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Abstract. We consider characters of finite symmetric groups induced from linear characters of cyclic subgroups.
A new approach to Stembridge’s result on their decomposition into irreducible components is presented. In the
special case of a subgroup generated by a cycle of longest possible length, this amounts to a short proof of the
Kraskiewicz-Weyman theorem.
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In a remarkable paper of 1987, Kidéwicz and Weyman described the decomposition of
certain characters of the symmetric grogpinto irreducible components [6]. L& be a
subgroup generated by a cyeteof ordern. Denote byy; the character o mappingo
onto thei-th power of a primitiven-th root of unity. Then the multiplicityy; S, ¢P)s, of

the irreducible character® indexed by the partitiorp of n in ;S equals the number of
standard Young tableaux of shap@and major index congruenmodulon. Another proof

of this theorem has been given by Garsia [2], see also Chapter 8 in [8].

More generally, like Stembridge in [11] we consider characietsover the fieldC of
complex numbers, wherg is a linear character of an arbitrary cyclic subgraupwe call
themcyclic characters 0§,. In order to give a combinatorial description of the occurring
multiplicities (¢S, ¢ P)s, we use the notion of aulti major indexwhich is a tuple of major
indices defined in segments. For the special case C we obtain exactly the result of
Kraskiewicz and Weyman, hence giving a new proof of it.

The method we use is different from that presented by Stembridge: Making use of a certain
Lie idempotent introduced by Klyachko [5], our proof is based onrtbecommutative
character theory of symmetric grouypgontained in the first author’s thesis [4] that is shortly
summarized in the first section. The second section contains the theorem and its proof.

1. The frame algebra
Let N (Np, resp.) be the set of all positive (nonnegative, resp.) integersNaral free

monoid with alphabeN. A wordqg = q;---gx € N* is called a composition ofi iff
g1+ - - -+ 0k = n. We denote by, the conjugacy class containing all permutatians S,
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whose cycle partition is a rearrangementof Let ch, be the class function dof, such
that(y, chy)s, = x(Cy) for all class functiong of §,, i.e., up to a scalar factor glis the
characteristic function &€ in S,. For the outer product in the algebr& := @, Clc S

of all class functions we then have the multiplication rulg othy = chy, forallg, r € N*.

Using this algebr&, the character theory of symmetric groups can be elegantly described.
For details, including a coproduct and hence a bialgebra structw@eswe [3].

In the first author’s thesis [4], a noncommutative analogue of this bialgelfeclass
functions is presented. The main idea behind itis to consider algebraic structures consisting
of Young tableaux: Lek be the partial order o x Z (Z the set of all integers) defined
by: (u,v) < (x,y) iff u < xandv < y. A finite subsetR of Z x Z is called aframeif it
is convex with respectte. E.g.,S={(1, 2), (1, 3), (2,1), (2, 2)} is a frame and may be
illustrated by

The following version of a well known concept is convenient for our purposes.RLet
be a frame. Astandard Young tableaof shapeR is a permutationr with the following
property: Filled intoR row by row, starting from bottom left and ending at top rigt,
is increasing in rows (from left to right) and columns (downwards). The set of all these
permutations is denoted by S¥TIn the group ringCS, of §, (wheren = |R|), we may
then form the sum of all elements of S¥Tand set 2 := Y SYTR. For the frameS
mentioned above we have the following standard Young tableaux:

24| 2]3] 1]4] 1]3] 1]2]
[1]3 [1]4 1213 124 [3]4

Hence, 2 = 1324+ 1423+ 2314+ 2413+ 3412¢ CS.

Corresponding to any partitiop = p1pz--- px € N* (p1 > - -- > py) there is the frame
Rp)={(,))eZxZ|1<i<k 1<]j<p). Wewrite SYT, ZPinstead of SYTRP,
ZRP resp. .

In [4] the linear subspacR of CS := @, CS, is introduced as th€-linear span of
all elements Z (R frame). Furthermore, a produebn R and an algebra epimorphism
c: (R, ) — (C, »)aredefined such th&p, v) = (c(¢), c(v))sforall ¢, v € R, where
the bilinear mapping on the left hand side is given by

(o,7) L ifo=c7 for all permutation
,T) = , rmutationsr,
ot 0 ifo#t?t P ‘

onCSand the one on the right hand side is the canonical orthogonal extensigyof the
scalar products§, )s, .
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If g =010z - - Ok is a composition of € N andR is the frame illustrated by

[T & T1
Jhem i |

T 1]
(o 1]

then the image oE9 := ZR underc is the permutation charactefl = (1) related to
any Young subgroujy of typeq. Furthermoreg?®. 2" = E? for all q,r € N*. It should
be mentioned that the so-calléfdme algebraR contains the direct sur® of all descent
algebrasD, = (9| g composition ofn )¢ discovered by Solomon [9].

The crucial point is the fact thatis an extension of Solomon’s epimorphism [9] and
c(ZP) = ¢ P is the irreducible character &, corresponding tg for any partitionp of n.

Now, letwn, be the element of S, operating via Polya operation on any wogks - - - X
oflengthn by wn X1 X2 - - - Xn = [[- - - [[ X1, X2], X3, - - -], Xn], Where [k, y] = xy—yxdenotes
the Lie commutator ot andy. By the Dynkin-Specht-Wever theorem[1, 10, 22]is a Lie
idempotent (up to the factam, i.e.,wnwn = Nwy. Furthermoreg, = Y 12 (—1)k (¥
€ R, andc(wp) = chy.

2. Cyclic characters of symmetric groups

First of all, we present a construction of inverse images of the elemegits €g € N*¥)
underc based on Lie idempotents. Recall tkat CS, is a Lie idempotent up to the factor
niff wpe = neandew, = nwp.

Proposition 1 Foralln € N, let g, € D, such that%en is a Lie idempotent. Themwe
have geg, » --- -&;) =chyforallg =q;--- ok € N*.

Proof: Letn e N. Then,

1 1 1 1
C(€n) = - Clwnen) = - C(wn)C(€n) = —-C(En)C(wn) = - C(Enwn) = C(wn) = chy

asc is an homomorphism with respect to the inner multiplicatiortgfandCé¢ S, by
Solomon [9]. Forany = q; - - - gk € N*, it follows that

C(eql. .eqk) — C(eql). .C(eqk) — Chql' .Chlk =Ch1‘ O

Letne N. Forallr € §,wecallD(z) :={i |1<i <n-—1andiz > (i +1n}the
descent sedf . If q = ¢ - - - gk € N* is a composition of, themulti major indexof =
with respect tay is defined to be the word of lengththe j-th letter of which is

(majm); = E (i —sj_1) forallje{l, ... .k},
Sj_1<i<sj
ieD(m)
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wheres; == g1+ ---+q; forall j € {0,...,k}. Inthe special case @f = n, majzr =
maj,x is the well known major index af. For example, ma},5621374= 201 and
maj,;5621374=52. Let

kn(X) := Y X" (wherex is a variable)
TeS

Then, for any primitiven-th root of unitye, xn(¢) is a Lie idempotent (up to the factaj
[5]. Letq = q; - - - gk be a composition o and

Kq(X1, ... Xi) == Kq,(X1) * -+ - *kq,(Xk)  (Where eaclx; is a variable)
For any choice of primitiveg;-th roots of unitye;, we havec(kq(e1, ..., &) = chy by
Proposition 1. We finally define, for gjl € N,
ql) = % ... % i L _ ... L _ e N*
gedgr, j)  gedau, ) ged(gk, j)  gcdok, )
geday, j) times gedgy. j) times

Then, ifo € §, has cycle type, Cqa) is the conjugacy class ofl.
The definitions given so far lead to the following surprising resulkf@x, . . ., X):

Proposition 2 Let j e N,q =0;--- 0 € N* ande; be an arbitrary g-th root of unity
foralli € {1,...,k}. Then
qu(si,...,si,..., edsd) =Kq(8i,...,8d).
—_— —

geday, j) times gcd(gk. j) times

Proof: Forqg = n, kg (s{,...,ei) = xn(s{) is a special case of [7], Proposition
4.1, whered = g1/ gcdqy, |) anda{ is ad-th root of unity. For arbitraryg, let d; :=
g/9gcdq, j) foralli € {1,...,k}. Then, using the result of the special case in each

factor, we obtain

qu(si,...,si,...,si,...,81)

= Kd:u/dl(q{, e, 8]j_)° 'KdEk/dk (8|£, ey Sd)

= iy (1) + -+ *xcq(eh)

= kq(e1, ... &) O

We are now in a position to state and prove the main result about cyclic characters of
symmetric groups:

Theorem Letne N,q = q;---0k be a composition of nv := lem(qy, ..., k), n a
primitive v-th root of unity and ¢, ..., ac € Ny such thaty® is a primitive ¢-th root
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of unity for all j € {1,...,k}. Leto € Cq, Z be the subgroup of,Sgenerated by
o,i€e{0,...,v—1tandy; : Z— K, o' —5". Then

M?i) = Z {n €S
is an element oD, and we have
q S
c(Mi) =¥,
In particular, for any partition p of n,

(™, ¢P)g, = (M), 2°)

k
ej(majy7); =i  modulov
=1

l

k

Y ei(mapr ), =i moduIOU}

j=1

{n € SYTP

Proof: Note first that)_a,7 € CS, is an element oD, iff a, = a, forall 7,0 € S
such thatD () = D(o). This implies I\@i) € Dy. Furthermore, for an arbitrany-th root
of unity ¢ it is easy to see that

Kq((pel, ey (pa<) = Z e Z (pelma]n1+"'+a<ma]”kn1. < e TTK

TIESY TTKE Sy
In1Q
=2 ¢ M

as

—~ 19 — 1% —~1n z:
E E ﬂl""’ﬂkzdll""‘i‘al :alz IT.

T1E€ESY TTKE Sy TeES

Hence, by Frobenius’ reciprocity law, the two propositions and the preliminary remarks in
Section 1, for any partitiom of n,

1 v—1 . i
(W% =~ D i@ )P
] =

0

1 v—1 .

=3 Z n~" (chyo, ¢P)s,

j=0
1 v—1 . ) ) ) )

= =2 0 g (@™ e ™) %9, Z7)

j=0

vz ) )
= > 0 kg™ (1)), ZP)
i=

0
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,Z

Z(M )
= (c(M§) ¢P)s,

and the theorem is proved. O

CII—\

Corollary (KraSkiewicz, Weyman [6]) Letr be acycle of order n inSands be a primitive
n-throotof unity. Letie {0, ..., n—1} and writey; for the character of the cyclic subgroup
generated by such thaty; (t) = ¢'. Then the multiplicity of the irreducible character of
S indexed by the partition p is given by

(¥, ¢P)g = lir € SYTP|majz " =i modulon}|.*

Remark We considerthe special case ofthetheoremwletev/q; foralli € {1, ..., k}.
As the proof of the theorem shows, we then have, with the correct powersigéd for
Kkqo, forall j e N:

§p(01)—(Kq<J>( ), Zp)—zr]” M(I)’ Z (n,)z (majym~ 1‘.

TeSYT

Taking into account that ingk = Z z (majqnfl). for the g-index of the tableaur
defined by Stembridge, we obtain a new proof of Theorem 3.3 in [11] by means of
Proposition 1.1 in the same paper.

Note

1. Note thatj is a descent of 1 iff j stands strictly above of + 1 for 7 € SYTP filled into the frameR(p).
This is the link to the original version of the theorem.
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