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Abstract. The behaviour of graded Betti numbers under exterior and symmetric algebraic shifting is studied. It
is shown that the extremal Betti numbers are stable under these operations. Moreover, the possible sequences of
super extremal Betti numbers for a graded ideal with given Hilbert function are characterized. Finally it is shown
that over a field of characteristic 0, the graded Betti numbers of a squarefree monomial ideal are bounded by those
of the corresponding squarefree lexsegment ideal.
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Introduction

The purpose of this paper is to discuss the relationship between symmetric algebraic shifting
and exterior algebraic shifting. Both concepts are introduced by Kalai (see [15] and [16]).
We also will consider the so-called combinatorial shifting.

Let S = K [x1, . . . , xn] be the polynomial ring. An ideal inS is called a squarefree
monomial ideal if it is generated by squarefree monomials. A map which assigns to each
squarefree monomial idealI in S a squarefree monomial ideal Shift(I ) in S is called a
shifting operation, if it satisfies the following conditions:(S1) the ideal Shift(I ) is squarefree
strongly stable,(S2) Shift(I ) = I if I is squarefree strongly stable,(S3) the ringsS/I and
S/Shift(I ) have the same Hilbert function,(S4) if J ⊂ I , then Shift(J) ⊂ Shift(I ). The
exterior (resp. symmetric) algebraic shift of an idealI will be denoted byI e (resp. I s),
while a combinatorial shift ofI will be denoted byI c. A precise definition of these shifting
operations will be given in Section 1.

It is clear that shifting operations may as well be defined in terms of simplicial complexes.
In this paper however we prefer the algebraic interpretation of shifting operators since we
want to relate them to generic initial ideals and want to study the graded Betti numbers of
the free resolutions of the shifted ideals.

In combinatorial contexts shifting operations were first introduced by Erd¨os, Ko, and
Rado (see [1]). Combinatorial shifting only depends on the simplicial complex associated
with the idealI , but not on the fieldK . On the other hand, symmetric algebraic shifting is
only defined in characteric 0, while exterior algebraic shifting is defined for any base field,
but may depend on its characteristic.
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In Section 1 we recall the definitions of the various shifting operations and their basic
properties. The properties(S1)–(S4) have been shown for the algebraic shiftings by Kalai
in [15] and [16], and are easy to prove for combinatorial shifting. Since the proof of
property(S2) for the symmetric algebraic shifting is not explicitly given in [16], and since
the proof is not obvious we include it in Section 1. Condition(S2) is indeed equivalent
to the fact that GinS(I s) = GinS(I ) for any squarefee monomial ideal inI in S. Here
GinS(I ) denotes the generic initial ideal ofI with respect to the reverse lexicographical
order induced byx1 > x2 > · · · > xn. As a consequence we obtain thatI e = I s if and
only if GinS(I e) = GinS(I s). A more combinatorial condition for the equality of exterior
and algebraic shifting would be preferable.

One of the main results of Section 2 is the inequalityβij (I ) ≤ βij (I s) which is valid for
all i and j . We do not know whether a similar inequality holds for the exterior shifting, but
we conjecture thatβij (I s) ≤ βij (I e) ≤ βij (I c) for all i and j . However we show that the
extremal Betti numbers (as defined in [6]) ofI , I s, andI e coincide.

With techniques developed in Section 2 we prove a theorem on super extremal Betti
numbers. This theorem can be derived from the Bj¨orner Kalai theorem [8] which extends
the classical Euler Poincar´e theorem. LetI ⊂ S be a graded ideal andm the maximal
shift in the minimal graded free resolution ofS/I . We call the Betti numbersβim(S/I )
super extremal. Note that the non-zero super extremal Betti numbers are extremal in the
sense of [6]. In Theorem 2.8 we characterize all possible sequences of numbers which are
the sequence of super extremal Betti numbers of a homogeneousK -algebra with a given
Hilbert function.

Finally, as a consequence of the inequalityβij (I ) ≤ βij (I s), we are able to show that if
K is a field of characteristic 0,1 is a simplicial complex and1lex is the unique lexsegment
simplicial complex with the samef -vector as1, thenβij (I1) ≤ βij (I1lex) for all i and j .

1. Shifting operations

Fix a fieldK , and letS= K [x1, . . . , xn] be the polynomial ring overK with each degxi = 1.
The support of a monomialu of S is supp(u) = {i : xi dividesu}. Let m(u) denote the
maximal integer belonging to supp(u). If I is a monomial ideal ofS, we writeG(I ) for the
(unique) minimal system of monomial generators ofI , andG(I ) j for the set of monomials
of degreej belonging toG(I ).

Recall that a monomial idealI of S is strongly stable if, for allu ∈ G(I ), one has
(xj u)/xi ∈ I for all i ∈ supp(u) and all j < i . Similarly, a squarefree monomial idealI of
S is called squarefree strongly stable [3] if, for allu ∈ G(I ), one has(xj u)/xi ∈ I for all
i ∈ supp(u) and all j < i with j 6∈ supp(u). Note that if I is (squarefree) strongly stable,
then this exchange property holds for all (squarefree) monomialsu of I .

Let E be the exterior algebra of theK -vector spaceV with basise1, . . . ,en. The canonical
basis elementsei1 ∧ · · · ∧ eik , i1 < · · · < i k, of E are called monomials. A monomial ideal
in E is an ideal generated by monomials.

In order to explain exterior algebraic shifting of a monomial idealI ⊂ S, we consider
the corresponding monomial idealJ ⊂ E, and let< be the reverse lexicographical order
on the monomials induced bye1 > e2 > · · · > en. In other words, ifu = ei1 ∧ · · · ∧ eik
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andv = ej1 ∧ · · · ∧ ejl , thenu > v if either k > l , or elsek = l and there exists an
r such thati s = js for s > r , and i r < jr . There exists a Zariski open setU of linear
automorphismsϕ : E → E such that the initial ideal in<(ϕ(J)) does not depend on the
specific choice ofϕ ∈ U . This initial ideal, denoted GinE(J), is called the generic initial
ideal of J: cf. [5]. Now theexterior algebraic shifting Ie of I is the squarefree monomial
ideal inScorresponding to GinE(J). It is well known thatI e is squarefree strongly stable.

The generic ideal GinS(I ) of a graded idealI ⊂ S, is defined similarly as the generic
initial ideal in the exterior algebra. For more detailed information we refer to [9] and [11].
Symmetric algebraic shifting is defined via GinS(I ). Here we assume thatK is a field of
characteristic 0. It is known that in this case GinS(I ) is a strongly stable ideal.

We will transform GinS(I ) into a squarefree monomial ideal by applying a certain oper-
ator: for a monomialu ∈ S, u = xi1xi2 · · · xi j · · · xid with i1 ≤ i2 ≤ · · · ≤ i j ≤ · · · ≤ i d,
we set

uσ = xi1xi2+1 · · · xi j + ( j−1) · · · xid + (d−1).

It then follows immediately

m(uσ )− deguσ = m(u)− 1. (1)

If L is a monomial ideal withG(L) = {u1, . . . ,us}, then we writeLσ for the square-
free monomial ideal generated byuσ1 , . . . ,u

σ
s in K [x1, . . . , xm], wherem= max{m(u)+

degu− 1 :u ∈ G(L)}.
The symmetric algebraic shifting of Iis defined to be the squarefree monomial ideal

I s = (GinS(I ))σ . The definition of symmetric algebraic shifting presented here is formally
different from that of Kalai [16]. However it is an easy exercise to see that both notions
coincide.

A priori it is not clear from the definition of symmetric algebraic shifting that for a
squarefree monomial idealI ⊂ S, we also haveI s ⊂ S. The next lemma shows that this
indeed is the case.

Lemma 1.1 If I is a squarefree monomial ideal of S= K [x1, . . . , xn], then m(u)+
degu ≤ n+ 1 for all u ∈ G(GinS(I )).

Proof: The graded Betti numbers of a strongly stable idealI are given by Eliahou-Kervaire
[10]:

βi,i+ j (I ) =
∑

u∈G(I ) j

(
m(u)− 1

i

)
(2)

for all i and j .
Since GinS(I ) is strongly stable, formula (2) implies that max{m(u) + degu − 1 :u ∈

G(GinS(I ))} is the highest shift in the resolution of GinS(I ). The monomial idealI being
squarefree, Hochster’s formula, e.g. [7, Theorem 5.5.1], guarantees that the highest shift



210 ARAMOVA, HERZOG AND HIBI

in the resolution ofI is less than or equal ton. Since the highest shift in the resolution of
I and that of GinS(I ) coincide [13], we have the desired inequalities. 2

Note that condition(S1) is satisfied forI s since we have

Lemma 1.2 Let I be a strongly stable ideal with G(I ) = {u1, . . . ,us}. Then the square-
free monomial ideal Iσ is squarefree strongly stable with G(I σ ) = {uσ1 , . . . ,uσs }.

Proof: Suppose that, for someu ∈ G(I ), we haveuσ 6∈ G(I σ ). Let u = xi1 · · · xid with
i1 ≤ · · · ≤ i d. Then, for some proper subsetN of {1, 2, . . . ,d} and for some 1≤ q ≤ s, we
haveuσq =

∏
j∈N xi j+( j−1). Henceuq =

∏
j∈N xi j+h j , whereh j is the number of integers

1 ≤ k < j with k 6∈ N. Since I is strongly stable,
∏

j∈N xi j must belong toI . This
contradictsu ∈ G(I ). Thus we haveG(I σ ) = {uσ1 , . . . ,uσs }.

Next, to see whyI σ is squarefree strongly stable, letu = xi1 · · · xid ∈ G(I ) and consider
the monomial(xbuσ )/xia+(a−1) with b 6∈ supp(uσ ) andb < ia+ (a−1). Let i p+ (p−1) <
b < i p+1+ p for somep < a and set

v =
(

p∏
j=1

xi j

)
xb−p

(
a−1∏

j=p+1

xi j−1

)(
d∏

j=a+1

xi j

)
.

Then, sinceb− p < i p+1 ≤ ia and sinceI is strongly stable, the monomialv belongs toI .
Note thatvσ = (xbuσ )/xia+ (a−1). Say,v = x`1 · · · x`d with `1 ≤ · · · ≤ `d. Again, sinceI
is strongly stable, it follows thatw = x`1 · · · x`c ∈ G(I ) for somec ≤ d. Sincewσ divides
vσ , we have(xbuσ )/xia+ (a−1) ∈ I σ , as desired. 2

Next we give the proof of condition (S2) for symmetric algebraic shifting.

Theorem 1.3 Let I ⊂ S be a squarefree strongly stable ideal of S. Then Is = I .

For the proof we introduce the operationτ which is inverse toσ : For a squarefree
monomialu = xi1xi2 · · · xi j · · · xid with i1 < i2 < · · · < i j < · · · < i d, we set

uτ = xi1xi2−1 · · · xi j−( j−1) · · · xid−(d−1).

If I ⊂ S is a squarefree monomial ideal withG(I ) = {u1, . . . ,us}, then we writeI τ for
the monomial ideal generated byuτ1, . . . ,u

τ
s in S.

Similarly to Lemma 1.2, we show:

Lemma 1.4 Let I be a squarefree strongly stable ideal with G(I ) = {u1, . . . ,us}. Then
the ideal Iτ is strongly stable with G(I τ ) = {uτ1, . . . ,uτs}.

Proof: Assume that for someu ∈ G(I ), we haveuτ 6∈ G(I τ ). Let u = xi1 · · · xid with
i1 < · · · < i d. Then for some proper subset{ j1, . . . , jt } of {1, 2, . . . ,d}, where j1 < · · · <
jt , and for some 1≤ q ≤ s, we haveuτq =

∏t
k=1 xi jk−( jk−1). Henceuq =

∏t
k=1 xi jk−( jk−k).
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Since i k ≤ i jk − ( jk − k) for 1 ≤ k ≤ t and I is squarefree strongly stable, we get
xi1 · · · xit ∈ I which contradictsu ∈ G(I ).

Now, we show thatI τ is strongly stable. Letu = xi1 · · · xid ∈ G(I ) with i1 < · · · < i d,
and consider the monomialv = (xbuτ )/xik−(k−1) with b < i k− (k−1). Let i p− (p−1) ≤
b < i p+1− p for somep < k. Then

vσ =
(

p∏
j=1

xi j

)
xb+p

(
k−1∏

j=p+1

xi j+1

)(
d∏

j=k+1

xi j

)
.

Sinceb+ p < i p+1 andi j + 1 ≤ i j+1 for p+ 1 ≤ j ≤ k − 1, and sinceI is squarefree
strongly stable, we obtain thatvσ ∈ I . Say,vσ = x`1 · · · x`d with `1 < · · · < `d. Again,
sinceI is squarefree strongly stable, it follows thatw = x`1 · · · x`c ∈ G(I ) for somec ≤ d.
Sincewτ divides(vσ )τ = v, we havev ∈ I τ . 2

If u is a monomial, denote byB(u) the smallest strongly stable ideal inS containingu,
and call it Borel principal. Similarly, for a squarefree monomialu, denote bySq B(u)
the smallest squarefree strongly stable ideal inScontainingu, and call it squarefree Borel
principal.

Lemma 1.5 Let I ⊂ S be a squarefree strongly stable ideal generated in degree d. Let
G(I ) = {u1, . . . ,us} where u1 > u2 > · · · > us. Let g= (aij )1≤i, j≤n be a generic upper
triangular matrix acting on S by g(xi ) =

∑i
j=1 aji x j for 1 ≤ i ≤ n. Let ck j denote the

coefficient of uτj in the polynomial g(uk) for 1 ≤ k, j ≤ s. Then the determinant of the
matrix (ckj )1≤k, j≤s is different from zero.

Proof: We may consider the generic coefficientsaij , 1 ≤ i ≤ j ≤ n, as indeterminates
overK . LetÂ denote the degree lexicographic order onK [aij , 1≤ i ≤ j ≤ n] induced by:

aij Â akl if j > l or j = l and i > k.

Setbkj = in(ckj ) for 1 ≤ k, j ≤ s where in(c) denotes the initial term ofc ∈ K [ai j , 1 ≤
i ≤ j ≤ n] with respect toÂ. We will show that1 = det(bkj ) 6= 0 which will imply the
claim of the lemma.

First note that fromaij = 0 for i > j , it follows for 1≤ k ≤ s:

g(uk) =
∑

w∈B(uk)

cwk w wherecwk ∈ K [aij , 1≤ i ≤ j ≤ n].

Sinceuτk ∈ B(uk), one hasbkk 6= 0 for 1 ≤ k ≤ s. We will prove that in(1) =
b11b22 · · ·bss.

We fix the following notation for the generators ofI :

uk = xk1 · · · xkd with k1 < k2 < · · · < kd for 1≤ k ≤ s,

and we setD = b11b22 · · ·bss.
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Now, we will compute the initial termsbkj , 1 ≤ k, j ≤ s. Let w = xj1 · · · xjd ∈
B(uk) where j1 ≤ · · · ≤ jd. Thencwk =

∑
aq1,k1 · · ·aqd,kd where the summation is over

all (q1, . . . ,qd) such thatxq1 · · · xqd = xj1 · · · xjd . Therefore, we obtain that in(cwk ) =
aj1,k1 · · ·ajd,kd . In particular, forw = uτj one has

bkj = aj1,k1aj2−1,k2 · · ·ajd−(d−1),kd .

Let P = b1ρ(1)b2ρ(2) · · ·bsρ(s) whereρ 6= id is a permutation in the symmetric groupSs.
We will show thatP ≺ D. We may assume that the claim is true for squarefree strongly
stable ideals inSwith number of generators less thans.

If ρ(s) = s, then the ideal(u1, . . . ,us−1) being squarefree strongly stable, by induction
hypothesis, one hasb1ρ(1)b2ρ(2) · · ·bs−1ρ(s−1) ≺ b11b22 · · ·bs−1s−1, thusP ≺ D.

So, we may suppose thatρ(s) = t < s. Let ρ(`) = s. Then` < s.
First, consider the casè= t . ThenP =∏k 6=t,s bkρ(k)btsbst. We will show thatbtsbst ≺

bttbss. Sinceut > us, there exists ap such thattp< sp andt j = sj for p+ 1≤ j ≤ d. We
have:

bts =
p−1∏
j=1

asj−( j−1),t j · asp−(p−1),tp ·
d∏

j=p+1

asj−( j−1),sj ;

bst =
p−1∏
j=1

at j−( j−1),sj · atp−(p−1),sp ·
d∏

j=p+1

asj−( j−1),sj ;

bss =
p−1∏
j=1

asj−( j−1),sj · asp−(p−1),sp ·
d∏

j=p+1

asj−( j−1),sj ;

btt =
p−1∏
j=1

at j−( j−1),t j · atp−(p−1),tp ·
d∏

j=p+1

asj−( j−1),sj .

Thereforeb = ∏d
j=p+1 a2

sj−( j−1),sj
divides bothbtsbst and bttbss. Then asp−(p−1),sp is

the biggest generic coefficient dividing(bttbss)/b, andatp−(p−1),sp is the biggest one di-
viding (btsbst)/b. Sinceasp−(p−1),sp Â atp−(p−1),sp , we obtainbtsbst≺ bttbss. Thus P ≺
(
∏

k 6=t,s bkρ(k)btt )bss. Again by induction hypothesis, we have
∏

k 6=t,s bkρ(k)btt ¹
b11 · · ·bs−1s−1, and this completes the proof in this case.

Let now ` 6= t . Setm = m(us). Then there exists aq such thatm(uk) < m for
1 ≤ k ≤ q andm(uk) = m for q + 1 ≤ k ≤ s. First note thatam−(d−1),m is the biggest
aij , 1≤ i ≤ j ≤ n, which appears in1. We have:

D =
q∏

k=1

bkk

s∏
k=q+1

ak1,k1ak2−1,k2 · · ·am−(d−1),m;

P =
∏

k≤q,k 6=`
bkρ(k)

∏
q+1≤k≤s−1,k 6=`

(
d∏

j=1

aρ(k) j−( j−1),kj

)
b`sbst.

We see thatas−q
m−(d−1),m divides D and denoting byr the maximal power ofam−(d−1),m

dividing P, one hasr ≤ s− q. If r < s− q, we are done. Supposer = s− q. Then
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`d = td = m, so thatq + 1 ≤ t, ` < s. Moreover, one obtains that for allq + 1 ≤ k ≤ s,
ρ(k)d = mwhich implies thatq+1≤ ρ(k) ≤ s for q+1≤ k ≤ s. Therefore 1≤ ρ(k) ≤ q
for 1≤ k ≤ q, so thatρ = ρ1ρ2 whereρ1 ∈ Sq andρ2 ∈ Ss−q. Then

P =
q∏

k=1

bkρ1(k)

s∏
k=q+1

bkρ2(k).

From our induction hypothesis it followsP ¹∏q
k=1 bkk

∏s
k=q+1 bkρ2(k).

Now, the idealJ= (u′q+1, u
′
q+2, . . . ,u

′
s) ⊂ S, whereu′k = uk/xm for 1+ q ≤ k ≤ s,

is squarefree strongly stable with number of generators< s. Consider the same generic
transformationg on S and let(b′k j )q+1≤k, j≤s denote the corresponding matrix of initial
terms forJ, i.e. b′k j is the initial term of the coefficient of(u′j )

τ in g(u′k). Then one obtains
thatb′k j = bkj/am−(d−1),m for q + 1 ≤ k, j ≤ s. By induction hypothesis applied to the
ideal J, we have

∏s
k=q+1 b′kρ2(k)

≺ ∏s
k=q+1 b′kk. Hence

∏s
k=q+1 bkρ2(k) ≺

∏s
k=q+1 bkk, and

this completes the proof. 2

Proof of Theorem (1.3): Since the idealI is squarefree strongly stable,I is com-
ponentwise linear [3]. Therefore by [4, Theorem 1.1], for the graded Betti numbers
of I and GinS(I ) it holds: βi i+ j (I ) = βi i+ j (GinS(I )) for all i and j . On the other
hand, the ideal Gin(I ) being strongly stable, it follows from Lemma 2.2 below that
βi i+ j (GinS(I )) = βi i+ j ((GinS(I ))σ ) Thus, we obtain the equalities

βi,i+ j (I ) = βi,i+ j ((GinS(I ))σ ) for all i, j, (3)

which imply thatI and(GinS(I ))σ have the same Hilbert function. Hence it is enough to
prove thatI ⊆ (GinS(I ))σ . By Lemma 1.2 and Lemma 1.4 this inclusion is equivalent to
I τ ⊆ GinS(I ). So, we will show thatuτ ∈ GinS(I ) for everyu ∈ G(I ).

Since I = ∑
u∈G(I ) Sq B(u), and GinS(Sq B(u)) ⊆ GinS(I ) for everyu ∈ G(I ), it is

enough to show that the claim is true for squarefree Borel principal ideals. So, we may
assume thatI = Sq B(u). Setd = degu.

Let G(I ) = {u1, . . . ,us} whereu1 > u2 > · · · > us. Thenus = u. We may assume
that the claim is true for alluk, 1 ≤ k ≤ s − 1. Then(uτ1, u

τ
2, . . . ,u

τ
s−1) ⊂ GinS(I ),

and sinceI τ and GinS(I ) have the same number of minimal monomial generators, one has
G(GinS(I )) = {uτ1, uτ2, . . . ,uτs−1, v}, wherev is a monomial of degreed. We have to prove
thatv = uτ .

Assumev > uτ . We will see that this is impossible. First, we show thatm(v) = m(uτ ).
It follows from formula (4) of Section (2) that

βi i+d((GinS(I ))σ ) =
s−1∑
j=1

(
m(u j )− d

i

)
+
(

m(vσ )− d

i

)
;

βi i+d(I ) =
s−1∑
j=1

(
m(u j )− d

i

)
+
(

m(u)− d

i

)
.

Therefore, according to (3) we obtain(m(v
σ )−d
i ) = (m(u)−d

i ) which impliesm(vσ ) = m(u),

so thatm(v) = m(uτ ).
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We fix the following notation:u = xs1 · · · xsd wheres1 < · · · < sd, andv = xj1 · · · xjd
where j1 ≤ · · · ≤ jd. Sincev > uτ , there exits ak such that ji = si − (i − 1) for
k + 1 ≤ i ≤ d and jk < sk − (k − 1). As jd = m(v) = m(uτ ) = sd − (d − 1), one has
k < d. If ji + (i − 1) ≤ si for 1 ≤ i ≤ k, then I = Sq B(u) being squarefree strongly
stable, one obtains thatvσ ∈ I which impliesvσ = ut for some 1≤ t ≤ s− 1 and the
contradictionv = uτt . Thus, there exits aǹ, 1 ≤ ` < k, such thatj` + (` − 1) > s̀ .
Then j` ≤ jk < sk − (k − 1) ≤ sd − (d − 1) = m(v), thereforexj`v/xm(v) in GinS(I ),
because GinS(I ) is strongly stable. Sincexj`v/xm(v) > v, we getxj`v/xm(v) = uτt for some
1 ≤ t ≤ s− 1. Sayut = xt1 · · · xtd wheret1 < · · · < td. As I = Sq B(u) is a squarefree
Borel principal ideal, we haveti ≤ si for 1 ≤ i ≤ d, thereforeti − (i − 1) ≤ si − (i − 1)
for 1≤ i ≤ d. This contradictsj` > s̀ − (`− 1).

Hence,v ≤ uτ . Now, we apply Lemma 1.5 using same notation. We have GinS(I ) =
in (g(I )) anduτj ∈ GinS(I ) for 1≤ j ≤ s− 1. Since the rank of the matrix(ckj )1≤k, j≤s is
maximal, it follows thatv ≥ uτ , and sov = uτ . 2

Corollary 1.6 Let I be a strongly stable ideal of S. Then GinS(I σ ) = I .

Proof: By 1.2 the ideal I σ is squarefree strongly stable. Therefore, according to
Theorem 1.3, we get(GinS(I σ ))σ = I σ . Applying the operatorτ , we obtain the desired
equality. 2

Corollary 1.7 Let I be a squarefree monomial ideal of S. Then

I e = I s⇐⇒GinS(I e) = GinS(I s).

Proof: Assume that GinS(I e) = GinS(I s). SinceI e andI s are squarefree strongly stable,
our main result 1.3 impliesI e = GinS(I e)σ = GinS(I s)σ = I s. 2

The operatorσ which establishes a bijection between strongly stable ideals and square-
free strongly stable ideals, restricts to a bijection between the lexsegment ideals and the
squarefree lexsegment ideals, as shown in the following result. Recall that a (squarefree)
monomial ideal is called a (squarefree) lexsegment ideal if for all (squarefree) monomials
u ∈ I and all (squarefree) monomialsv of same degree withu <lex v it follows thatv ∈ I .

Lemma 1.8 Let L be a lexsegment ideal in S. Then Lσ is a squarefree lexsegment ideal
in K [x1, . . . , xm] where m= max{m(u)+ degu− 1 :u ∈ G(L)}.

Conversely, if L is a squarefree lexsegment ideal in S. Then Lτ is a lexsegment ideal in
K [x1, . . . , xm] where m= max{m(u)− degu+ 1 :u ∈ G(L)}.

Proof: Suppose thatL is a lexsegment ideal inS with G(L) = {u1, . . . ,us}. Then by
1.2, the idealLσ is squarefree strongly stable withG(Lσ ) = {uσ1 , . . . ,uσs }. Note that this
claim is true for any characteristic.

Letw ∈ Lσ be a squarefree monomial, and letw <lex v be a squarefree monomial with
degv= degw. We will show thatv ∈ Lσ . SinceLσ is a squarefree strongly stable ideal,
one can decomposew = uσ y whereu ∈ G(L) and y is a squarefree monomial with
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m(uσ ) < min(y). Thenwτ = uỹ ∈ L. SinceL is lexsegment, and sincevτ > wτ , one
obtains thatvτ ∈ L. Hencevτ = u′y′ whereu′ ∈ G(L) andm(u′) ≤ min(y′). Therefore
u′σ divides(vτ )σ = v, and we are done.

The converse direction with the operatorτ is proved similarly. 2

Corollary 1.9 Let I be a squarefree strongly stable ideal in S. ThenGinS(I ) is lexsegment
if and only if I is squarefree lexsegment.

We conclude this section with a few remarks concerning combinatorial shifting. It is
known that for the computation of the generic initial ideal in the exterior or symmetric
algebra one may choose a linear automorphismϕ which is represented by a generic upper
triangular matrix with diagonal entries all 1; see for example [9] for the symmetric case.
Any such automorphism is the product of elementary automorphismsϕa

ij , 1≤ i < j ≤ n,
a ∈ K , which are defined as follows:ϕa

ij (ek) = ek if k 6= j , andϕa
ij (ej ) = aei + ej .

In the combinatorics of finite sets one considers the following operation (cf. [1]): LetA
be a collection of subsets of [n]. For given integers 1≤ i < j ≤ n, and for allA∈A one
defines:

Sij (A) =
{
(A\{ j }) ∪ {i }, if j ∈ A, i 6∈ A, (A\{ j }) ∪ {i } 6∈A,
A, otherwise.

For a setA ∈ [n], A = {a1<a2 < · · · < ai }, we seteA = ea1 ∧ ea2 ∧ · · · ∧ aai . The
following fact is easily checked:

Lemma 1.10 Let I ⊂ E be a squarefree monomial ideal, and let a∈ K , a 6= 0. Then in
(ϕa

ij (I )) has the K-basis{eSij (A) : eA ∈ I }, whereA = {A ∈ [n] : eA ∈ I }.

It follows in particular that the ideal in(ϕa
ij (I )) does not depend on the choice ofa. We

may therefore denote it by Shiftij (I ). Notice that Shiftij satisfies conditions(S2)–(S4), while
condition(S1) is usually not satisfied. However, it can be easily seen, that a finite number
of iterated applications of this operation (with variousi < j ) leads to a strongly stable ideal;
see for example [3]. We denote the resulting ideal byI c. It can be shown by examples that
the idealI c may depend on the choice on the sequence of operators Shiftij . However we do
not know whether for a suitable such choice one always hasI c = I e.

2. Graded Betti numbers

In this section we study the relations between the graded Betti numbers of a squarefree
monomial idealI ⊂ Sand its shifted ideals.

As a main result we obtain:

Theorem 2.1 Let I ⊂ S be a squarefree monomial ideal. Then

βi i+ j (I ) ≤ βi i+ j (I
s) for all i and j.
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This theorem is an immediate consequence of:

Lemma 2.2 If I is a strongly stable monomial ideal, thenβii+ j (I ) = βii+ j (I σ ) for all i
and j .

Proof: The graded Betti numbers of a squarefree strongly stable idealI are given in [3]
by:

βi i+ j (I ) =
∑

u∈G(I ) j

(
m(u)− j

i

)
(4)

for all i and j . Therefore, the assertion follows from (1), (2) and (4). 2

Proof of Theorem (2.1): A simple semicontinuity argument (cf. [11]) shows that for any
graded idealI ⊂ S one hasβii+ j (I ) ≤ βii+ j (in(I )) for all i and j . In particular it follows
thatβii+ j (I ) ≤ βii+ j (GinS(I )) for all i and j . Thus the theorem follows from 2.2. 2

Theorem 2.1 leads us to conjecture the following inequalities:

Conjecture 2.3 Let I ⊂ Sbe a squarefree monomial ideal. Then for alli and j one has

βii+ j (I
s) ≤ βii+ j (I

e) ≤ βii+ j (I
c).

In virtue of 2.1 the conjecture implies the inequalities

βii+ j (I ) ≤ βii+ j (I
e)

for all i and j . One should expect that there is direct proof of this inequality, avoiding a
comparison with the symmmetric shifted ideal. Unfortunately no such proof is known so
far. On the other hand the next result shows that the extremal Betti numbers of the algebraic
shifted ideals behave as expected.

According to [6] a Betti numberβkk+m is calledextremal, if βii+ j = 0 for (i, j ) 6= (k,m),
i ≥ k and j ≥ m.

Theorem 2.4 Let I ⊂ S be a squarefree monomial ideal. Then for all i and j
(a) the following conditions are equivalent:

(i) the i j th Betti number of I is extremal,
(ii) the i j th Betti number of Ie is extremal,

(iii) the i j th Betti number of Is is extremal.
(b) the corresponding extremal Betti numbers of I, I e and Is are equal.

Proof: The statements forI and I e are proved in [2], and the corresponding state-
ments forI and GinS(I ) are proved by Bayer-Charalambous-Popescu in [6]. Hence since
βij (GinS(I )) = βij (I s) by 2.2, we obtain the assertions forI and I s, too. 2



SHIFTING OPERATIONS AND GRADED BETTI NUMBERS 217

The invariance of the extremal Betti numbers for combinatorial shifting is unknown. To
prove it, it would suffice to show thatI and Shifti j (I ) have the same extremal Betti numbers.

Now, let1 be a simplicial complex on the vertex set [n] = {1, . . . ,n}. ThenI1 ⊂ S=
K [x1, . . . , xn] denote the squarefree monomial ideal, called the Stanley-Reisner ideal (cf.
[7], [12] or [17]) arising from1. It follows from Lemma 1.1 that ifu = xi1xi2 · · · xm(u) ∈
G(GinS(I1))with i1 ≤ i2 ≤ · · · ≤ m(u), thenuσ = xi1xi2+1 · · · xm(u)+degu−1 is a monomial
belonging toS. Hence we can find a simplicial complex1s on [n] with I1s = (I1)s.

Similarly,1e is defined to be the unique simplicial complex such thatJ1e = GinE(J1)
where J1⊂ E is the monomial ideal arising from1. Kalai [15] has shown that1 and
1e have the same reduced simplicial homology. This is also true for symmetric algebraic
shifting:

Corollary 2.5 Let K be a field of characteristic0. Then

H̃i (1; K ) ∼= H̃i (1
s; K ) for all i .

Proof: For any simplicial complex0 on the vertex set [n] one has

βin(I0) = dimK H̃n−i−2(0; K ) for all i . (5)

This follows from Hochster’s formulas ([14] and [7]). Hochster’s formulas also imply that
βi j (I0) = 0 for all i and all j > n. In particular, ifβin(I0) 6= 0, thenβin(I0) is an extremal
Betti number ofI0. Therefore 2.4 implies thatβin(I1) = βin(I1s) for all i , and the assertion
follows from (5). 2

The usefulness of 2.5 is partially explained by the fact thatH̃.(1s; K ) can be computed
combinatorially in a simple way. In fact, as noted by Kalai [16] (in a different terminology),
one has

Lemma 2.6 Let1 be a simplicial complex on the vertex set[n] such that I1 is squarefree
strongly stable. Then

dimK H̃i (1; K ) = #{u ∈ G(I1)i+2 : m(u) = n}
= #{F ∈ 1 : dim F = i, F ∪ {n} 6∈ 1}

Proof: The first equation follows from (5) and (4), while the second equation follows
trivially from the definitions. 2

As a further application of 2.4 we prove a non-squarefree version of a theorem of Bj¨orner
and Kalai [8]. Since their result will be used in the sequel, we first give a more algebraic
proof of their theorem, which applies to any graded ideal in the exterior algebra, and not just
to monomial ideals, but nevertheless follows closely the arguments of the original proof of
Björner and Kalai.
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So let I ⊂ E be a graded ideal. We setfi−1= dimK (E/I )i for all i ≥ 0, and call
f = ( f0, f1, . . .) the f -vector of E/I . Let e = e1 + e2 + · · · + en. Sincee2 = 0,
one gets a cocomplex

0→ (E/I )0
e→ (E/I )1

e→ (E/I )2
e→ · · ·

We letβi−1= dimK Hi ((E/I ).), and callβ = (β−1, β0, β1 . . .) the Betti sequence ofE/I .
In caseI = I1 for some simplicial complex1, theβi are the ordinary Betti numbers of1.

A pair of sequences( f, β) ∈ N∞0 is calledcompatibleif there exists a gradedK -algebra
E/I such thatf is the f -sequence andβ the Betti sequence ofE/I .

Let a andi be two integer. Thena has a unique binomial expansion

a =
(

ai

i

)
+
(

ai−1

i − 1

)
+ · · · +

(
aj

j

)

with ai > ai−1 > · · · > aj ≥ j ≥ 1; see [7] or [12].
We define

a(i ) =
(

ai

i + 1

)
+
(

ai−1

i

)
+ · · · +

(
aj

j + 1

)
.

We also set 0(i )= 0 for all i ≥ 1.

Theorem 2.7(Björner and Kalai) Let K be a field. The following conditions are equiv-
alent:
(a) The pair of sequences( f, β) is compatible.
(b) Setχi = (−1)i

∑i
j=−1(−1) j ( f j − β j ) for all i . Then

(i) χ−1 = 1 andχi ≥ 0 for all i ,
(ii) βi ≤ χ(i )i−1− χi for all i .

Proof (a)⇒ (b): It is well known and easy to see thatE/I and E/I e have the same
Hilbert function, that is, thef -vectors ofE/I andE/I e coincide. In [2, Corollary 5.2] it
is shown thatHi ((E/I ).) ∼= Hi ((E/I e).) for all i . Hence also the Betti sequences ofE/I
andE/I e coincide. Thus we may replaceI by I e, and hence may as well assume thatI is
strongly stable.

Let I ′ be the ideal generated by allu ∈ G(I ) with m(u) < n and all monomialsu ∈ E
such thatu ∧ en ∈ G(I ). Then I ′ is again strongly stable andE1I ′ ⊂ I . By 2.6, the last
property implies that

dimK (I
′/I )i = #{u ∈ G(I )i+1: m(u) = n} = βi−1(E/I ).

It follows that dimK (E/I ′)i = fi−1 − βi−1 for all i . Now we notice thaten is regular on
E/I ′, in the sense that the complex

E/I ′
en→ E/I ′

en→ E/I ′
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is exact. Therefore, for eachi we obtain an exact sequence ofK -vector spaces

→ (E/I ′)i−1→ (E/I ′)i → (E/I ′)i+1→ (E/(I ′ + enE))i+1→ 0, (6)

and henceχi = dimK (E/(I ′ + enE))i+1.
Next we observe thatI ′/I ∼= (I ′ + enE)/(I + enE) andE1(I ′ + enE) ⊂ I + enE, so

that together with the Kruskal-Katona theorem (see for example [3]) we obtain

χi + βi = dimK Ei+1− dimK (I + enE)i+1

≤ dimK Ei+1− dimK E1(I
′ + enE)i ≤ χ(i )i−1,

as required.
(b)⇒ (a): The hypotheses imply thatχi ≤ χ(i )i−1 andχi +βi ≤ (χi−1+βi−1)

(i ). Thus the
Kruskal-Katona theorem yields an integerm, and lexsegment idealsL ⊂ N in the exterior
algebraE′ = K 〈e1, . . . ,em−1〉 such that dimK (E/N)i+1=χi and dimK (E/L)i+1=χi +βi

that for all i .
Now let I ⊂ E = K 〈e1, . . . ,em〉 be the ideal generated by the elements inG(L) and all

elementsu ∧ em with u ∈ G(N). Moreover we setI ′ = NE. ThenI ′/I ∼= N/L, and so

dimK (E/I )i+1 = dimK (N/L)i+1+ dimK (E/I ′)i+1

= βi + dimK (E/I ′)i+1. (7)

On the other hand,em is regular onE/I ′, and so (6) yields

dimK (E/(I
′ + emE))i+1 = (−1)i+1

i+1∑
j=0

(−1) j dimK (E/I ′) j (8)

for all i . Thus, sinceE/(I ′ + emE) ∼= E′/N, it follows from (8) that

dimK (E/I ′)i+1 = dimK (E
′/N)i+1+ dimK (E

′/N)i =χi + χi−1= fi − βi .

This together with (7) implies that dimK (E/I )i+1 = fi .
Finally it is clear from the construction ofI that #{u ∈ G(I )i+2 : m(u) = m} equals

dimK (N/L)i+1 which isβi . Thus, by 2.6, the assertion follows. 2

The Björner-Kalai Theorem can be translated into a theorem on super extremal Betti
numbers. LetI ⊂ S be a graded ideal. We letm be the maximal integerj such that
βij (S/I ) 6= 0 for somei . In other words,m is the largest shift in the graded minimal free
S-resolution ofS/I . It is clear thatβim(S/I ) is an extremal Betti number for alli with
βim(S/I ) 6= 0, and that there is at least one suchi . These Betti numbers are distinguished
by the fact that they are positioned on the diagonal{(i,m− i ) : i = 0, . . . ,m} on the Betti
diagram, and that all Betti numbers on the right lower side of the diagonal are zero. The
ring S/I may of course have other extremal Betti numbers, not sitting on this diagonal.
We call the Betti numbersβim, i = 0, . . . ,m, super extremal, regardless whether they are
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zero or not, and ask the question which sequences of numbers(b0, b1, . . . ,bm) appear as
sequences of super extremal Betti numbers for graded rings with given Hilbert function.

Before answering the question we have to encode the Hilbert functionHS/I (t) of S/I
in a suitable way. Using the additivity of the Hilbert function, the graded minimal free
resolution ofS/I yields the following formula:

HS/I (t) = a0+ a1t + a2t2+ · · · + amtm

(1− t)n

with ai ∈ Z; see for example [7]. It follows that

(1− t)n−mHS/I (t) = a0+ a1t + a2t2+ · · · + amtm

(1− t)m

Notice thatn−m may take positive or negative values. At any rate, the rational function
(1− t)n−mHS/I (t) has degree≤ 0. One easily verifies that there is a unique expansion

(1− t)n−mHS/I (t) =
m∑

i=0

fi−1
t i

(1− t)i

with fi ∈Z. It is clear that f−1= 1, and we shall see later that allfi ≥ 0. We call f =
( f−1, f0, f1, . . . , fm−1) the f -vector of S/I . Given the highest shift in the resolution, the
f -vector ofS/I determines the Hilbert function ofS/I , and vice versa.

We setbi =βm−i−1,m and callb = (b−1, . . . ,bm−1) the super extremal sequence of
S/I . Finally we setχi = (−1)i

∑i
j=−1(−1) j ( f j − bj ) for i = −1, 0. . . . ,m− 1. The

Björner-Kalai theorem has the following counterpart.

Theorem 2.8 Let K be a field of characteristic0. Let f = ( f−1, f0, . . . , fm−1) and
b = (b−1, b0, . . . ,bm−1) be sequences of non-negative integers. The following conditions
are equivalent:
(a) there exists a homogeneous K-algebra S/I such that f is the f -vector, and b the super

extremal sequence of S/I ;
(b) (i) χ−1 = 1 andχi ≥ 0 for all i ,

(ii) bi ≤ χ(i )i−1− χi for all i .

Proof (a)⇒ (b): Since the extremal Betti numbers are preserved when we pass fromI to
GinS(I ), it follows that I and GinS(I ) have the same highest shiftm, and hence the same
b-vector. SinceS/I andS/GinS(I ) have the same Hilbert function, it also follows that the
f -vectors ofS/I andS/GinS(I ) coincide. Thus, since char(K ) = 0, we may assume that
I is a strongly stable monomial ideal.

The ideal I σ is defined inS′ = K [x1, . . . , xm] and βii+ j (I ) = βii+ j (I σ ) by 2.2. This
implies that

HS′/I σ (t) = (1− t)n−mHS/I (t).
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Hence, if we let1 be the simplicial complex withI1 = I σ , then1 andS/I have the same
f -vector, and one hasbi = dimK H̃i (1; K ); see (5). Therefore, the conclusion follows
from Björner-Kalai Theorem.

(b)⇒ (a): Given anf -andb-sequence satisfying conditions (b), there exists by 2.7 an
integerm and a simplicial complex1 on the vertex set [m] whose f -vector is f and whose
β-sequence isb. ThenK [x1, . . . , xm]/I1 is a homogeneousK -algebra satisfying (a). 2

As a last result we give an upper bound for the graded Betti numbers of a squarefree
monomial ideal with a givenf -vector defined over a field of characteristic 0. Let1 be
a simplicial complex on the vertex set [n]. Since I1 and GinS(I1) have the same Hilbert
function, (3) guarantees thatf (1) = f (1s). Moreover, by 2.1 we have

βii+ j (I1) ≤ βii+ j (I1s) (9)

for all i and j .
Let 1lex denote the (unique) lexsegment simplicial complex on [n] with the same

f -vector as1, see [3]. Sincef (1s) = f (1lex) and sinceI1s is squarefree strongly
stable by Lemma 1.2, it follows from [3, Theorem 4.4] that

βii+ j (I1s) ≤ βii+ j (I1lex) (10)

for all i and j .
Combining inequalities (9) and (10), we obtain:

Theorem 2.9 Let K be a field of characteristic0, let1 be a simplicial complex, and1lex

the(unique) lexsegment simplicial complex with the same f -vector as1. Then for the Betti
numbers of the stanley Reisner ideals I1 and I1les ⊂ K [x1, . . . , xn], we have

βii+ j (I1) ≤ βii+ j (I1lex)

for all i and j .

We expect that these inequalities are also valid whenK is a field of positive characteristic.
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