Cyclic Characters of Symmetric Groups

ARMIN JÖLLENBECK joellenbeck@math.uni-kiel.de MANFRED SCHOCKER schocker@math.uni-kiel.de Mathematisches Seminar der Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany

Received April 23, 1998; Revised

Dedicated to Dieter Blessenohl on the occasion of his sixtieth birthday

Abstract. We consider characters of finite symmetric groups induced from linear characters of cyclic subgroups. A new approach to Stembridge's result on their decomposition into irreducible components is presented. In the special case of a subgroup generated by a cycle of longest possible length, this amounts to a short proof of the Kraśkiewicz-Weyman theorem.

Keywords: symmetric group, Young tableau, multi major index, induced character, Lie idempotent

In a remarkable paper of 1987, Kraśkiewicz and Weyman described the decomposition of certain characters of the symmetric group S_n into irreducible components [6]. Let *C* be a subgroup generated by a cycle σ of order *n*. Denote by ψ_i the character of *C* mapping σ onto the *i*-th power of a primitive *n*-th root of unity. Then the multiplicity $(\psi_i^{S_n}, \zeta^p)_{S_n}$ of the irreducible character ζ^p indexed by the partition *p* of *n* in $\psi_i^{S_n}$ equals the number of standard Young tableaux of shape *p* and major index congruent *i* modulo *n*. Another proof of this theorem has been given by Garsia [2], see also Chapter 8 in [8].

More generally, like Stembridge in [11] we consider characters ψ^{S_n} over the field \mathbb{C} of complex numbers, where ψ is a linear character of an arbitrary cyclic subgroup Z. We call them *cyclic* characters of S_n . In order to give a combinatorial description of the occurring multiplicities $(\psi^{S_n}, \zeta^p)_{S_n}$ we use the notion of a *multi major index*, which is a tuple of major indices defined in segments. For the special case Z = C we obtain exactly the result of Kraśkiewicz and Weyman, hence giving a new proof of it.

The method we use is different from that presented by Stembridge: Making use of a certain Lie idempotent introduced by Klyachko [5], our proof is based on the *noncommutative character theory of symmetric groups*, contained in the first author's thesis [4] that is shortly summarized in the first section. The second section contains the theorem and its proof.

1. The frame algebra

Let \mathbb{N} (\mathbb{N}_0 , resp.) be the set of all positive (nonnegative, resp.) integers and \mathbb{N}^* a free monoid with alphabet \mathbb{N} . A word $q = q_1 \cdots q_k \in \mathbb{N}^*$ is called a composition of *n* iff $q_1 + \cdots + q_k = n$. We denote by C_q the conjugacy class containing all permutations $\pi \in S_n$ whose cycle partition is a rearrangement of q. Let ch_q be the class function of S_n such that $(\chi, ch_q)_{S_n} = \chi(C_q)$ for all class functions χ of S_n , i.e., up to a scalar factor ch_q is the characteristic function of C_q in S_n . For the outer product \bullet in the algebra $\mathcal{C} := \bigoplus_{n \in \mathbb{N}} \mathcal{C}\ell_{\mathbb{C}}S_n$ of all class functions we then have the multiplication rule $ch_q \cdot ch_r = ch_{qr}$ for all $q, r \in \mathbb{N}^*$. Using this algebra \mathcal{C} , the character theory of symmetric groups can be elegantly described. For details, including a coproduct and hence a bialgebra structure on \mathcal{C} , see [3].

In the first author's thesis [4], a noncommutative analogue of this bialgebra C of class functions is presented. The main idea behind it is to consider algebraic structures consisting of Young tableaux: Let \leq be the partial order on $\mathbb{Z} \times \mathbb{Z}$ (\mathbb{Z} the set of all integers) defined by: $(u, v) \leq (x, y)$ iff $u \leq x$ and $v \leq y$. A finite subset R of $\mathbb{Z} \times \mathbb{Z}$ is called a *frame* if it is convex with respect to \leq . E.g., $S = \{(1, 2), (1, 3), (2, 1), (2, 2)\}$ is a frame and may be illustrated by

The following version of a well known concept is convenient for our purposes. Let R be a frame. A *standard Young tableau* of shape R is a permutation π with the following property: Filled into R row by row, starting from bottom left and ending at top right, π is increasing in rows (from left to right) and columns (downwards). The set of all these permutations is denoted by SYT^{*R*}. In the group ring $\mathbb{C}S_n$ of S_n (where n = |R|), we may then form the sum of all elements of SYT^{*R*} and set $Z^R := \sum SYT^R$. For the frame *S* mentioned above we have the following standard Young tableaux:

	2	4		2	3		1	4		1	3		1	2
1	3		1	4		2	3		2	4		[3	3 4	

Hence, $Z^{S} = 1324 + 1423 + 2314 + 2413 + 3412 \in \mathbb{C}S_4$.

Corresponding to any partition $p = p_1 p_2 \cdots p_k \in \mathbb{N}^*$ $(p_1 \ge \cdots \ge p_k)$ there is the frame $R(p) = \{(i, j) \in \mathbb{Z} \times \mathbb{Z} \mid 1 \le i \le k, 1 \le j \le p_i\}$. We write SYT^p, Z^p instead of $SYT^{R(p)}, Z^{R(p)}$ resp. .

In [4] the linear subspace \mathcal{R} of $\mathbb{C}S := \bigoplus_{n \in \mathbb{N}} \mathbb{C}S_n$ is introduced as the \mathbb{C} -linear span of all elements \mathbb{Z}^R (*R* frame). Furthermore, a product \cdot on \mathcal{R} and an algebra epimorphism $c : (\mathcal{R}, \cdot) \to (\mathcal{C}, \cdot)$ are defined such that $(\phi, \psi) = (c(\phi), c(\psi))_S$ for all $\phi, \psi \in \mathcal{R}$, where the bilinear mapping on the left hand side is given by

$$(\sigma, \tau) := \begin{cases} 1 & \text{if } \sigma = \tau^{-1} \\ 0 & \text{if } \sigma \neq \tau^{-1} \end{cases} \text{ for all permutations } \sigma, \tau$$

on $\mathbb{C}S$ and the one on the right hand side is the canonical orthogonal extension $(\cdot, \cdot)_S$ of the scalar products $(\cdot, \cdot)_{S_n}$.

If $q = q_1 q_2 \cdots q_k$ is a composition of $n \in \mathbb{N}$ and R is the frame illustrated by

then the image of $\Xi^q := Z^R$ under *c* is the permutation character $\xi^q = (1_Y)^{S_n}$ related to any Young subgroup *Y* of type *q*. Furthermore, $\Xi^q \cdot \Xi^r = \Xi^{qr}$ for all *q*, $r \in \mathbb{N}^*$. It should be mentioned that the so-called *frame algebra* \mathcal{R} contains the direct sum \mathcal{D} of all *descent algebras* $\mathcal{D}_n = \langle \Xi^q | q$ composition of $n \rangle_{\mathbb{C}}$ discovered by Solomon [9].

The crucial point is the fact that *c* is an extension of Solomon's epimorphism [9] and $c(\mathbb{Z}^p) = \zeta^p$ is the irreducible character of S_n corresponding to *p* for any partition *p* of *n*.

Now, let ω_n be the element of $\mathbb{C}S_n$ operating via Polya operation on any word $x_1x_2 \cdots x_n$ of length n by $\omega_n x_1x_2 \cdots x_n = [[\cdots [[x_1, x_2], x_3], \cdots], x_n]$, where [x, y] = xy - yx denotes the Lie commutator of x and y. By the Dynkin-Specht-Wever theorem $[1, 10, 12] \omega_n$ is a Lie idempotent (up to the factor n), i.e., $\omega_n \omega_n = n\omega_n$. Furthermore, $\omega_n = \sum_{k=0}^{n-1} (-1)^k \mathbb{Z}^{(n-k)1^k} \in \mathcal{R}$, and $c(\omega_n) = ch_n$.

2. Cyclic characters of symmetric groups

First of all, we present a construction of inverse images of the elements $ch_q \in C$ ($q \in \mathbb{N}^*$) under *c* based on Lie idempotents. Recall that $e \in \mathbb{C}S_n$ is a Lie idempotent up to the factor *n* iff $\omega_n e = ne$ and $e\omega_n = n\omega_n$.

Proposition 1 For all $n \in \mathbb{N}$, let $e_n \in \mathcal{D}_n$ such that $\frac{1}{n}e_n$ is a Lie idempotent. Then, we have $c(e_{q_1} \cdot \cdots \cdot e_{q_k}) = ch_q$ for all $q = q_1 \cdots q_k \in \mathbb{N}^*$.

Proof: Let $n \in \mathbb{N}$. Then,

$$c(e_n) = \frac{1}{n}c(\omega_n e_n) = \frac{1}{n}c(\omega_n)c(e_n) = \frac{1}{n}c(e_n)c(\omega_n) = \frac{1}{n}c(e_n\omega_n) = c(\omega_n) = ch_n$$

as *c* is an homomorphism with respect to the inner multiplication of \mathcal{D}_n and $\mathcal{C}\ell_{\mathbb{C}}S_n$ by Solomon [9]. For any $q = q_1 \cdots q_k \in \mathbb{N}^*$, it follows that

$$c(e_{q_1} \bullet \cdots \bullet e_{q_k}) = c(e_{q_1}) \bullet \cdots \bullet c(e_{q_k}) = ch_{q_1} \bullet \cdots \bullet ch_{q_k} = ch_q.$$

Let $n \in \mathbb{N}$. For all $\pi \in S_n$, we call $D(\pi) := \{i \mid 1 \le i \le n-1 \text{ and } i\pi > (i+1)\pi\}$ the *descent set* of π . If $q = q_1 \cdots q_k \in \mathbb{N}^*$ is a composition of n, the *multi major index* of π with respect to q is defined to be the word of length n the j-th letter of which is

$$(\operatorname{maj}_{q}\pi)_{j} := \sum_{\substack{s_{j-1} < i < s_{j} \\ i \in D(\pi)}} (i - s_{j-1}) \quad \text{for all } j \in \{1, \dots, k\},$$

where $s_j := q_1 + \cdots + q_j$ for all $j \in \{0, \ldots, k\}$. In the special case of q = n, maj $\pi = maj_n\pi$ is the well known major index of π . For example, maj₃₂₂ 5 6 2 1 3 7 4 = 2 0 1 and maj₄₃ 5 6 2 1 3 7 4 = 5 2. Let

$$\kappa_n(x) := \sum_{\pi \in S_n} x^{\max j \pi} \pi$$
 (where x is a variable).

Then, for any primitive *n*-th root of unity ε , $\kappa_n(\varepsilon)$ is a Lie idempotent (up to the factor *n*) [5]. Let $q = q_1 \cdots q_k$ be a composition of *n* and

$$\kappa_q(x_1, \ldots, x_k) := \kappa_{q_1}(x_1) \cdot \cdots \cdot \kappa_{q_k}(x_k)$$
 (where each x_i is a variable).

For any choice of primitive q_i -th roots of unity ε_i , we have $c(\kappa_q(\varepsilon_1, \ldots, \varepsilon_k)) = ch_q$ by Proposition 1. We finally define, for all $j \in \mathbb{N}$,

$$q^{(j)} := \underbrace{\frac{q_1}{\gcd(q_1, j)} \cdots \frac{q_1}{\gcd(q_1, j)}}_{\gcd(q_1, j) \text{ times}} \qquad \cdots \qquad \underbrace{\frac{q_k}{\gcd(q_k, j)} \cdots \frac{q_k}{\gcd(q_k, j)}}_{\gcd(q_k, j) \text{ times}} \in \mathbb{N}^* \quad .$$

Then, if $\sigma \in S_n$ has cycle type q, $C_{q^{(j)}}$ is the conjugacy class of σ^j .

The definitions given so far lead to the following surprising result for $\kappa_q(x_1, \ldots, x_k)$:

Proposition 2 Let $j \in \mathbb{N}$, $q = q_1 \cdots q_k \in \mathbb{N}^*$ and ε_i be an arbitrary q_i -th root of unity for all $i \in \{1, \ldots, k\}$. Then,

$$\kappa_{q^{(j)}}\left(\underbrace{\varepsilon_1^j,\ldots,\varepsilon_1^j}_{\gcd(q_1,j) \text{ times}},\ldots,\underbrace{\varepsilon_k^j,\ldots,\varepsilon_k^j}_{\gcd(q_k,j) \text{ times}}\right) = \kappa_q\left(\varepsilon_1^j,\ldots,\varepsilon_k^j\right).$$

Proof: For q = n, $\kappa_{d^{n/d}}(\varepsilon_1^j, \ldots, \varepsilon_1^j) = \kappa_n(\varepsilon_1^j)$ is a special case of [7], Proposition 4.1, where $d = q_1/\gcd(q_1, j)$ and ε_1^j is a *d*-th root of unity. For arbitrary q, let $d_i := q_i/\gcd(q_i, j)$ for all $i \in \{1, \ldots, k\}$. Then, using the result of the special case in each factor, we obtain

$$\begin{aligned} \kappa_{q^{(j)}} & \left(\varepsilon_{1}^{j}, \dots, \varepsilon_{1}^{j}, \dots, \varepsilon_{k}^{j}, \dots, \varepsilon_{k}^{j} \right) \\ &= \kappa_{d_{1}^{q_{1}/d_{1}}} \left(\varepsilon_{1}^{j}, \dots, \varepsilon_{1}^{j} \right) \bullet \dots \bullet \kappa_{d_{k}^{q_{k}/d_{k}}} \left(\varepsilon_{k}^{j}, \dots, \varepsilon_{k}^{j} \right) \\ &= \kappa_{q_{1}} \left(\varepsilon_{1}^{j} \right) \bullet \dots \bullet \kappa_{q_{k}} \left(\varepsilon_{k}^{j} \right) \\ &= \kappa_{q} \left(\varepsilon_{1}^{j}, \dots, \varepsilon_{k}^{j} \right). \end{aligned}$$

We are now in a position to state and prove the main result about cyclic characters of symmetric groups:

Theorem Let $n \in \mathbb{N}$, $q = q_1 \cdots q_k$ be a composition of n, $v := \text{lcm}(q_1, \ldots, q_k)$, η a primitive v-th root of unity and $e_1, \ldots, e_k \in \mathbb{N}_0$ such that η^{e_j} is a primitive q_j -th root

of unity for all $j \in \{1, ..., k\}$. Let $\sigma \in C_q$, Z be the subgroup of S_n generated by $\sigma, i \in \{0, ..., v-1\}$ and $\psi_i : Z \longrightarrow K, \sigma^j \longmapsto \eta^{ij}$. Then,

$$\mathbf{M}_{(i)}^{q} := \sum \left\{ \pi \in S_{n} \left| \sum_{j=1}^{k} e_{j}(\operatorname{maj}_{q} \pi)_{j} \equiv i \mod v \right. \right\}$$

is an element of \mathcal{D} , and we have

$$c(\mathbf{M}_{(i)}^q) = \psi_i^{S_n} \quad .$$

In particular, for any partition p of n,

$$\begin{aligned} \left(\psi_i^{S_n}, \zeta^p\right)_{S_n} &= \left(\mathbf{M}_{(i)}^q, \mathbf{Z}^p\right) \\ &= \left| \left\{ \pi \in \mathrm{SYT}^p \,\middle| \, \sum_{j=1}^k e_j \left(\mathrm{maj}_q \pi^{-1}\right)_j \equiv i \mod v \right\} \right| \quad . \end{aligned}$$

Proof: Note first that $\sum a_{\pi}\pi \in \mathbb{C}S_n$ is an element of \mathcal{D}_n iff $a_{\pi} = a_{\sigma}$ for all $\pi, \sigma \in S_n$ such that $D(\pi) = D(\sigma)$. This implies $M_{(i)}^q \in \mathcal{D}_n$. Furthermore, for an arbitrary *v*-th root of unity φ it is easy to see that

$$\kappa_q(\varphi^{e_1},\ldots,\varphi^{e_k}) = \sum_{\pi_1 \in S_{q_1}} \cdots \sum_{\pi_k \in S_{q_k}} \varphi^{e_1 \operatorname{maj} \pi_1 + \cdots + e_k \operatorname{maj} \pi_k} \pi_1 \bullet \cdots \bullet \pi_k$$
$$= \sum_{l=0}^{\nu-1} \varphi^l \mathbf{M}_{(l)}^q$$

as

$$\sum_{\pi_1\in S_{q_1}}\cdots\sum_{\pi_k\in S_{q_k}}\pi_1\boldsymbol{\cdot}\cdots\boldsymbol{\cdot}\pi_k=\Xi^{1^{q_1}}\boldsymbol{\cdot}\cdots\boldsymbol{\cdot}\Xi^{1^{q_k}}=\Xi^{1^n}=\sum_{\pi\in S_n}\pi.$$

Hence, by Frobenius' reciprocity law, the two propositions and the preliminary remarks in Section 1, for any partition p of n,

$$\begin{split} \left(\psi_{i}^{S_{n}},\zeta^{p}\right)_{S_{n}} &= \frac{1}{v}\sum_{j=0}^{v-1}\psi_{i}(\sigma^{-j})\,\zeta^{p}(\sigma^{j})\\ &= \frac{1}{v}\sum_{j=0}^{v-1}\eta^{-ij}\,(\mathrm{ch}_{q^{(j)}},\zeta^{p})_{S_{n}}\\ &= \frac{1}{v}\sum_{j=0}^{v-1}\eta^{-ij}(\kappa_{q^{(j)}}((\eta^{e_{1}})^{j},\ldots,(\eta^{e_{1}})^{j},\ldots,(\eta^{e_{k}})^{j},\ldots,(\eta^{e_{k}})^{j}),Z^{p})\\ &= \frac{1}{v}\sum_{j=0}^{v-1}\eta^{-ij}(\kappa_{q}((\eta^{e_{1}})^{j},\ldots,(\eta^{e_{k}})^{j}),Z^{p}) \end{split}$$

$$= \left(\frac{1}{v} \sum_{l=0}^{v-1} \sum_{j=0}^{v-1} \eta^{-ij} \eta^{jl} \mathbf{M}_{(l)}^{q}, \mathbf{Z}^{p}\right)$$

= $\left(\mathbf{M}_{(i)}^{q}, \mathbf{Z}^{p}\right)$
= $\left(c\left(\mathbf{M}_{(i)}^{q}\right), \zeta^{p}\right)_{S_{n}}$,

and the theorem is proved.

Corollary (Kraśkiewicz, Weyman [6]) Let τ be a cycle of order n in S_n and ε be a primitive *n*-th root of unity. Let $i \in \{0, ..., n-1\}$ and write ψ_i for the character of the cyclic subgroup generated by τ such that $\psi_i(\tau) = \varepsilon^i$. Then the multiplicity of the irreducible character of S_n indexed by the partition p is given by

$$\left(\psi_i^{S_n},\zeta^p\right)_{S_n} = |\{\pi \in \operatorname{SYT}^p | \operatorname{maj} \pi^{-1} \equiv i \mod n\}|.^1$$

Remark We consider the special case of the theorem where $e_i = v/q_i$ for all $i \in \{1, ..., k\}$. As the proof of the theorem shows, we then have, with the correct powers of η used for $\kappa_{q^{(j)}}$, for all $j \in \mathbb{N}$:

$$\zeta^{p}(\sigma^{j}) = (\kappa_{q^{(j)}}(\ldots), \mathbb{Z}^{p}) = \sum_{l=0}^{\nu-1} \eta^{jl} (\mathbb{M}^{q}_{(l)}, \mathbb{Z}^{p}) = \sum_{\pi \in SYT^{p}} (\eta^{j})^{\sum \frac{\nu}{q_{i}} (\operatorname{maj}_{q} \pi^{-1})_{i}}.$$

Taking into account that $\operatorname{ind}_q \pi = \sum \frac{v}{q_i} (\operatorname{maj}_q \pi^{-1})_i$ for the *q*-index of the tableau π defined by Stembridge, we obtain a new proof of Theorem 3.3 in [11] by means of Proposition 1.1 in the same paper.

Note

1. Note that *j* is a descent of π^{-1} iff *j* stands strictly above of j + 1 for $\pi \in SYT^p$ filled into the frame R(p). This is the link to the original version of the theorem.

References

- 1. E.B. Dynkin, "Calculation of the coefficients of the Campbell-Hausdorff formula," *Docl. Akad. Nauk SSSR* (*N. S.*) **57** (1947), 323–326.
- A.M. Garsia, Combinatorics of the Free Lie Algebra and the Symmetric Group, Academic Press, New York, 1990, pp. 309–382.
- L. Geissinger, "Hopf algebras of symmetric functions and class functions," in *Comb. Represent. Groupe Symetr., Actes Table Ronde C.N.R.S. Strasbourg 1976.* Lecture Notes of Mathematics, Vol. 579, pp. 168–181, 1977.
- A. Jöllenbeck, "Nichtkommutative Charaktertheorie der symmetrischen Gruppen," Bayseuther Mathematische Schriften 56 (1999), 1–4.
- 5. A.A. Klyachko, "Lie elements in the tensor algebra," Siberian Mathematical Journal 15 (1974), 914–929.
- 6. W. Kraśkiewiz and J. Weyman, "Algebra of invariants and the action of a Coxeter element," Preprint, Math. Inst. Univ. Copernic, Torún, Poland, 1987.
- 7. B. Leclerc, T. Scharf, and J.-Y. Thibon, "Noncummutative cyclic characters of symmetric groups," *Journal of Combinatorial Theory, Series A* **75**(1) (1996), 55–69.

160

CYCLIC CHARACTERS OF SYMMETRIC GROUPS

- 8. C. Reutenauer, *Free Lie Algebras*, Oxford University Press, Oxford, 1993. London Mathematical Society Monographs, New Series, Vol. 7.
- 9. L. Solomon, "A Mackey formula in the group ring of a Coxeter group," *Journal of Algebra* **41** (1976), 255–268.
- W. Specht, "Die linearen Beziehungen zwischen höheren Kommutatoren," Mathematische Zeitschrift 51 (1948), 367–376.
- 11. J.R. Stembridge, "On the eigenvalues of representations of reflection groups and wreath products," *Pacific Journal of Mathematics* **140**(2) (1989), 353–396.
- 12. F. Wever, "Uber Invarianten in Lieschen Ringen," Mathematische Annalen 120 (1949), 563-580.