

c(eq1
• · · · •eqk) = c(eq1) • · · · • c(eqk) = chq1

• · · · • chqk = chq. 2

Let n ∈ N. For allπ ∈ Sn, we call D(π) := { i | 1≤ i ≤ n− 1 andiπ > (i + 1)π} the
descent setof π . If q = q1 · · ·qk ∈ N∗ is a composition ofn, themulti major indexof π
with respect toq is defined to be the word of lengthn the j -th letter of which is

(majqπ) j :=
∑

sj−1<i<sj
i∈D(π)

(i − sj−1) for all j ∈ {1, . . . , k},
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wheresj := q1 + · · · + qj for all j ∈ {0, . . . , k}. In the special case ofq = n, majπ =
majnπ is the well known major index ofπ . For example, maj3225 6 2 1 3 7 4= 2 0 1 and
maj43 5 6 2 1 3 7 4= 5 2. Let

κn(x) :=
∑
π∈Sn

xmajππ (wherex is a variable).

Then, for any primitiven-th root of unityε, κn(ε) is a Lie idempotent (up to the factorn)
[5]. Let q = q1 · · ·qk be a composition ofn and

κq(x1, . . . , xk) := κq1(x1) • · · · • κqk(xk) (where eachxi is a variable).

For any choice of primitiveqi -th roots of unityεi , we havec(κq(ε1, . . . , εk)) = chq by
Proposition 1. We finally define, for allj ∈ N,

q( j ) := q1

gcd(q1, j )
· · · q1

gcd(q1, j )︸ ︷︷ ︸
gcd(q1, j ) times

· · · qk

gcd(qk, j )
· · · qk

gcd(qk, j )︸ ︷︷ ︸
gcd(qk, j ) times

∈ N∗ .

Then, ifσ ∈ Sn has cycle typeq, Cq( j ) is the conjugacy class ofσ j .
The definitions given so far lead to the following surprising result forκq(x1, . . . , xk):

Proposition 2 Let j ∈ N,q = q1 · · ·qk ∈ N∗ andεi be an arbitrary qi -th root of unity
for all i ∈ {1, . . . , k}. Then,

κq( j )

(
ε

j
1, . . . , ε

j
1︸ ︷︷ ︸

gcd(q1, j ) times

, . . . , ε
j
k , . . . , ε

j
k︸ ︷︷ ︸

gcd(qk, j ) times

) = κq
(
ε

j
1, . . . , ε

j
k

)
.

Proof: For q = n, κdn/d(ε
j
1, . . . , ε

j
1) = κn(ε

j
1) is a special case of [7], Proposition

4.1, whered = q1/ gcd(q1, j ) andε j
1 is a d-th root of unity. For arbitraryq, let di :=

qi / gcd(qi , j ) for all i ∈ {1, . . . , k}. Then, using the result of the special case in each
factor, we obtain

κq( j )

(
ε

j
1, . . . , ε

j
1, . . . , ε

j
k , . . . , ε

j
k

)
= κd

q1/d1
1

(
ε

j
1, . . . , ε

j
1

)
• · · · • κd

qk/dk
k

(
ε

j
k , . . . , ε

j
k

)
= κq1

(
ε

j
1

)
• · · · • κqk

(
ε

j
k

)
= κq

(
ε

j
1, . . . , ε

j
k

)
. 2

We are now in a position to state and prove the main result about cyclic characters of
symmetric groups:

Theorem Let n ∈ N,q = q1 · · ·qk be a composition of n, v := lcm(q1, . . . ,qk), η a
primitive v-th root of unity and e1, . . . ,ek ∈ N0 such thatηej is a primitive qj -th root
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of unity for all j ∈ {1, . . . , k}. Let σ ∈ Cq, Z be the subgroup of Sn generated by
σ, i ∈ {0, . . . , v − 1} andψi : Z−→ K , σ j 7−→ ηij . Then,

Mq
(i ) :=

∑{
π ∈ Sn

∣∣∣∣∣ k∑
j=1

ej (majqπ) j ≡ i modulov

}

is an element ofD, and we have

c
(
Mq
(i )

) = ψSn
i .

In particular, for any partition p of n,(
ψ

Sn
i , ζ

p
)

Sn
= (Mq

(i ),Z
p
)

=
∣∣∣∣∣
{
π ∈ SYTp

∣∣∣∣∣ k∑
j=1

ej
(
majqπ

−1
)

j ≡ i modulov

}∣∣∣∣∣ .

Proof: Note first that
∑

aππ ∈ CSn is an element ofDn iff aπ = aσ for all π, σ ∈ Sn

such thatD(π) = D(σ ). This implies Mq
(i ) ∈ Dn. Furthermore, for an arbitraryv-th root

of unity ϕ it is easy to see that

κq(ϕ
e1, . . . , ϕek) =

∑
π1∈Sq1

· · ·
∑
πk∈Sqk

ϕe1majπ1+ ···+ekmajπkπ1 • · · · •πk

=
v−1∑
l=0

ϕl Mq
(l )

as ∑
π1∈Sq1

· · ·
∑
πk∈Sqk

π1 • · · · •πk = 41q1 • · · · •41qk = 41n =
∑
π∈Sn

π.

Hence, by Frobenius’ reciprocity law, the two propositions and the preliminary remarks in
Section 1, for any partitionp of n,

(
ψ

Sn
i , ζ

p
)

Sn
= 1

v

v−1∑
j = 0

ψi (σ
− j ) ζ p(σ j )

= 1

v

v−1∑
j = 0

η−ij (chq( j ) , ζ p)Sn

= 1

v

v−1∑
j = 0

η−ij (κq( j ) ((ηe1) j , . . . , (ηe1) j , . . . , (ηek) j , . . . , (ηek) j ),Zp)

= 1

v

v−1∑
j = 0

η−ij (κq((η
e1) j , . . . , (ηek) j ),Zp)
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=
(

1

v

v−1∑
l = 0

v−1∑
j = 0

η−ijη jl Mq
(l ), Zp

)
= (Mq

(i ),Z
p
)

= (c(Mq
(i )

)
, ζ p

)
Sn

,

and the theorem is proved. 2

Corollary (Kraśkiewicz, Weyman [6]) Letτ be a cycle of order n in Sn andε be a primitive
n-th root of unity. Let i∈ {0, . . . ,n−1}and writeψi for the character of the cyclic subgroup
generated byτ such thatψi (τ ) = εi . Then the multiplicity of the irreducible character of
Sn indexed by the partition p is given by(

ψ
Sn
i , ζ

p
)

Sn
= |{π ∈ SYTp |majπ−1 ≡ i modulon}|.1

Remark We consider the special case of the theorem whereei = v/qi for all i ∈ {1, . . . , k}.
As the proof of the theorem shows, we then have, with the correct powers ofη used for
κq( j ) , for all j ∈ N:

ζ p(σ j ) = (κq( j ) (. . .),Zp) =
v−1∑
l=0

η j l
(
Mq
(l ),Z

p
) = ∑

π∈SYTp

(η j )
∑

v
qi
(majqπ

−1)i .

Taking into account that indqπ =
∑

v
qi
(majqπ

−1)i for the q-index of the tableauπ
defined by Stembridge, we obtain a new proof of Theorem 3.3 in [11] by means of
Proposition 1.1 in the same paper.

Note

1. Note thatj is a descent ofπ−1 iff j stands strictly above ofj + 1 for π ∈ SYTp filled into the frameR(p).
This is the link to the original version of the theorem.
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