Cyclic Characters of Symmetric Groups

ARMIN JÖLLENBECK
joellenbeck@math.uni-kiel.de
MANFRED SCHOCKER
schocker@math.uni-kiel.de
Mathematisches Seminar der Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany

Received April 23, 1998; Revised
Dedicated to Dieter Blessenohl on the occasion of his sixtieth birthday

Abstract

We consider characters of finite symmetric groups induced from linear characters of cyclic subgroups. A new approach to Stembridge's result on their decomposition into irreducible components is presented. In the special case of a subgroup generated by a cycle of longest possible length, this amounts to a short proof of the Kraśkiewicz-Weyman theorem.

Keywords: symmetric group, Young tableau, multi major index, induced character, Lie idempotent

In a remarkable paper of 1987, Kraśkiewicz and Weyman described the decomposition of certain characters of the symmetric group S_{n} into irreducible components [6]. Let C be a subgroup generated by a cycle σ of order n. Denote by ψ_{i} the character of C mapping σ onto the i-th power of a primitive n-th root of unity. Then the multiplicity $\left(\psi_{i}{ }^{S_{n}}, \zeta^{p}\right)_{S_{n}}$ of the irreducible character ζ^{p} indexed by the partition p of n in $\psi_{i}{ }^{S_{n}}$ equals the number of standard Young tableaux of shape p and major index congruent i modulo n. Another proof of this theorem has been given by Garsia [2], see also Chapter 8 in [8].

More generally, like Stembridge in [11] we consider characters $\psi^{S_{n}}$ over the field \mathbb{C} of complex numbers, where ψ is a linear character of an arbitrary cyclic subgroup Z. We call them cyclic characters of S_{n}. In order to give a combinatorial description of the occurring multiplicities $\left(\psi^{S_{n}}, \zeta^{p}\right)_{S_{n}}$ we use the notion of a multi major index, which is a tuple of major indices defined in segments. For the special case $Z=C$ we obtain exactly the result of Kraśkiewicz and Weyman, hence giving a new proof of it.

The method we use is different from that presented by Stembridge: Making use of a certain Lie idempotent introduced by Klyachko [5], our proof is based on the noncommutative character theory of symmetric groups, contained in the first author's thesis [4] that is shortly summarized in the first section. The second section contains the theorem and its proof.

1. The frame algebra

Let $\mathbb{N}\left(\mathbb{N}_{0}\right.$, resp.) be the set of all positive (nonnegative, resp.) integers and \mathbb{N}^{*} a free monoid with alphabet \mathbb{N}. A word $q=q_{1} \cdots q_{k} \in \mathbb{N}^{*}$ is called a composition of n iff $q_{1}+\cdots+q_{k}=n$. We denote by C_{q} the conjugacy class containing all permutations $\pi \in S_{n}$
whose cycle partition is a rearrangement of q. Let ch_{q} be the class function of S_{n} such that $\left(\chi, \mathrm{ch}_{q}\right)_{S_{n}}=\chi\left(C_{q}\right)$ for all class functions χ of S_{n}, i.e., up to a scalar factor ch_{q} is the characteristic function of C_{q} in S_{n}. For the outer product • in the algebra $\mathcal{C}:=\bigoplus_{n \in \mathbb{N}} \mathcal{C} \ell_{\mathbb{C}} S_{n}$ of all class functions we then have the multiplication rule $\mathrm{ch}_{q} \cdot \mathrm{ch}_{r}=\mathrm{ch}_{q r}$ for all $q, r \in \mathbb{N}^{*}$. Using this algebra \mathcal{C}, the character theory of symmetric groups can be elegantly described. For details, including a coproduct and hence a bialgebra structure on \mathcal{C}, see [3].

In the first author's thesis [4], a noncommutative analogue of this bialgebra \mathcal{C} of class functions is presented. The main idea behind it is to consider algebraic structures consisting of Young tableaux: Let \leq be the partial order on $\mathbb{Z} \times \mathbb{Z}$ (\mathbb{Z} the set of all integers) defined by: $(u, v) \leq(x, y)$ iff $u \leq x$ and $v \leq y$. A finite subset R of $\mathbb{Z} \times \mathbb{Z}$ is called a frame if it is convex with respect to \leq. E.g., $S=\{(1,2),(1,3),(2,1),(2,2)\}$ is a frame and may be illustrated by

The following version of a well known concept is convenient for our purposes. Let R be a frame. A standard Young tableau of shape R is a permutation π with the following property: Filled into R row by row, starting from bottom left and ending at top right, π is increasing in rows (from left to right) and columns (downwards). The set of all these permutations is denoted by SYT^{R}. In the group ring $\mathbb{C} S_{n}$ of S_{n} (where $n=|R|$), we may then form the sum of all elements of SYT^{R} and set $\mathrm{Z}^{R}:=\sum \mathrm{SYT}^{R}$. For the frame S mentioned above we have the following standard Young tableaux:

Hence, $Z^{S}=1324+1423+2314+2413+3412 \in \mathbb{C} S_{4}$.
Corresponding to any partition $p=p_{1} p_{2} \cdots p_{k} \in \mathbb{N}^{*}\left(p_{1} \geq \cdots \geq p_{k}\right)$ there is the frame $R(p)=\left\{(i, j) \in \mathbb{Z} \times \mathbb{Z} \mid 1 \leq i \leq k, 1 \leq j \leq p_{i}\right\}$. We write $\mathrm{SYT}^{p}, \mathrm{Z}^{p}$ instead of $\mathrm{SYT}^{R(p)}$, $\mathrm{Z}^{R(p)}$ resp. .

In [4] the linear subspace \mathcal{R} of $\mathbb{C} S:=\bigoplus_{n \in \mathbb{N}} \mathbb{C} S_{n}$ is introduced as the \mathbb{C}-linear span of all elements Z^{R} (R frame). Furthermore, a product \cdot on \mathcal{R} and an algebra epimorphism $c:(\mathcal{R}, \bullet) \rightarrow(\mathcal{C}, \cdot)$ are defined such that $(\phi, \psi)=(c(\phi), c(\psi))_{S}$ for all $\phi, \psi \in \mathcal{R}$, where the bilinear mapping on the left hand side is given by

$$
(\sigma, \tau):=\left\{\begin{array}{ll}
1 & \text { if } \sigma=\tau^{-1} \\
0 & \text { if } \sigma \neq \tau^{-1}
\end{array} \quad \text { for all permutations } \sigma, \tau\right.
$$

on $\mathbb{C} S$ and the one on the right hand side is the canonical orthogonal extension $(\cdot, \cdot)_{S}$ of the scalar products $(\cdot, \cdot)_{S_{n}}$.

If $q=q_{1} q_{2} \cdots q_{k}$ is a composition of $n \in \mathbb{N}$ and R is the frame illustrated by

then the image of $\Xi^{q}:=\mathrm{Z}^{R}$ under c is the permutation character $\xi^{q}=\left(1_{Y}\right)^{S_{n}}$ related to any Young subgroup Y of type q. Furthermore, $\Xi^{q} \cdot \Xi^{r}=\Xi^{q r}$ for all $q, r \in \mathbb{N}^{*}$. It should be mentioned that the so-called frame algebra \mathcal{R} contains the direct sum \mathcal{D} of all descent algebras $\mathcal{D}_{n}=\left\langle\Xi^{q}\right| q$ composition of $\left.n\right\rangle_{\mathbb{C}}$ discovered by Solomon [9].

The crucial point is the fact that c is an extension of Solomon's epimorphism [9] and $c\left(\mathrm{Z}^{p}\right)=\zeta^{p}$ is the irreducible character of S_{n} corresponding to p for any partition p of n.

Now, let ω_{n} be the element of $\mathbb{C} S_{n}$ operating via Polya operation on any word $x_{1} x_{2} \cdots x_{n}$ of length n by $\omega_{n} x_{1} x_{2} \cdots x_{n}=\left[\left[\cdots\left[\left[x_{1}, x_{2}\right], x_{3}\right], \cdots\right], x_{n}\right]$, where $[x, y]=x y-y x$ denotes the Lie commutator of x and y. By the Dynkin-Specht-Wever theorem $[1,10,12] \omega_{n}$ is a Lie idempotent (up to the factor n), i.e., $\omega_{n} \omega_{n}=n \omega_{n}$. Furthermore, $\omega_{n}=\sum_{k=0}^{n-1}(-1)^{k} \mathbf{Z}^{(n-k) 1^{k}}$ $\in \mathcal{R}$, and $c\left(\omega_{n}\right)=\mathrm{ch}_{n}$.

2. Cyclic characters of symmetric groups

First of all, we present a construction of inverse images of the elements $\mathrm{ch}_{q} \in \mathcal{C}\left(q \in \mathbb{N}^{*}\right)$ under c based on Lie idempotents. Recall that $e \in \mathbb{C} S_{n}$ is a Lie idempotent up to the factor $n \operatorname{iff} \omega_{n} e=n e$ and $e \omega_{n}=n \omega_{n}$.

Proposition 1 For all $n \in \mathbb{N}$, let $e_{n} \in \mathcal{D}_{n}$ such that $\frac{1}{n} e_{n}$ is a Lie idempotent. Then, we have $c\left(e_{q_{1}} \cdot \cdots \cdot e_{q_{k}}\right)=\operatorname{ch}_{q}$ for all $q=q_{1} \cdots q_{k} \in \mathbb{N}^{*}$.

Proof: Let $n \in \mathbb{N}$. Then,

$$
c\left(e_{n}\right)=\frac{1}{n} c\left(\omega_{n} e_{n}\right)=\frac{1}{n} c\left(\omega_{n}\right) c\left(e_{n}\right)=\frac{1}{n} c\left(e_{n}\right) c\left(\omega_{n}\right)=\frac{1}{n} c\left(e_{n} \omega_{n}\right)=c\left(\omega_{n}\right)=\operatorname{ch}_{n}
$$

as c is an homomorphism with respect to the inner multiplication of \mathcal{D}_{n} and $\mathcal{C} \ell_{\mathbb{C}} S_{n}$ by Solomon [9]. For any $q=q_{1} \cdots q_{k} \in \mathbb{N}^{*}$, it follows that

$$
c\left(e_{q_{1}} \cdot \cdots \cdot e_{q_{k}}\right)=c\left(e_{q_{1}}\right) \cdot \cdots \cdot c\left(e_{q_{k}}\right)=\operatorname{ch}_{q_{1}} \cdot \cdots \cdot \operatorname{ch}_{q_{k}}=\operatorname{ch}_{q} .
$$

Let $n \in \mathbb{N}$. For all $\pi \in S_{n}$, we call $D(\pi):=\{i \mid 1 \leq i \leq n-1$ and $i \pi>(i+1) \pi\}$ the descent set of π. If $q=q_{1} \cdots q_{k} \in \mathbb{N}^{*}$ is a composition of n, the multi major index of π with respect to q is defined to be the word of length n the j-th letter of which is

$$
\left(\operatorname{maj}_{q} \pi\right)_{j}:=\sum_{\substack{s_{j}-1<i \ll s_{j} \\ i \in D(\pi)}}\left(i-s_{j-1}\right) \quad \text { for all } j \in\{1, \ldots, k\}
$$

where $s_{j}:=q_{1}+\cdots+q_{j}$ for all $j \in\{0, \ldots, k\}$. In the special case of $q=n$, maj $\pi=$ maj $_{n} \pi$ is the well known major index of π. For example, maj ${ }_{322} 5621374=201$ and maj $_{43} 5621374=52$. Let

$$
\kappa_{n}(x):=\sum_{\pi \in S_{n}} x^{\operatorname{maj} \pi} \pi \quad \text { (where } x \text { is a variable) }
$$

Then, for any primitive n-th root of unity $\varepsilon, \kappa_{n}(\varepsilon)$ is a Lie idempotent (up to the factor n) [5]. Let $q=q_{1} \cdots q_{k}$ be a composition of n and

$$
\kappa_{q}\left(x_{1}, \ldots, x_{k}\right):=\kappa_{q_{1}}\left(x_{1}\right) \cdot \cdots \cdot \kappa_{q_{k}}\left(x_{k}\right) \quad\left(\text { where each } x_{i}\right. \text { is a variable). }
$$

For any choice of primitive q_{i}-th roots of unity ε_{i}, we have $c\left(\kappa_{q}\left(\varepsilon_{1}, \ldots, \varepsilon_{k}\right)\right)=\mathrm{ch}_{q}$ by Proposition 1. We finally define, for all $j \in \mathbb{N}$,

$$
q^{(j)}:=\underbrace{\frac{q_{1}}{\operatorname{gcd}\left(q_{1}, j\right)} \cdots \frac{q_{1}}{\operatorname{gcd}\left(q_{1}, j\right)}}_{\operatorname{gcd}\left(q_{1}, j\right) \text { times }} \quad \cdots \quad \underbrace{\frac{q_{k}}{\operatorname{gcd}\left(q_{k}, j\right)} \cdots \frac{q_{k}}{\operatorname{gcd}\left(q_{k}, j\right)}}_{\operatorname{gcd}\left(q_{k}, j\right) \text { times }} \in \mathbb{N}^{*}
$$

Then, if $\sigma \in S_{n}$ has cycle type $q, C_{q^{(j)}}$ is the conjugacy class of σ^{j}.
The definitions given so far lead to the following surprising result for $\kappa_{q}\left(x_{1}, \ldots, x_{k}\right)$:
Proposition 2 Let $j \in \mathbb{N}, q=q_{1} \cdots q_{k} \in \mathbb{N}^{*}$ and ε_{i} be an arbitrary q_{i}-th root of unity for all $i \in\{1, \ldots, k\}$. Then,

$$
\kappa_{q^{(j)}}(\underbrace{\varepsilon_{1}^{j}, \ldots, \varepsilon_{1}^{j}}_{\operatorname{gcd}\left(q_{1}, j\right) \text { times }}, \ldots, \underbrace{\varepsilon_{k}^{j}, \ldots, \varepsilon_{k}^{j}}_{\operatorname{gcd}\left(q_{k}, j\right) \text { times }})=\kappa_{q}\left(\varepsilon_{1}^{j}, \ldots, \varepsilon_{k}^{j}\right) .
$$

Proof: For $q=n, \kappa_{d^{n / d}}\left(\varepsilon_{1}^{j}, \ldots, \varepsilon_{1}^{j}\right)=\kappa_{n}\left(\varepsilon_{1}^{j}\right)$ is a special case of [7], Proposition 4.1, where $d=q_{1} / \operatorname{gcd}\left(q_{1}, j\right)$ and ε_{1}^{j} is a d-th root of unity. For arbitrary q, let $d_{i}:=$ $q_{i} / \operatorname{gcd}\left(q_{i}, j\right)$ for all $i \in\{1, \ldots, k\}$. Then, using the result of the special case in each factor, we obtain

$$
\begin{aligned}
& \kappa_{q^{(j)}}\left(\varepsilon_{1}^{j}, \ldots, \varepsilon_{1}^{j}, \ldots, \varepsilon_{k}^{j}, \ldots, \varepsilon_{k}^{j}\right) \\
& =\kappa_{d_{1}^{q_{1} / d_{1}}}\left(\varepsilon_{1}^{j}, \ldots, \varepsilon_{1}^{j}\right) \cdot \ldots \cdot \kappa_{d_{k}^{q_{k} / d_{k}}}\left(\varepsilon_{k}^{j}, \ldots, \varepsilon_{k}^{j}\right) \\
& =\kappa_{q_{1}}\left(\varepsilon_{1}^{j}\right) \cdot \ldots \cdot \kappa_{q_{k}}\left(\varepsilon_{k}^{j}\right) \\
& =\kappa_{q}\left(\varepsilon_{1}^{j}, \ldots, \varepsilon_{k}^{j}\right) .
\end{aligned}
$$

We are now in a position to state and prove the main result about cyclic characters of symmetric groups:

Theorem Let $n \in \mathbb{N}, q=q_{1} \cdots q_{k}$ be a composition of $n, v:=\operatorname{lcm}\left(q_{1}, \ldots, q_{k}\right), \eta a$ primitive v-th root of unity and $e_{1}, \ldots, e_{k} \in \mathbb{N}_{0}$ such that $\eta^{e_{j}}$ is a primitive q_{j}-th root
of unity for all $j \in\{1, \ldots, k\}$. Let $\sigma \in C_{q}, Z$ be the subgroup of S_{n} generated by $\sigma, i \in\{0, \ldots, v-1\}$ and $\psi_{i}: Z \longrightarrow K, \sigma^{j} \longmapsto \eta^{i j}$. Then,

$$
\mathrm{M}_{(i)}^{q}:=\sum\left\{\pi \in S_{n} \mid \sum_{j=1}^{k} e_{j}\left(\operatorname{maj}_{q} \pi\right)_{j} \equiv i \quad \text { modulo } v\right\}
$$

is an element of \mathcal{D}, and we have

$$
c\left(\mathrm{M}_{(i)}^{q}\right)=\psi_{i}^{S_{n}}
$$

In particular, for any partition p of n,

$$
\begin{aligned}
\left(\psi_{i}^{S_{n}}, \zeta^{p}\right)_{S_{n}} & =\left(\mathbf{M}_{(i)}^{q}, \mathrm{Z}^{p}\right) \\
& =\mid\left\{\pi \in \mathrm{SYT}^{p} \mid \sum_{j=1}^{k} e_{j}\left(\operatorname{maj}_{q} \pi^{-1}\right)_{j} \equiv i \quad \text { modulo } v\right\} \mid
\end{aligned}
$$

Proof: Note first that $\sum a_{\pi} \pi \in \mathbb{C} S_{n}$ is an element of \mathcal{D}_{n} iff $a_{\pi}=a_{\sigma}$ for all $\pi, \sigma \in S_{n}$ such that $D(\pi)=D(\sigma)$. This implies $\mathbf{M}_{(i)}^{q} \in \mathcal{D}_{n}$. Furthermore, for an arbitrary v-th root of unity φ it is easy to see that

$$
\begin{aligned}
\kappa_{q}\left(\varphi^{e_{1}}, \ldots, \varphi^{e_{k}}\right) & =\sum_{\pi_{1} \in S_{q_{1}}} \cdots \sum_{\pi_{k} \in S_{q_{k}}} \varphi^{e_{1} \operatorname{maj} \pi_{1}+\cdots+e_{k} \operatorname{maj} \pi_{k}} \pi_{1} \cdots \cdot \pi_{k} \\
& =\sum_{l=0}^{v-1} \varphi^{l} \mathbf{M}_{(l)}^{q}
\end{aligned}
$$

as

$$
\sum_{\pi_{1} \in S_{q_{1}}} \cdots \sum_{\pi_{k} \in S_{q_{k}}} \pi_{1} \cdot \cdots \cdot \pi_{k}=\Xi^{1^{q_{1}}} \cdots \cdots \cdot \Xi^{1^{q_{k}}}=\Xi^{1^{n}}=\sum_{\pi \in S_{n}} \pi
$$

Hence, by Frobenius' reciprocity law, the two propositions and the preliminary remarks in Section 1 , for any partition p of n,

$$
\begin{aligned}
\left(\psi_{i}^{S_{n}}, \zeta^{p}\right)_{S_{n}} & =\frac{1}{v} \sum_{j=0}^{v-1} \psi_{i}\left(\sigma^{-j}\right) \zeta^{p}\left(\sigma^{j}\right) \\
& =\frac{1}{v} \sum_{j=0}^{v-1} \eta^{-i j}\left(\operatorname{ch}_{q^{(j)}}, \zeta^{p}\right)_{S_{n}} \\
& =\frac{1}{v} \sum_{j=0}^{v-1} \eta^{-i j}\left(\kappa_{q}^{(j)}\left(\left(\eta^{e_{1}}\right)^{j}, \ldots,\left(\eta^{e_{1}}\right)^{j}, \ldots,\left(\eta^{e_{k}}\right)^{j}, \ldots,\left(\eta^{e_{k}}\right)^{j}\right), \mathrm{Z}^{p}\right) \\
& =\frac{1}{v} \sum_{j=0}^{v-1} \eta^{-i j}\left(\kappa_{q}\left(\left(\eta^{e_{1}}\right)^{j}, \ldots,\left(\eta^{e_{k}}\right)^{j}\right), \mathrm{Z}^{p}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\frac{1}{v} \sum_{l=0}^{v-1} \sum_{j=0}^{v-1} \eta^{-i j} \eta^{j l} \mathbf{M}_{(l)}^{q}, \mathbf{Z}^{p}\right) \\
& =\left(\mathbf{M}_{(i)}^{q}, \mathbf{Z}^{p}\right) \\
& =\left(c\left(\mathbf{M}_{(i)}^{q}\right), \zeta^{p}\right)_{S_{n}},
\end{aligned}
$$

and the theorem is proved.
Corollary (Kraśkiewicz, Weyman [6]) Let τ be a cycle of ordern in S_{n} and ε be a primitive n-th root of unity. Let $i \in\{0, \ldots, n-1\}$ and write ψ_{i} for the character of the cyclic subgroup generated by τ such that $\psi_{i}(\tau)=\varepsilon^{i}$. Then the multiplicity of the irreducible character of S_{n} indexed by the partition p is given by

$$
\left(\psi_{i}^{S_{n}}, \zeta^{p}\right)_{S_{n}}=\mid\left\{\pi \in \mathrm{SYT}^{p} \mid \operatorname{maj} \pi^{-1} \equiv i \quad \text { modulo } n\right\} \mid .{ }^{1}
$$

Remark We consider the special case of the theorem where $e_{i}=v / q_{i}$ for all $i \in\{1, \ldots, k\}$. As the proof of the theorem shows, we then have, with the correct powers of η used for $\kappa_{q^{(j)}}$, for all $j \in \mathbb{N}$:

$$
\zeta^{p}\left(\sigma^{j}\right)=\left(\kappa_{q^{(j)}}(\ldots), \mathrm{Z}^{p}\right)=\sum_{l=0}^{v-1} \eta^{j l}\left(\mathrm{M}_{(l)}^{q}, \mathrm{Z}^{p}\right)=\sum_{\pi \in S Y T^{p}}\left(\eta^{j}\right)^{\sum \frac{v}{q_{i}}\left(\text { maj }_{q} \pi^{-1}\right)_{i}}
$$

Taking into account that $\operatorname{ind}_{q} \pi=\sum \frac{v}{q_{i}}\left(\operatorname{maj}_{q} \pi^{-1}\right)_{i}$ for the q-index of the tableau π defined by Stembridge, we obtain a new proof of Theorem 3.3 in [11] by means of Proposition 1.1 in the same paper.

Note

1. Note that j is a descent of π^{-1} iff j stands strictly above of $j+1$ for $\pi \in \mathrm{SYT}^{p}$ filled into the frame $R(p)$. This is the link to the original version of the theorem.

References

1. E.B. Dynkin, "Calculation of the coefficients of the Campbell-Hausdorff formula," Docl. Akad. Nauk SSSR (N. S.) 57 (1947), 323-326.
2. A.M. Garsia, Combinatorics of the Free Lie Algebra and the Symmetric Group, Academic Press, New York, 1990, pp. 309-382.
3. L. Geissinger, "Hopf algebras of symmetric functions and class functions," in Comb. Represent. Groupe Symetr., Actes Table Ronde C.N.R.S. Strasbourg 1976. Lecture Notes of Mathematics, Vol. 579, pp. 168-181, 1977.
4. A. Jöllenbeck, "Nichtkommutative Charaktertheorie der symmetrischen Gruppen," Bayseuther Mathematische Schriften 56 (1999), 1-4.
5. A.A. Klyachko, "Lie elements in the tensor algebra," Siberian Mathematical Journal 15 (1974), 914-929.
6. W. Kraśkiewiz and J. Weyman, "Algebra of invariants and the action of a Coxeter element," Preprint, Math. Inst. Univ. Copernic, Torún, Poland, 1987.
7. B. Leclerc, T. Scharf, and J.-Y. Thibon, "Noncummutative cyclic characters of symmetric groups," Journal of Combinatorial Theory, Series A 75(1) (1996), 55-69.
8. C. Reutenauer, Free Lie Algebras, Oxford University Press, Oxford, 1993. London Mathematical Society Monographs, New Series, Vol. 7.
9. L. Solomon, "A Mackey formula in the group ring of a Coxeter group," Journal of Algebra 41 (1976), 255-268.
10. W. Specht, "Die linearen Beziehungen zwischen höheren Kommutatoren," Mathematische Zeitschrift 51 (1948), 367-376.
11. J.R. Stembridge, "On the eigenvalues of representations of reflection groups and wreath products," Pacific Journal of Mathematics 140(2) (1989), 353-396.
12. F. Wever, "Uber Invarianten in Lieschen Ringen," Mathematische Annalen 120 (1949), 563-580.
