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Abstract. The behaviour of graded Betti numbers under exterior and symmetric algebraic shifting is studied. It

is shown that the extremal Betti numbers are stable under these operations. Moreover, the possible sequences of
super extremal Betti numbers for a graded ideal with given Hilbert function are characterized. Finally it is shown
that over a field of characteristic 0, the graded Betti numbers of a squarefree monomial ideal are bounded by those
of the corresponding squarefree lexsegment ideal.
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Introduction

The purpose of this paper is to discuss the relationship between symmetric algebraic shifting
and exterior algebraic shifting. Both concepts are introduced by Kalai (see [15] and [16]).
We also will consider the so-called combinatorial shifting.

Let S = K[Xg,..., Xy] be the polynomial ring. An ideal it5 is called a squarefree
monomial ideal if it is generated by squarefree monomials. A map which assigns to each
squarefree monomial idedlin S a squarefree monomial ideal Skilff in Sis called a
shifting operation, if it satisfies the following conditionss,) the ideal Shiftl ) is squarefree
strongly stable(Sy) Shift(l) = | if | is squarefree strongly stabless) the ringsS/I and
S/Shift(l) have the same Hilbert functioqs) if J c I, then ShiftJ) c Shift(l). The
exterior (resp. symmetric) algebraic shift of an idéakill be denoted byl € (resp. 13),
while a combinatorial shift of will be denoted by ¢. A precise definition of these shifting
operations will be given in Section 1.

Itis clear that shifting operations may as well be defined in terms of simplicial complexes.
In this paper however we prefer the algebraic interpretation of shifting operators since we
want to relate them to generic initial ideals and want to study the graded Betti numbers of
the free resolutions of the shifted ideals.

In combinatorial contexts shifting operations were first introduced by&rdo, and
Rado (see [1]). Combinatorial shifting only depends on the simplicial complex associated
with the ideall , but not on the field. On the other hand, symmetric algebraic shifting is
only defined in characteric 0, while exterior algebraic shifting is defined for any base field,
but may depend on its characteristic.
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In Section 1 we recall the definitions of the various shifting operations and their basic
properties. The propertid$,)—(S;) have been shown for the algebraic shiftings by Kalai
in [15] and [16], and are easy to prove for combinatorial shifting. Since the proof of
property(S) for the symmetric algebraic shifting is not explicitly given in [16], and since
the proof is not obvious we include it in Section 1. Conditi@) is indeed equivalent
to the fact that Gifi(1%) = Gin®(l) for any squarefee monomial ideal Inin S. Here
GinS(1) denotes the generic initial ideal dfwith respect to the reverse lexicographical
order induced byk; > x; > --- > X,. As a consequence we obtain th4t= I% if and
only if GinS(1¢) = GinS(1%). A more combinatorial condition for the equality of exterior
and algebraic shifting would be preferable.

One of the main results of Section 2 is the inequalifyl ) < g (1°) which is valid for
alli andj. We do not know whether a similar inequality holds for the exterior shifting, but
we conjecture thag(1°) < g;(1°) < g;(1°) for alli and j. However we show that the
extremal Betti numbers (as defined in [6])Iofl %, and| € coincide.

With techniques developed in Section 2 we prove a theorem on super extremal Betti
numbers. This theorem can be derived from therBgr Kalai theorem [8] which extends
the classical Euler Poinaatheorem. Lel C Sbe a graded ideal anth the maximal
shift in the minimal graded free resolution 8f1. We call the Betti numbergin(S/1)
super extremal. Note that the non-zero super extremal Betti numbers are extremal in the
sense of [6]. In Theorem 2.8 we characterize all possible sequences of numbers which are
the sequence of super extremal Betti numbers of a homogerealgebra with a given
Hilbert function.

Finally, as a consequence of the inequali{yl) < g;(1°), we are able to show that if
K is afield of characteristic @\ is a simplicial complex ana'®* is the unique lexsegment
simplicial complex with the samé-vector asA, thengj(1a) < Bijj (1) for alli andj.

1. Shifting operations

FixafieldK,andletS= K[X, ..., Xy] be the polynomial ring oveK with each deg; = 1.
The support of a monomial of Sis supgu) = {i : X dividesu}. Let m(u) denote the
maximal integer belonging to sugp. If | is a monomial ideal o8, we writeG(l ) for the
(unique) minimal system of monomial generators pdndG(l ); for the set of monomials
of degreej belonging toG(l).

Recall that a monomial idedl of Sis strongly stable if, for alu € G(I), one has
(xju)/x; € | foralli € supgu) and allj < i. Similarly, a squarefree monomial ideabf
Sis called squarefree strongly stable [3] if, for alle G(I), one hagx;u)/x; € | for all
i € supu) and allj < i with j & supgu). Note that ifl is (squarefree) strongly stable,
then this exchange property holds for all (squarefree) monomiafd .

Let E be the exterior algebra of thé-vector spac¥ with basise, ..., e,. The canonical
basis elementg, A--- A @,,i1 < -+ < ik, Of E are called monomials. A monomial ideal
in E is an ideal generated by monomials.

In order to explain exterior algebraic shifting of a monomial ideat S, we consider
the corresponding monomial idedlC E, and let< be the reverse lexicographical order
on the monomials induced l®f > & > --- > e,. In other words, ifu =g, A--- A 8,
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andv = e, A --- A g, thenu > v if eitherk > |, or elsek = | and there exists an
r such thatiy = js for s > r, andi; < j,. There exists a Zariski open dgt of linear
automorphismsg : E — E such that the initial ideal in(¢(J)) does not depend on the
specific choice of € U. This initial ideal, denoted Gi(J), is called the generic initial
ideal of J: cf. [5]. Now theexterior algebraic shifting § of | is the squarefree monomial
ideal in S corresponding to Gf(J). Itis well known thatl € is squarefree strongly stable.
The generic ideal Gi¥(l) of a graded ideal C S, is defined similarly as the generic
initial ideal in the exterior algebra. For more detailed information we refer to [9] and [11].
Symmetric algebraic shifting is defined via Giih). Here we assume th#t is a field of
characteristic 0. It is known that in this case &ih) is a strongly stable ideal.
We will transform Gir¥(l) into a squarefree monomial ideal by applying a certain oper-
ator: for a monomiali € S, u = X, X, - - - Xj, - - Xjy With iy <ip <--- <ij <--- <lg,
we set

U = Xi Xipt 1 Xij 4 (j=1) - Xig + (d—1)-

It then follows immediately

m(u’) — degu® = m(u) — 1. Q)
If L is a monomial ideal withtG(L) = {ug, ..., us}, then we writeL° for the square-
free monomial ideal generated by, ..., uZ in K[Xy, ..., Xm], wherem= maxm(u) +

degu—1:ue G(L)}.

The symmetric algebraic shifting of is defined to be the squarefree monomial ideal
IS = (Gin®(1))°. The definition of symmetric algebraic shifting presented here is formally
different from that of Kalai [16]. However it is an easy exercise to see that both notions
coincide.

A priori it is not clear from the definition of symmetric algebraic shifting that for a
squarefree monomial idedlC S, we also havd s C S. The next lemma shows that this
indeed is the case.

Lemma 1.1 If | is a squarefree monomial ideal of S KXy, ..., Xs], then mu) +
degu < n+ 1forallu € G(GinS(1)).

Proof: The graded Bettinumbers of a strongly stable idesk given by Eliahou-Kervaire
[10]:

Bii+i(l) = Z (m(ui)—l) )

ueG(l);

foralli andj.

Since Gir?(1) is strongly stable, formula (2) implies that nfaxu) + degu — 1:u e
G(GinS(1))} is the highest shift in the resolution of Gifl ). The monomial ideal being
squarefree, Hochster’s formula, e.g. [7, Theorem 5.5.1], guarantees that the highest shift
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in the resolution of is less than or equal te. Since the highest shift in the resolution of
| and that of Gif(l) coincide [13], we have the desired inequalities. O

Note that condition(S,) is satisfied for ® since we have

Lemma 1.2 Let | be a strongly stable ideal with@) = {u, ..., us}. Then the square-
free monomial ideal 1 is squarefree strongly stable with(&”) = {u], ..., uZ}.

Proof: Suppose that, for somee G(l), we haveu® ¢ G(17). Letu = X, - - - Xi, with
ip <--- <ig. Then, for some proper subgetof {1, 2, ..., d} and forsome &k q < s, we
haveug = [];cn Xi;+(-1- Henceuq = [];cy Xi;+h;, wherehj is the number of integers
1 <k < jwithk ¢ N. Sincel is strongly stable]‘[jeN Xi; must belong td. This
contradictsu € G(I). Thus we have&s(19) = {u], ..., ug}.

Next, to see why ° is squarefree strongly stable, let= x;, - - - x;, € G(l) and consider
the monomialxpu”)/Xi, @1 With b & suppgu”) andb < iz +(a—1). Leti,+(p—1) <
b <ipt1+ pforsomep < aand set

Then, sincéd — p < ip41 < iaandsincd is strongly stable, the monomialbelongs tdl .
Note thatv® = (XpU?)/Xi, + @a—1)- Say,v = Xy, - - - Xy With €1 < - -+ < £4. Again, sincel

is strongly stable, it follows that = x,, - - - X,, € G(I) for somec < d. Sincew? divides
v?, we have(xpu?)/Xi, + a—1) € 17, as desired. O

Next we give the proof of conditiors) for symmetric algebraic shifting.
Theorem 1.3 Let | C S be a squarefree strongly stable ideal of S. Thegl.

For the proof we introduce the operationwhich is inverse tar: For a squarefree
monomialu = X, X, - - - Xi; - - - Xj, With iy <ip <--- <ij <--- <ig, we set

UT = Xi Xip—1 Xij—(j=1) * * * Xig—(d—1)-
If I c Sis a squarefree monomial ideal wi@(l) = {uy, ..., Us}, then we writel * for
the monomial ideal generated by, ..., ug in S.

Similarly to Lemma 1.2, we show:

Lemma 1.4 Let | be a squarefree strongly stable ideal witl{lG = {u, ..., us}. Then
the ideal I is strongly stable with @ ) = {u], ..., ui}.

Proof: Assume that for some € G(l), we haveu® ¢ G(17). Letu = X, - - - Xi, with
i; <--- <ig. Thenforsome proper subdet, ..., j;} of {1,2,...,d}, wherej; < --- <
jt, and for some k q < s, we haveuf, = [[,_; X, 1. Henceug = [Ty Xi\, —(j—k-
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Sinceix < ij, — (jx — k) for 1 < k < t and| is squarefree strongly stable, we get
Xi, - - Xi, € | which contradicta € G(I).

Now, we show that* is strongly stable. Lett = x;, - - - X, € G(I) withi; < --- < g,
and consider the monomial= (Xou")/Xi,—k-1 Withb < iy —(k—1). Leti,—(p—1) <
b <ipy1 — pforsomep < k. Then

p k-1 d
o = TDx Joeel TT %) TT %)
j=1 j=p+1 j=k+1

Sinceb+ p <ipprandij +1 <ijpiforp+1<j <k-—1,andsincd is squarefree
strongly stable, we obtain thaf < |. Say,v” = X, --- Xy, With £1 < --- < £4. Again,
sincel is squarefree strongly stable, it follows that= x,, - - - X,, € G(I) for somec < d.
Sincew? divides(v?)® = v, we havev € I . O

If uis a monomial, denote bB(u) the smallest strongly stable ideal 8ontainingu,
and call it Borel principal. Similarly, for a squarefree monomialdenote bySqBu)
the smallest squarefree strongly stable ide&@ gontainingu, and call it squarefree Borel
principal.

Lemma 1.5 Let | C S be a squarefree strongly stable ideal generated in degree d. Let
G(l) ={ug,...,us} wherey > up > --- > Us. Let g= (&j)1<i j<n be a generic upper
triangular matrix acting on S by @) = Z'j:1 a;ixj for 1 <i < n. Let g; denote the
coefficient of ¢ in the polynomial guy) for 1 < k, j < s. Then the determinant of the
matrix (Cyj)1<k, j <s IS different from zero.

Proof: We may consider the generic coefficienjs 1 < i < j < n, as indeterminates
overK. Let> denote the degree lexicographic ordefofa;, 1 < i < j < n]induced by:

a>aq ifj>1 or j=I1 and i>k

Sethy; = in(cy;j) for 1 < k, j < swhere in(c) denotes the initial term af € K[a;j, 1 <
i < j < n]with respect to-. We will show thatA = deft(by;) # 0 which will imply the
claim of the lemma.

First note that frona; = O fori > j, itfollowsforl <k <s:

gu) = Y c'w whereq e K[aj, 1<i < j <n].

weB(uk)
Sinceu; € B(uyk), one hashy # 0 for 1 < k < s. We will prove that in(A) =
11022 - - - bss.
We fix the following notation for the generators laf

Ug = X, - X, With ki <kp <--- <kyg forl<k<s,

and we seD = by1bys - - - bss.
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Now, we will compute the initial term$yj, 1 < k,j < s. Letw = Xj,---Xj, €
B(uk) wherej, < --- < jg. Thenc! = ) ag,k, - - - gk, Where the summation is over
all (g1, ..., dq) such thatxy, - -- Xq, = Xj, --- Xj,. Therefore, we obtain that ifc)’) =

. . I — T
aj,k; "+ Qjg,ky- IN particular, forw = uj one has

Bkj = @,k @1k, * - Rjg—(d—1).kg-

Let P = by, 1)b2,2) - - - bsp(s) Wherep # id is a permutation in the symmetric grotip
We will show thatP < D. We may assume that the claim is true for squarefree strongly
stable ideals irs with number of generators less than

If p(s) =s, thentheideafuy, ..., Us_1) being squarefree strongly stable, by induction
hypOthESiS, one haﬁp(l)bzp(z) oo bs_]_p(s_j_) < bibys- - bs_ls_]_, thusP < D.

So, we may suppose thats) =t < s. Letp(¢) =s. Thent < s.

First, consider the cage=t. ThenP = ]_[k;éLS By, (k) brsbst. We will show thatsbse <
bicbss. Sinceu; > us, there exists @ such that, <sp andt; =s; for p+1< j <d. We
have:

p—1 d
brs = 1_[ 8s,—(j—1),t; * Bsp—(p—1).tp l_[ as,—(j-1),s;>
j=1 j=p+1

p—1 d
bst = 1_[ & —(j-1).s " Qtp—(p-1).5p ° l_[ 8s—(j-1).5>
j=1

j=p+1
p—1 d
bss = 1_[ 8s,—(j—-1),5; " Bs,—(p-1),5p 1_[ As,—(j-1),5;>
j=1 j=p+1

p—1 d
by = Hatjf(jfl),tj * A, —(p-1).tp l_[ As,—(j-1),s; -
j=1 j=p+1

Thereforeb = ]'[‘j’:erl asz.,(j,l).s_ divides bothbysbsy and byibss. Thenas,—(p-1.s, IS
the biggest generic coefficient dividir(g[tbss)/b, anda, (p-1).s, IS the biggest one di-
viding (bisbsy) /b. Sinceas,—(p-1).s, > a,—(p-1).s,» W€ Obtainbsbst < brtbss. ThusP <
(Hk;&t,s broaobit)bss.  Again by induction hypothesis, we havﬂk?ét,S Brp o ber <
by1---bs_ 151, and this completes the proof in this case.

Let now¢ # t. Setm = m(us). Then there exists g such thatm(uy) < m for
1 <k <gandm(uy) = mforq+ 1 < k < s. First note thaty_g—_1).m is the biggest
aj, 1 <i < j < n, which appears im\. We have:

q S
D=]]b« [] ande-1k 8@ ym:
k

=1 k=0q-+1
d
P= 1_[ bk/?(k) 1_[ Hap(k)j*(j*l),kj Desbst.
k=<q.k#¢ g+1l<k<s—1k#¢ \ j=1

We see thaafn’_q(d_l)’m divides D and denoting by the maximal power oBm__1).m
dividing P, one hag <s—q. Ifr < s—q, we are done. Suppose= s — . Then
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g =ty = m,sothatg + 1 <t, £ < s. Moreover, one obtains thatfor @jl+1 < k <'s,
p(K)g = mwhichimpliesthag+1 < p(k) < sforg+1 < k < s. Thereforel< p(k) < q
for 1 <k < q, so thatp = p10, Wherep; € § andp, € S_4. Then

P= kupl(k) H Bioz(10)-

k=g+1

From our induction hypothesis it follow < ]_[E:l bk HE:qul Bkpy (k) -

Now, the ideald = (Ug. 4, Uy, .., Ug) C S, whereu = ux/Xm for14+q < k <'s,
is squarefree strongly stable with number of generatos Consider the same generic
transformationg on S and Iet(b{q)qﬂsk,jss denote the corresponding matrix of initial
terms forJ, i.e. b/] is the initial term of the coefficient c(ﬂ’ )* in g(uy). Then one obtains
thatby; = byj/am- @-D.m forgq+1<Kk,j <s. By mductlon hypothesis applied to the

ideal J we have]_[k a1 bkpz(k) < ]_[k a1 Bl Hence]_[k —q+1 o,y < ]_[k —q+1 bk, and
this completes the proof. O

Proof of Theorem (1.3): Since the ideal is squarefree strongly stablé, is com-
ponentwise linear [3]. Therefore by [4, Theorem 1.1], for the graded Betti numbers
of I and Gire(l) it holds: Biivj (1) = ﬁiiH(GinS(I)) for all i and j. On the other
hand, the ideal Gifl) being strongly stable, it follows from Lemma 2.2 below that
Bii +; (GIN>(1)) = Bii 1+ ((Gin3(1))) Thus, we obtain the equalities

Biiti(1) = Biirj(GiIn3(1))7) forall i, j, (3)

which imply thatl and(GinS(1))? have the same Hilbert function. Hence it is enough to
prove thatl € (GinS(1))?. By Lemma 1.2 and Lemma 1.4 this inclusion is equivalent to
17 € GinS(1). So, we will show that® € GinS(1) for everyu € G(1).

Sincel = ZueG(,) SqBRu), and Girf(SqBu)) € GinS(1) for everyu € G(1), it is
enough to show that the claim is true for squarefree Borel principal ideals. So, we may
assume that = SqBu). Setd = degu.

Let G(l) = {uy, ..., us} whereu; > U, > --- > Us. Thenus = u. We may assume
that the claim is true for all,, 1 < k < s— 1. Then(ui,u3,...,uZ ;) C GinS(l),
and sincd * and Giré(l) have the same number of minimal monomial generators, one has
G(Gin®(1)) = {uf, uj, ..., uZ_;, v}, wherev is a monomial of degree. We have to prove
thatv = u”.

Assumev > u’. We will see that this is impossible. First, we show timt) = m(u®).

It follows from formula (4) of Section (2) that

, L (mu;) — m(v’) —d
Bi+a((Gin%(1))?) Z( w ) ( (” i) );

J

s—1 Y —
Bii+a(l) = <m(uji) d) + <m(U? d).
j=1

Therefore, according to (3) we obtaifi*}’~¢) = (™¥~%) which impliesm(v®) = m(u),
so thatm(v) = m(u®).
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We fix the following notation:u = X, - - - X5, Wheres; < --- < g, andv = Xj, - - - Xj,
wherej; < --- < jg. Sincev > Uu", there exits & such thatjy = s — (i — 1) for
k+l<i<dandjy <s—(k—121. Asjg =m@w) = mU’) =g — (d — 1), one has
k<d Ifj+(@(—-1 <sforl<i <k, thenl = SqBu) being squarefree strongly
stable, one obtains that < | which impliesv® = u; for some 1<t < s— 1 and the
contradictionv = uf. Thus, there exits af, 1 < ¢ < k, such thatj, + (£ — 1) > s,.
Thenj, < jk < sk —(k—1) < 5§ — (d — 1) = m(v), thereforex;, v/Xme) in Gin(1),
because Gif(1) is strongly stable. Sinee, v/Xmw) > v, We getXj,v/Xmw) = Ui for some
1<t<s—1 Sayui =X;,---X, Wheret; < --- <t3. As| = SqBu) is a squarefree
Borel principal ideal, we havge < 5 for 1 <i < d, thereforet; — (i — 1) <5 — (i — 1)
for1 <i <d. This contradicty, > s, — (£ — 1).

Hence,v < u”. Now, we apply Lemma 1.5 using same notation. We have@in=
in (g(1)) andu} € Gin3(1) for 1 < j <s— 1. Since the rank of the matricj) 1<k, j <s iS
maximal, it follows thatv > u®, and sov = u”. O

Corollary 1.6 Let | be a strongly stable ideal of S. Then &jtr) = 1.

Proof: By 1.2 the ideall? is squarefree strongly stable. Therefore, according to
Theorem 1.3, we geiGinS(17))° = 1. Applying the operatot, we obtain the desired
equality. O

Corollary 1.7 Let | be a squarefree monomial ideal of S. Then
1= 1%<= Gin®(1®) = GinS(19).

Proof: Assume that GifY(1¢) = GinS(1%). Sincel € and| S are squarefree strongly stable,
our main result 1.3 implies® = GinS(1¢)? = GinS(1%)? = |5, O

The operatot which establishes a bijection between strongly stable ideals and square-
free strongly stable ideals, restricts to a bijection between the lexsegment ideals and the
squarefree lexsegment ideals, as shown in the following result. Recall that a (squarefree)
monomial ideal is called a (squarefree) lexsegment ideal if for all (squarefree) monomials
u € | and all (squarefree) monomialof same degree with <4 v it follows thatv € 1.

Lemma 1.8 Let L be alexsegmentideal in S. Thehik a squarefree lexsegment ideal
in K[Xg, ..., Xm] where m= max{m(u) + degu — 1:u € G(L)}.

Converselyif L is a squarefree lexsegment ideal in S. Thénid.a lexsegment ideal in
K[X1, ..., Xm] where m= max{m(u) — degu + 1:u € G(L)}.

Proof: Suppose thak is a lexsegment ideal i with G(L) = {uy, ..., us}. Then by
1.2, the ideal “ is squarefree strongly stable wi@(L") = {uf, ..., uZ}. Note that this
claim is true for any characteristic.

Letw € L? be a squarefree monomial, and det<ex v be a squarefree monomial with
degv =degw. We will show thatv € L. SincelL? is a squarefree strongly stable ideal,
one can decompose = u’y whereu € G(L) andy is a squarefree monomial with
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m(u®) < min(y). Thenw® = uy € L. Sincel is lexsegment, and sina€ > w®, one
obtains thab®™ € L. Hencev® = U’y whereu’ € G(L) andm(u’) < min(y’). Therefore
u divides(v*)? = v, and we are done.

The converse direction with the operatois proved similarly. O

Corollary 1.9 Let | be a squarefree strongly stable ideal in S. T&ém(1) is lexsegment
if and only if | is squarefree lexsegment.

We conclude this section with a few remarks concerning combinatorial shifting. It is
known that for the computation of the generic initial ideal in the exterior or symmetric
algebra one may choose a linear automorphiswhich is represented by a generic upper
triangular matrix with diagonal entries all 1; see for example [9] for the symmetric case.
Any such automorphism is the product of elementary automorphigms<i < j <n,

a € K, which are defined as followa?pf;‘(eK) =g if k£ j, andwf;‘(ej) =aq + €.

In the combinatorics of finite sets one considers the following operation (cf. [1])4Let
be a collection of subsets af]. For given integers ki < j < n, and for allAc A one
defines:

(A\{jhulit, if jeA i¢A (A{jhUlilgA,
Si(A) = .

A, otherwise
ForasetA e [n], A={ai<ay < -+ < g}, wesetea = €, A€, A---Ady. The
following fact is easily checked:

Lemma 1.10 Let| C E be a squarefree monomial ideahd letae K, a # 0. Thenin
(g (1)) has the K-basiges a) : €a € I}, whereA = {Ae[n]:ea e |}.

It follows in particular that the ideal i(rpﬁ‘(l )) does not depend on the choiceanfWe
may therefore denote it by Shiftl ). Notice that Shift satisfies condition6S)—(%), while
condition(S,) is usually not satisfied. However, it can be easily seen, that a finite number
of iterated applications of this operation (with various j) leads to a strongly stable ideal;
see for example [3]. We denote the resulting ideal fiylt can be shown by examples that
the ideall © may depend on the choice on the sequence of operatorg.Stidfivever we do
not know whether for a suitable such choice one alwayd has | €.

2. Graded Betti numbers
In this section we study the relations between the graded Betti numbers of a squarefree
monomial ideal c Sand its shifted ideals.

As a main result we obtain:

Theorem 2.1 Let | C S be a squarefree monomial ideal. Then

Bi+j(1) < Biipj(1°) forall i and |.
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This theorem is an immediate consequence of:

Lemma 2.2 If | is a strongly stable monomial ideathengii,j (1) = Bii4+; (1) for all i
and j.

Proof: The graded Betti numbers of a squarefree strongly stable idad given in [3]
by:

Bii+j(1) = Z (m(u?—1> (4)

ueG(l);
for alli andj. Therefore, the assertion follows from (1), (2) and (4). O

Proof of Theorem (2.1): A simple semicontinuity argument (cf. [11]) shows that for any
graded ideal C Sone hasgjiyj(l) < Bi+j(in(l)) foralli andj. In particular it follows
thatBiij (1) < Bii+j (GinS(1)) for alli andj. Thus the theorem follows from 2.2. O

Theorem 2.1 leads us to conjecture the following inequalities:
Conjecture 2.3 Let| c Sbe a squarefree monomial ideal. Then foriahd j one has
Bii+j (1°) < Biipj (1%) < Biixj(1°).
In virtue of 2.1 the conjecture implies the inequalities
Bii+j (1) < Bii1j(1°)

for alli andj. One should expect that there is direct proof of this inequality, avoiding a
comparison with the symmmetric shifted ideal. Unfortunately no such proof is known so
far. On the other hand the next result shows that the extremal Betti numbers of the algebraic
shifted ideals behave as expected.

According to [6] a Betti numbefy.m is calledextremalif g;; = Ofor (i, j) # (k, m),
i >kandj >m.

Theorem 2.4 Let | C S be a squarefree monomial ideal. Then for alli and j
(a) the following conditions are equivalent
() theijth Betti number of | is extremal
(ii) the ijth Betti number of is extrema|
(iii) theijth Betti number ofd is extremal.
(b) the corresponding extremal Betti numbers of ¢ and I° are equal.

Proof: The statements fot and |€ are proved in [2], and the corresponding state-
ments forl and Gir°(l) are proved by Bayer-Charalambous-Popescu in [6]. Hence since
Bi (GinS(1)) = Bi (13) by 2.2, we obtain the assertions foand| ®, too. O
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The invariance of the extremal Betti numbers for combinatorial shifting is unknown. To
prove it, it would suffice to show thatand Shiff; (1) have the same extremal Betti numbers.

Now, let A be a simplicial complex on the vertex set = {1, ..., n}. Thenl, C S=
K[xs, ..., Xn] denote the squarefree monomial ideal, called the Stanley-Reisner ideal (cf.
[7], [12] or [17]) arising fromA. It follows from Lemma 1.1 that iti = X, Xi, - - - Xmu) €
G(GinS(1x)) withi; < iy < --- < m(u), thenu® = Xiy Xip41 - - - Xm(u)+degu—1 IS @ monomial
belonging toS. Hence we can find a simplicial comple¢€ on [n] with [xs = (15)5.

Similarly, A® is defined to be the unique simplicial complex such that= GinF(J,)
where J, C E is the monomial ideal arising fromv. Kalai [15] has shown than and
A® have the same reduced simplicial homology. This is also true for symmetric algebraic
shifting:

Corollary 2.5 Let K be a field of characteristi@. Then
Hi (A; K) = Hi(AS; K) forall i.
Proof: For any simplicial compleX" on the vertex set] one has
Bin(Ir) = dimg Hn_i _»(I"; K) forall i. (5)

This follows from Hochster's formulas ([14] and [7]). Hochster’s formulas also imply that
Bij (Ir) = O0foralli and allj > n. In particular, ifgin(Ir) # 0, thengin(Ir) is an extremal
Betti number ofi-. Therefore 2.4 implies tha, (1) = Bin(1as) foralli, and the assertion
follows from (5). O

The usefulness of 2.5 is partially explained by the fact thainS; K) can be computed
combinatorially in a simple way. In fact, as noted by Kalai[16] (in a different terminology),
one has

Lemma 2.6 LetA be asimplicial complex on the vertex fef such that ) is squarefree
strongly stable. Then

dimg Hi(A; K) = #{u € G(1a)i+2:m(u) = n}
=#{FeA:dmF =i, FuU{n}&A}

Proof: The first equation follows from (5) and (4), while the second equation follows
trivially from the definitions. O

As a further application of 2.4 we prove a non-squarefree version of a theoremmoroeB;”
and Kalai [8]. Since their result will be used in the sequel, we first give a more algebraic
proof of their theorem, which applies to any graded ideal in the exterior algebra, and not just
to monomial ideals, but nevertheless follows closely the arguments of the original proof of
Bjorner and Kalai.
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So let] C E be a graded ideal. We sdt_; = dimg (E/I); for all i >0, and call
f =(fp, f1,...) the f-vector of E/l. Lete = e, + & + --- + €,. Sincee? = 0,
one gets a cocomplex

0— (E/1)o— (E/1)1 > (E/1)2 > -

We letgi_1 = dimg H'((E/1).), and callg = (8_1, Bo, B1 . . .) the Betti sequence d&/|.
In casel = I, for some simplicial compleX, the; are the ordinary Betti numbers of.
A pair of sequencesf, 8) € N§°is calledcompatibleif there exists a graded -algebra
E/I such thatf is the f-sequence and the Betti sequence d&/I.
Leta andi be two integer. Then has a unigue binomial expansion

)]

withg > ag_1>--->a; > | > 1;see[7] or [12].
We define

a<i>=<ijl>+<ai1>+'”+<Jijl)'

We also set® =0 foralli > 1.

Theorem 2.7(Bjorner and Kala) Let K be a field. The following conditions are equiv-
alent
(@) The pair of sequenced, ) is compatible.
(b) Setxi = (=1)' Y_\__;(=1)I(f; — g)) for alli. Then
(i) x-a=1andy > Oforalli,
(i) B <" — xi foralli.

Proof (a) = (b): It is well known and easy to see th&t/| and E/I € have the same
Hilbert function, that is, thef -vectors ofE/l andE/I€ coincide. In [2, Corollary 5.2] it
is shown thaH' ((E/1).) = H ((E/1®),) for alli. Hence also the Betti sequencesofl
andE/| € coincide. Thus we may repladeby | ¢, and hence may as well assume tha
strongly stable.

Let I’ be the ideal generated by alle G(1) with m(u) < n and all monomialsl € E
such thau A e, € G(l). Thenl’ is again strongly stable arigh1” C 1. By 2.6, the last
property implies that

dimi (1'/1)i = #{u € G(1)iza:m(u) =n} = g _1(E/I).

It follows that dimk (E/1"); = fi_y — Bj_1 for all i. Now we notice thag, is regular on
E/l’, in the sense that the complex

E/N' S E/N S E/N



SHIFTING OPERATIONS AND GRADED BETTI NUMBERS 219

is exact. Therefore, for ea¢hwe obtain an exact sequencelofvector spaces
— (E/1Nica— (E/1)i = (E/1)ija — (E/(I" + & E))iy1— 0, (6)

and hence = dimg (E/(1" + € E))i 1.
Next we observe thdt'/1 = (I’ + e,E)/(l +e,E) andEy(I' +e,E) C | + e,E, so
that together with the Kruskal-Katona theorem (see for example [3]) we obtain

Xxi + 6 =dimg Eiyq —dimk (I +eE)ita _
< dimg Ej11 — dimg Ex(I' + &E)i < 1),

as required. .

(b) = (a): The hypotheses imply that < x; andxi + 8 < (xi—1+Bi-1)@. Thusthe
Kruskal-Katona theorem yields an integeyand lexsegment ideals ¢ N in the exterior
algebraE’ =K (e, ..., en_1) suchthatdim (E/N); 1= x; and dink (E/L)i+1= xi + Bi
that for alli.

Now letl Cc E = K{ey, ..., eyn) be the ideal generated by the element&iii.) and all
elementsu A ey, with u € G(N). Moreover we set’ = NE. Thenl’/I = N/L, and so

dimg (E/ 141 = dimg (N/L)i41 + dimg (E/17)i 41
= fi +dimg (E/1)i11. (7)

On the other handk,, is regular onE/1’, and so (6) yields

e .
dimy (E/(I + enE)i1 = (=D ) (=) dimk (E/1"), ®)
j=0

foralli. Thus, sinceE/(l’ + enE) = E’/N, it follows from (8) that
dimg (E/1")i41 = dimg (E'/N)i 1 + dimg (E'/N)i = xi + xi—1= fi — Bi.

This together with (7) implies that dig{E/| )i 11 = fj.
Finally it is clear from the construction df that fu € G(l)j;2: m(u) = m} equals
dimg (N/L)j;1 which is 8;. Thus, by 2.6, the assertion follows. O

The Bjorner-Kalai Theorem can be translated into a theorem on super extremal Betti
numbers. Lett ¢ Sbe a graded ideal. We leh be the maximal integej such that
Bij(S/1) # 0 for somei. In other wordsm is the largest shift in the graded minimal free
Sresolution ofS/1. It is clear thatgi(S/1) is an extremal Betti number for allwith
Bim(S/1) # 0, and that there is at least one slicifhese Betti numbers are distinguished
by the fact that they are positioned on the diagdiiaim —i):i =0, ..., m} on the Betti
diagram, and that all Betti numbers on the right lower side of the diagonal are zero. The
ring S/1 may of course have other extremal Betti numbers, not sitting on this diagonal.
We call the Betti numbergim, i = 0, ..., m, super extremalregardless whether they are
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zero or not, and ask the question which sequences of nuniagits, . . ., by,) appear as

sequences of super extremal Betti numbers for graded rings with given Hilbert function.
Before answering the question we have to encode the Hilbert funktipn(t) of S/I

in a suitable way. Using the additivity of the Hilbert function, the graded minimal free

resolution ofS/1 yields the following formula:

ao +agt + at? + - - - + apt™

Hs/i (1) = a_on

with g € Z; see for example [7]. It follows that

a + agt + apt? + - - - + amt™

Q-0 Hs) () = a_om

Notice thatn — m may take positive or negative values. At any rate, the rational function
(1—t)""MHg/ (t) has degrees 0. One easily verifies that there is a unique expansion

m ti
A-—0O""Hey O =Y  fi4—
s/l ; 1(1 — by

with fi € Z. ltis clear thatf_; =1, and we shall see later that d||>0. We call f =
(f_1, fo, f1, ..., fm_1) the f-vector of $1. Given the highest shift in the resolution, the
f-vector of S/1 determines the Hilbert function &/ 1, and vice versa.

We seth = Bm—i_1m and callb = (b_4, ..., bm_1) the super extremal sequence of
S/1. Finally we sety; = (—1) Z'j:_l(—l)i(fj —bj) fori = -1,0....,m—1. The
Bjorner-Kalai theorem has the following counterpart.

Theorem 2.8 Let K be a field of characteristi®. Let f=(f_q, fo,..., fm-1) and
b= (b_1, by, ..., bn_1) be sequences of non-negative integers. The following conditions
are equivalent
(a) there exists a homogeneous K -algebyd Such that f is the f-vector, and b the super
extremal sequence of/ §
(b) (i) x-a=1andy; > Oforalli,
(i) b < x") — x foralli.

Proof (a)= (b): Since the extremal Betti numbers are preserved when we pas$ fimom
GinS(1), it follows that| and GirP(l) have the same highest shifi, and hence the same
b-vector. SinceS/1 andS/Gin>(1) have the same Hilbert function, it also follows that the
f-vectors ofS/1 andS/GinS(1) coincide. Thus, since chdt) = 0, we may assume that
| is a strongly stable monomial ideal.

The ideall“ is defined inS =K[xy, ..., xm] and Bi+j(I) = Bi+j(1?) by 2.2. This
implies that

Hs 1o (t) = (L —t)""™Hg) (1).
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Hence, if we letA be the simplicial complex with, = 17, thenA andS/I have the same
f-vector, and one hals = dimk H;(A; K); see (5). Therefore, the conclusion follows
from Bjorner-Kalai Theorem.

(b) = (a): Given anf-andb-sequence satisfying conditions (b), there exists by 2.7 an
integerm and a simplicial complex on the vertex sefi] whose f -vector isf and whose
B-sequence ib. ThenK|[xy, ..., Xm]/la is @a homogeneouk -algebra satisfying (a). O

As a last result we give an upper bound for the graded Betti numbers of a squarefree
monomial ideal with a giverf -vector defined over a field of characteristic 0. lete
a simplicial complex on the vertex set][ Sincel, and Gir(l,) have the same Hilbert
function, (3) guarantees th&tA) = f (AS). Moreover, by 2.1 we have

Bii+i (1a) < Bii+j(1as) 9
foralli andj.
Let A'® denote the (unique) lexsegment simplicial complex ohWith the same

f-vector asA, see [3]. Sincef (AS) = f(A'®) and sincel,s is squarefree strongly
stable by Lemma 1.2, it follows from [3, Theorem 4.4] that

Bii+j(Ias) < Biirj(larex) (10)

foralli andj.
Combining inequalities (9) and (10), we obtain:

Theorem 2.9 Let K be a field of characteristi@, let A be a simplicial compleyand A'®*

the(uniqug lexsegment simplicial complex with the same f -vectaxa$hen for the Betti
numbers of the stanley Reisner idealsand Ipes C K[Xq, ..., X5], we have

Biiri(1a) < Biigj (I alex)
foralli and j.

We expect that these inequalities are also valid wkéna field of positive characteristic.
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