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Abstract. LetV andW ben-dimensional vector spaces over @F: A functionQ : V — W is calledcrooked
(a notion introduced by Bending and Fon-Der-Flaass) if it satisfies the following three properties:

QO =0;
Q(X) + QYY)+ Q2 + Q(x+y+2z) £ 0 forany three distinct, y, z;
QX) + QY+ Q2+ Qx+a)+ Qly+a) + Q(z+a) #0 ifa#0(x,y, zarbitrary.

We show that crooked functions can be used to construct distance regular graphs with parameters of a Kasami
distance regular graph, symmetric 5-class association schemes similar to those recently constructed by de Caen and
van Dam from Kasami graphs, and uniformly packed codes with the same parameters as the double error-correcting
BCH codes and Preparata codes.
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1. Crooked functions

Crooked functions were introduced in [1] as a means to generalise the construction of new
distance regular graphs found by de Caen, Mathon, and Moorhouse [4]. In this note we show
that crooked functions can similarly be used to generalise the constructions of the distance
regular coset graphs of the Kasami codes (Kasami graphs) [2, Theorem 11.2.4 £13),
of symmetric 5-class association schemes related to Kasami graphs which were recently
found by de Caen and van Dam [3], and of the double error-correcting, uniformly packed
BCH (Kasami) codes and Preparata codes.

First we recall from [1] the definition and some basic properties of crooked functions,
and some useful notations.
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LetV andW ben-dimensional vector spaces over@F; andQ : V — W any mapping.
We shall use the notation

Qas, &, ....am) = Q@) + Q@) + -+ + Q(am).

Also, for 0# a € V, we denote byH,(Q), or simply H,, the set
Ha = Ha(Q) = {Q(X) + Q(x +a) | xe V}.

We shall denote the size of a finite sé€by | X|.

Definition 1 [1] A mappingQ:V — W is calledcrookedf it satisfies the following three
properties:
(1.1)Q(0) =0;
(1.2)Q(X,y,z,x+y+2) #0 forany three distincx, vy, z;
(1.3)Qx,y,z,x+a,y+a,z+a)#0 ifa#0.

An equivalent but in some situations more useful description of crooked functions is
given in the following proposition which was proved in [1].

Proposition 2 If Q is a crooked mapping then

(2.0) n = dimV must be odd.

(2.1) Q is a bijection.

(2.2) Every set H(Q) is the complement of a hyperplane.

(2.3) The sets H are all distinct in particular, every complement of a hyperplane
appears among them exactly once.

Moreover every mapping Q satisfying prope(8:2), and such that @) =0, is crooked.

Examples of crooked functions can be constructed as follows. VLetW = GF(2")
with n odd. Letk be a natural number coprime to Then the functiomQ(x) = x1H+2 s
crooked. If, in the constructions to follow, we use these examples, we obtain precisely the
Kasami graphs, the schemes constructed in [3], and the double error-correcting BCH codes
and Preparata codes.

At present, no other examples of crooked functions are known. But the simplicity of
Definition 1 suggests that many more examples should exist. Thus, an alternative title for
this note might have been: “Wanted: Crooked functions. Reward increased”.

2. Kasami graphs
LetQ:V — W be a crooked function; didd = dimW =n. LetN =2" = |V|. We define a

graphK = K (Q) asfollows. Thevertexset®fisQ=V xW={(v,w) | v € V, w e W}.
Vertices(v, w) and(v’, w’) are adjacent if and only if £ v andw + w’ = Q(v + v').
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Theorem 3 The graph K Q) is distance regular with intersection array
1 1
N—1I,N—-2 -N+1,1,2 - N-—1;.
2 2

Proof: The mappings, y: (v, w) = (v+ X, w+Yy)forx € V, y e Wform a subgroup

of the automorphism group d€ which acts transitively on the vertices. So, it is enough
to check the parameters just for one vertex, saypfoe (0, 0). Let, fori = 0,1, 2, K;
denote the set of vertices at distandem vy (Ko = {vo}); and letks = Q\(KoU K1 UK?y)
(subsequently we shall see that the diametdf a$ indeed 3). Also, let us denote hYy,

the set{(v, w) |w € W}.

It follows from the definition ofK that theW are independent sets, and that every
two distinct set3Ny, W, are joined by a matching. AlsdS:={(x, Q(x)) | x e V\{0}};
K1) = N — 1, as required.

Consider 2-paths fromy to W;, a £ 0. They all have the form

(0,0) — (X, QX)) — (&, Q(X) + Q(x + a))

for x # 0, a. Thus, by Proposition (2.2), for evelye H,(Q)\{Q(a)} there are precisely
two 2-paths fromyg to (a, h); and this accounts for all 2-paths framto W;. In particular,
we see thaK has no triangles, and that every vertex frEmis adjacent to precisely two
vertices fromK.

Fora # 0 we have

KinW, = {(a, Q@)};
KaNW, = {(a, h) | he H)\{Q@}};
KanNW, = {(a,h) | h¢ Hg}.

Fora = 0, we have\p\{vo} C Ks.

Let us count the number of neighboursKni of an arbitrary vertexa, w) € W,, w #
Q(a). One such neighbour can be foundAg.

For evenb # 0, a, the setK3 W, is joined by a matching to a subgéa, X) | x € Xy}
of W, whereXy, ¢ W is eitherH, or W\ Hy: whichever of these two does not cont&liia).
Let alsoX; = W\ Hg; againQ(a) ¢ Xa.

By Proposition (2.2), (2.3), the sebs, are all possible affine hyperplanes\i not
containingQ(a). Therefore, every poinb # Q(a) is contained in exactiiN /2 of them.
It follows that every vertexa, w) € K, N'W; is adjacent td\N /2 + 1 vertices inK3, and
every vertexa, w) € Kz N'W;, is adjacenttaN/2 — 1) + 1 = N/2 vertices inK3 (recall
that(a, w) € Kzifand only if w € Xj).

Neighbours of vertices frordy are considered similarly. Every siég N W, for a £ 0
is adjacent to the complement of a hyperplan&\) and each such complement occurs
exactly once. Therefore each vertex\W\{vo} is adjacent toN/2 vertices inKz, as
required.

Thus we have checked enough entries of the intersection array to conclude thatitis indeed
as stated in the theorem; in particular, tKats of diameter three (that is, every vertex from
K3 is adjacent to some vertex froKy). O
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3. Association schemes

For an arbitrary functiolR: V— W define a permutatioss of Q2 of order 2;s:((v, w)) =
(v, w + R(v)). The graptsr(K) is isomorphic toK ; vertices(v, w) and(v’, w’) in it are
adjacent ifw + w’ = Q(v + v) + R(v) + R(v).

Lemma4 Let R:V — W be a mapping such that
(VaeV) Ha(R) € Ha(Q).

Then the graphs K and E sg(K) satisfy the following properties

(4.1) They are edge-disjoint.

(4.2) The graph KU L has no triangles.

(4.3) There are nal-tuples of verticesx, Xz, X3, X4) such that(x;, Xo) and (xz, X3) are
edges of K (x1, X4) and (x4, X3) are edges of Land x # Xs.

Proof: The hypothesis implies tha is a bijection. Indeed, none of the séiig(Q)
contains 0; therefor&®(x) + R(y) # 0 whenx # y. This proves (4.1): the equalities
w4+ w = Q+v)andw+w' = Q(v+v') + R(v) + R(v') cannot hold simultaneously.

Suppose that vertices = (a, wi), Y = (b, w2), z = (¢, wg) form a triangle. Neither
K nor L contain triangles; so let the edgey, yzbe inK, andxzin L (the other case is
similar). We have

Q@+b)+ Q(b+c)+ Q(a+c) = R(@) + R(0).

This is impossible, sinc®(a+b) + Q(b+c¢) € Hac(Q), Q(@a+c) = Q(0)+ Q(a+c) €
Hatc(Q), andR(a) + R(C) € Haic(R) € Hac(Q); but Hayc(Q) is sum-free.
A similar easy calculation proves (4.3). O

We shall call a mapping satisfying the hypothesis of Lemma 4 for a crooked function
Q anaccompliceof Q. Trivially, every crooked function is an accomplice of itself.

Let R be an accomplice of a crooked functi@) andL = sg(K).

Following [3], we shall now define 5 symmetric relatioAs, . .., As on  which will
be shown to form, together with the identity relatifg, an association scheme.

Let A; and A3 be, respectively, the relations of being at distance 1 and at distance 2 in
K; andA; and A4, similarly, the relations of being at distance 1 and at distancd .2 ifhe
relation As holds for verticegv, w) and(v’, w’) if and only if v = v andw # w’; that is,
when they lie in the same cla¥y,.

Theorem 5 The relations A, ..., As defined above form a 5-class association scheme.

Proof: As usual, we shall identify relations with subsetsoi 2, and with their char-
acteristic vectors viewed g2 x N?)-matrices.

First let us show thafy + A; + --- + As = J, the trivial relation (that is, the all-one
matrix). To do this, it is sufficient to check that no pair of vertices can be in more than one
of these relations—then comparing sizes does the job.
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Obviously,Ap N Aj =@ fori # 0. Itisjust as easy to seethdg N A = @ fori # 5.
Also, we already know from the previous section thgtN Az = A, N Ay = @. The
remaining cases follow from Lemma #; N Ay = @ from (4.1),AsN Ay = Ao N A3 =10
from (4.2), andAz N A, = ¢ from (4.3).

Now, following the lines of [3, Theorem 2], we prove th&t A, = A A = Az + A4+
As. Consider all walks of length 2, starting at some ventend going first along an edge
of K, and then along an edge bf There argN — 1)? of them. By (4.1), none of them
returns tax; by (4.2), none of them ends in a vertex adjacen;tand by (4.3), they all end
in distinct vertices. Sinc&2| = N? =1+ 2(N — 1) + (N — 1)?, the claim is proved.

The relationAgs has a very simple structure, so it is not difficult to check that, for every
i, A As is a linear combination of\'s.

From Theorem 3 we already know tH#t, A1, Az, Ao+ As+ As) and(Ag, Az, Ag, A+
Az + As) are association schemes of distance regular graphs. Together with the equation
A1 A, = A Ay = As + Ay + As this suffices to check that every produgtA; is a linear
combination ofA;’s with integer nonnegative coefficients (without any further resorting to
the actual definition of the relatiors). We leave this exercise to the reader. O

Itis tempting to look for linear accomplices of crooked functions. Firstly, because the sets
Ha(R) are particularly small for a linear functiort,(R) = {R(a)}. The second reason
is that, as was mentioned in [1] just before Proposition 11, finding such a linear function
would immediately give us a new example of a closed bent Kerdock set of functions, and a
new Kerdock code.

Unfortunately, for known crooked functions in dimensions up to 9 there are no such linear
accomplicesR, as was shown by an exhaustive computer search.

4. Uniformly packed codes

Let Q:V — W be a crooked function; dilh=dimW=n=> 1. Let N=2"=|V|. We

define the cod€ = C(Q) as the set of characteristic vectors of all subSaigV \ {0} such
that) ", _sr = 0and) s Q(r)=0. Clearly,C is a binary linear code of lengtN — 1.

In fact, C is a generalization of the double error-correcting BCH codes. These codes are
uniformly packed, i.e., the number of codewords at distan¢ee3+ 1) from a word X

which is at distance 2 from the code is constant, and the number of codewords at distance
3 from a wordX which is at distance greater than 2 from the code is also constant.

Theorem 6 For n # 3, the code ©Q) is a double error-correcting uniformly packed
code. For n= 3, C(Q) is the perfect repetition code.

Proof: First, suppose that there is a codeword of weight at most 4. Then there are
ry,rars3, rg € Vsuchthat, +ro+rz+rs =0andQ(ry) + Q(rp) + Q(r3) + Q(ry) = 0.

This contradicts the fact th& is a crooked function unless all are zero, s&C(Q) has
minimum distance at least 5. Since the zero word and the all-ones word are codewords this
implies that fom = 3, C(Q) is the repetition code of length 7, and this code is perfect.
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Next, consider a worK which is at distance 2 from the co@ Q). We want to show
that for any suctX the number of codewordS at distance 3 fronX is the same. Now let
T be a codeword at distance 2 froxy sayX andT differ in coordinates indexed g and
€. Then)  yr=e+eand) . Q) = Qe + Q(&).

Suppose thab and X differ in coordinates indexed by, X, X3, then it becomes clear
that we want to count the number of triplés;, X,, X3} of nonzero elements of, such
thatxy + X2 + X3 = € + & andQ(x1) + Q(X2) + Q(X3) = Q(e1) + Q(&). Substituting
X3 = X1 + X2 + € + & in the second equation, and substituting= x; + e + &,z =
e+ &, w = Q&) + Q(&), we obtain tha(y + 2) + w = Q(X2) + Q(xz + ). This
equation has precisely two solutions fr if Q(y + z) + w € Hy(Q), and otherwise it
has none. Note thatandw are given. Sinc&(y + z) + Q(2) € Hy(Q), we have that
Q(y+2) +w € Hy(Q) if both Q(z) andw are inHy (Q) or if both are not inH, (Q) (here
we use thatdy (Q) is the complement of a hyperplane).

Sincew and Q(2) are distinct and nonzero (by the properties@f, the number of
hyperplanes containing and Q(2) equals N — 1, and the number of hyperplanes not
containingw and Q(2) equals N (this follows easily by counting). Hence by Proposi-
tion 2 it follows that the number oy such thatQ(y + z) + w € Hy(Q) equals N—1,
and consequentlkf the number of triplps, X2, X3} with the required propertles equals

( N—-1)— 8 (each triple occurs 3! times as a solution, and the solyfioey, e}
|s not allowed).

Note that the integrality of the above number of triples forcés be odd. Also, we may
now assume that > 3, so that the number of triples is greater than zero, which shows that
C(Q) has minimum distance exactly 5.

Similarly, one can show that the number of codewords at distance 3 from a word which
is at distance at least 3 from the code eqd%gt%, which completes the proof. O

Note that the proof tha€(Q) is a uniformly packed code goes along the same lines
as the proof in [7, p. 45] that the double error-correcting BCH codes (Kasami codes) are
uniformly packed. Note also that it now follows from counting that the dimensi@ qf)
equalsN — 1 — 2n (cf. [7, Thm. 1.3]).

An important consequence of the theorem is &) is a double error-correcting lin-
ear code with dual degree 3 (cf. [7, Thm. 3.11]) (or is perfect in case3), and hence
it follows by the work of Delsarte (cf. [2, Chapter 11]) that the coset grap8 @) is
distance regular. Following Proposition 1 in [3] this coset graph can be reformulated as
follows. Its vertex set i/ x W, and two distinct verticegv, w) and(v’, w’) are adjacent
if w+ w’ = Qv+ ). Hence the coset graph is precisely the Kasami graph of Section 2.

Closely related to the double error-correcting BCH codes are the Preparata codes. These
are binary, non-linear, double error-correcting, nearly perfect codes, that is, each word at
distance at least 2 from the code has distance 2 or 3 to ex'g;\cdt;dewords, wherg is
the length of the code (clearly such a code is also uniformly packed). Also here we give
a generalization: by adapting the Baker-van Lint-Wilson description (cf. [6, Def. 7.4.4])
of the original Preparata code (note that other Preparata-like codes have been constructed
over the ring of integers modulo four (cf. [6, Chap. 7])).
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Let P(Q) be the code consisting of characteristic vectors of pe&sl) with S C
V\{0}, T € V, suchthaiT|iseven,) (. ss= > rt,and) o s Q(S) = > s Q) +
Q(ZteT t)

Theorem 7 The code RQ) is a double error-correctingnearly perfect code of size
22N=2-2n "‘and length L= 2N — 1.

Proof:  First, note that for every choice @f, | T| even, there argC(Q)| = 2N-172" setsS
such thatS, T) is a codeword (this follows by counting, and the observation th&,iT)
is a codeword, then so IS+ R, T) for every Re C(Q), whereS +— R stands for the
symmetric difference o8 andR). ThusP(Q) has ZN-2-2" codewords.

Next, suppose thaP(Q) has mimimum distance at most 4, say the two codewords
(S, T1) and (S, To) have distance at most 4. Then it follows tt&tand S differ in 1
or 2 elements, and; and T, differ in 2 elements (sinc€(Q) has minimum distance
5, andT; and T, differ in an even number of elements). Without loss of generality we
assume tha, and S, differ in s;, s, (where we allows; to be zero to cover the case
where S, and S, differ in only one element), and tha} and T, differ in t;, t,. Now
it follows thats; + s, =11 + tz, and Q(s1) + Q(S) = Q(t) + Q) + QY iy, ) +
Q( ey, t + 1t +t2). BUt Q(sp) + Q(2), Q(ty) + Q(t2), andQ(Xyer, 1) + QX ey, t +
t1 + t) € Hy,1,(Q), which is sum-free. Hence we have a contradiction, Bi@) has
minimum distance 5. It now follows from the obtained parameterR&X) is nearly perfect
(cf. [6, p. 122]). O

Added in proof. After writing this paper, we discovered the paper [5]. In this paper so-
called almost bent functions are related to uniformly packed codes. In a sense, the approach
in [5] is dual to ours. It follows from the results in [5] and this paper that a crooked function

is almost bent. D. de Caen [private communication] showed us an easy, direct argument
that this is indeed the case.
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