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Abstract. We develop an iterated homology theory for simplicial complexes. This theory is a variation on one
due to Kalai. ForA a simplicial complex of dimensiod — 1, and eacht = 0, ..., d, we definerth iterated
homology groupsf A. Whenr = 0, this corresponds to ordinary homology.Afis a cone over\’, then when

r = 1, we get the homology of’. If a simplicial complex is (nonpure) shellable, then its iterated Betti numbers
give the restriction numberby j, of the shelling. Iterated Betti numbers are preserved by algebraic shifting, and
may be interpreted combinatorially in terms of the algebraically shifted complex in several ways. In addition, the
depth of a simplicial complex can be characterized in terms of its iterated Betti numbers.
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1. Introduction

Let A = v x A’ be a cone over the simplicial compl&X. ThenA is acyclic, i.e., all of its
reduced homology vanishes, and thus any information about the reduced homaolddy of
lost. Iterated homology is a way to algebraically recover the reduced homolagyfiam
A. The first iterated homology af is just the ordinary homology ok’ and subsequent
iterates are gotten by “deconingt’. If the complex is a “near-cone,” which is almost
a cone, then this deconing process makes sense. For an arbitrary cdinfiexidea is
to algebraically transfornv into a near-cone, and then iterate the deconing process. The
“zeroth” iterated homology ofF is just the ordinary homology, and the iterates provide a
combinatorial generalization of homology. However, iterated homology is not topological;
that is, there are complexes with the same topological realization that have different iterated
homology. The iterated homology theory that we present here is a variation on one due to
Kalai [12], and we were heavily influenced by his work.

A simplicial complex is callegbure if all of its facets have the same dimension. A pure
simplicial complex ishellableif it can be assembled, facet by facet, in a nice way (see 85).
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Bjorner and Wachs [5, 6] extended the definition of shellability to include complexes that
are not pure. They showed that many interesting and important nonpure complexes are
shellable. In addition, they introduced a triangle of restriction numbgfsI') (j < k)
of a shelling ofl". WhenT is pure(d — 1)-dimensional, the numbets ; (I') correspond
to h;(I"), the ordinary restriction numbers of a shellinglaf In the pure shellable case,
it is a basic result thagy_1(I') = hq(I'), andgi(I') = 0 fori < d — 1. Bjorner and
Wachs generalized this result to nonpure shellable complexes, showing that fdk,each
Brk—1(T") = hk(T). In this paper, we extend their result to the entirriangle, showing
thatgk—1[r](I") = hxx_r (I"), where“~1[r](I") denotes thék— 1)-dimensionai th iterated
Betti number ofl".

We use the method of algebraic shifting to transfarimto a new complexA (I") that is
much easier to work with. A full definition is in §3.

We summarize the main results in the following theorems.

Theorem 1.1 LetI" be asimplicial compleyand letA (I") denote the algebraically shifted
complex obtained fromfi. Then

BN = M riam)
= hik—r (A(T))
= #{facetsF e A(I') : |[F| =k, init(F)=r}.

Proof: Theorem 4.1, Corollary 4.2, and Theorem 5.4. O

This theorem says that the iterated Betti numbers remain invariant under the operation of
algebraic shifting and that they can be described combinatorially in terms of the algebraically
shifted complex.

Theorem 1.2 If T is a shellable simplicial compleand A(I") denotes the algebraically
shifted complex obtained from then

B = hikr (1) = hyr (A(D)).
Proof: Theorems 5.4 and 5.7, and Corollary 5.8. O

In other words, wher" is shellable, then thé-triangle remains invariant under the
operation of algebraic shifting. Moreover, the iterated Betti numbers can be computed
directly from the shelling of" itself.

In §8§2—3, we present background material on shifted complexes, near-cones, and alge-
braic shifting. We also show that shifted complexes are “iterated near-cones,” extending a
result of Bprner and Kalai.

We define iterated homology in 84, and prove basic results. We also show that our
definition of iterated homology is distinct from Kalai's, and that iterated homology is not
topological. In 85, we discuss generalized or nonpure shelling, and complete the proofs of
Theorems 1.1 and 1.2.
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In 86, we show how the depth bfcan be described in terms of its iterated Betti numbers.

2. Shifted complexes and near-cones

We start with basic definitions that are used throughout this papen hetafinite (abstract)
simplicial complex. We allow the possibility that is the empty simplicial compleg
consisting of no faces, or the simplicial comp|@} consisting of just the empty face, but we
do distinguish between these two cases. dingensionof F € AisdimF = |F|—1, and
thedimensionof A isdimA = max{dimF : F € A}. The maximal faces oA are called
facets andA is pure if all the facets have the same dimension. Agtdenote the set of
k-faces (i.e.k-dimensional faces) k. The f-vector of A is the sequencefo, ..., fg_1),
where fy = #A¢ andd — 1 = dim(A). The same notion ofc(A) and thef -vector will
apply to every finite collection of sets.

We call g (A) = dimk H'(A; K) theith reduced Betti number of A with respect to
the fieldK , whereH' (A; K) is theith reduced cohomology group with respect tdrhe
Betti sequenceof A is B(A) = (Bo, . .., Ba—1). Recall that over a field dimH'(A; K) =
dimk H; (A; K), so that the Betti sequence measures reduced homology as well as reduced
cohomology ofA.

Let[r] ={1,2,...,r}, foranyr > 1, and let [0]= ¢.

Definition If S={i; < --- < ix}andT = {ji < --- < |k} arek-subsets of integers,
then:

1. S<p T under thecomponentwise partial orderif i, < j, for all p.
2. S <. T under thdexicographic order if there is ag such thaiq < jq andip = j, for

p<gq.
Lexicographic order is a total order which refines the componentwise partial order.

Definition A collectionC of k-subsets of integers&hiftedif S <p T andT € C together
imply thatS € C. A simplicial complexA with vertices labelled by distinct integers is
shifted if Ay is shifted for evenk.

Shifted complexes are central to the development of iterated homology. We will need
the following lemma in 84 and 85.

Lemma 2.1 Let F be a face of a shifted complex If [r] C F,but FU{r + 1} € A,
then F is a facet ofA.

Proof: Assume thaf is not maximal; i.e., assume there is soinguch thatj ¢ F and
FU{j} € A. Thenj > r + 1, so, sinceA is shifted,F U {r + 1} € A, whichis a
contradiction. O
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Bjorner and Kalai showed in [4] that shifted complexes are near-cones, defined below.

Definition A near-conewith apexuy is a simplicial complexA satisfying the following
property: For each facE € A, if vg ¢ F andw € F then

(F —{w}) U{vo} € A. 1)
For every near-conA with apexuvy, let

B(A) ={F € A:F U{vg} & A},
and let

AN =lka(vg) ={F e A:vg&F, FU{vo} € A} (2)
If B(A) =@, thenA is acone

It follows from the definition ofA” andB(A) that
A = (vgx A") U B(A), 3)

wherex denotes topological join (s@ * A’ = A’ U {F U {vo}:F € A’}). BothA’ and
A’ U B(A) are subcomplexes af. Furthermore, everf € B(A) is maximal inA, so the
collection of subsets iB(A) forms an antichain.

We can use Eqg. (3) for an alternate definition of a near-coneALetB be a simplicial
complex such thaB is a set of maximal faces in’ U B (so A’ is a subcomplex an8 is
an antichain); them\ = (v * A’) U B is a near-cone (wherng is some new vertex not in
A’ U B).

Note, in particular, tha? and {¢} are near-cones and th@dt = vo* @ and {#} =
(vox @) U{@). If A is a near-cone with apex,, thenvy is one of the vertices of\,
unlessA = ¢ or {#}.

For a finite sequence of non-negative integers= («g, a1, ..., an), ana-wedge of
spheresis the wedge of; spheres of dimensian for eachi.

Proposition 2.2 Bjorner-Kalai [4, Theorem 4.3]) Let A be a near-cone. Thena is
homotopy equivalent to the(B(A))-wedge of spheres. In particular

Br(A) = fi(B(A)).

The observation that a shifted simplicial complexs a near-coné€l x A’) U B is crucial
to the results in [4]; equally, the following observations are crucial here.

Proposition 2.3 If A isanon-empty shifted simplicial complex onvertige2, 3, . . ., k},
then

(@) (Bjorner-Kalai[4]) A is a near-cone with apek soA = (1% A") U B;

(b) A’ is a shifted simplicial complex on verticg’ 3, ..., k}.
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Proof: (@) Use the definition of near-cone, Eq. (1), to show that a near-cone with apex
vo=1:1fwe F,butlg F,then(F — {w}) U{1} <p F; therefore(F — {w}) U {1} € A,
sinceF € A andA is shifted. (b) To show thad’ is shifted on{2, ..., k}, assume that
STC{2...,k},and thatS <p T € A’; we must then shovs € A’. By the definition
of A’, equation (2),T € A’ meansT U {1} € A. Further, 1¢ S T andS <p T imply
thatSU {1} <p T U {1} € A, so, sinceA is shifted,SU {1} € A. Then by Eq. (2) again,
Se A O

This means, for instance, thatAf = (1« A’) U B is shifted, them” = (2% A”) U By
for someB; andA”, and thus,

A=(1x((2xA")UBy)) UB.
More generally, we have the following corollary.

Corollary 2.4 Let A = A© be a shifted simplicial complex of dimension-dl. Then
we may inductively defina+d = (ADY e,

AD =(r+DxA")UB (0<r <d-1), 4)
for some B. Furthermore

A=1+%+Qx%@Bx(---(d—1) % ((ds* Bg)UBy_1) UBy_2---) UBy) U B;) U By,
(%)

where B = {#} = A@,

Proof: Proposition 2.3 shows, inductively, that®) is a near-cone with apex + 1,
allowing A“+Y to be defined by Eq. (4). Equation (5) then follows from iterating Eq. (4).
O

By Proposition 2.2, we have

B(AT) = fi(B). (6)

Iterated homology will give us an algebraic way to recover these Betti numbers, even when
the simplicial complex is not shifted.

Example We illustrate Corollary 2.4 for the shifted compléxin figure 1, whose facets
are (omitting commas and set brackets): 1034, 15, 16, 34, 7. The complexed’ = A®
andA” = A@ are pictured along with in figure 1.
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4 o4
1 2
3 *3
A A] AI I
Figure L A shifted complex.
r facets ofACtD B,
3 - ]
2 (] 4
1 3,4 5,6
0 23,24,5,6 34,7

We tabulate the dat§ (B;), indexing rows by and columns bx.

r.k -1 0 1 2
0 0 1 1 0
1 0 2 0

2 0 1

3 1

3. Algebraic shifting

Algebraic shifting transforms a simplicial complex into a shifted simplicial complex with
the samef -vector and Betti numbers. It also preserves many algebraic properties of the
original complex. Algebraic shifting was introduced by Kalai in [10]; our exposition is
summarized from [4] and included for completeness (see also [3, 12]). We start with the
exterior face ring.

Definition LetI" be a(d — 1)-dimensional simplicial complex with verticdés = {ey, ...,
ey} linearly orderede; < --- < e,. Let A(KV) denote the exterior algebra of the vector
spaceK V; it has aK -vector space basis consisting of all the monon@gls= g, A - - - Aq,,
whereS = {g, < --- < &,} € V (ande; = 1). Note thatA(KV) = Py_, AXKV) is



ITERATED HOMOLOGY OF SIMPLICIAL COMPLEXES 285

a gradedK -algebra, and thatX(KV) has basiges : |S| = k}. Let (I1)x be the subspace
of A¥*L(KV) generated by the basies : |S| = k+ 1, S¢T'}. Thenlr := @ﬂil(lr)k
is the homogeneous graded ideal/ofKV) generated byes : S ¢ T'}. Let AK[I'] :=
AL(KV)/(Ir)k. Then the graded quotient algebkgl’] := =2, AK[I'] = AKV)/Ip
is called theexterior face ring of " (overK).

The exterior face ring is the exterior algebra analogue to the Stanley-Reisner face ring of
a simplicial complex [14, 16]. See [17] and [8] for another use of the exterior face ring. For
x € KV, letX denote the image of in A[']. The set of alface-monomials{és: S € I'}
is aK -vector space basis fax[I'], so fi(I') = dimk (AK[T']).

We can use the exterior face ring to compute cohomology. # aie; + - -+ + ap€n,
thens; : A[I'] — A[I'] defined bys;(x) = f A x is aweighted coboundary operator
so-called because

n
8¢ (Eg) = fA €s = Z(xié A Bg = Z :E(xiégd(i}.
i=1 igS
SUfijel
Setting everyy; = 1 gives the usual coboundary operator. Ordinary Betti numbers may be
computed using weighted coboundary operat@is; (I') = dimg (kerd¢)x_1/(m&¢)k_1,
if f =oa161+ -+ ang, and everyy; is non-zero [4, pp. 289-290].

To create a “generic” basis in the following definition, Kt = K (c11, @12, . . ., ann)
be the field extension ové¢ by n? transcendentalse;j }1i j<n, algebraically independent
over K. We will considerA[I'] as being oveK instead ofK from now on. We are, in
effect, simply adjoining these;’s to our field of coefficients.

Definition Forl<i <n,let
n
fi = Zaijej s
=1
so{fy,..., f,} forms a “generic” basis ok V. Define fs:= fiy Ao Ay for S={ig <
-+ < iy} (and setfy; = 1). Let
A, K):={Sc[n]: fs&sparifr: R <_ S}}

be thealgebraically shifted complexobtained fromI". We will write A(T") instead of
A(T, K) when the field is understood to ke

Thek-subsets ofA(I") can be chosen by listing all thesubsets ofif] in lexicographic
order and omitting those that are in the span of earlier subsets on the list, mecard
with respect to thef -basis.

We collect here the basic facts we need about algebraic shifting.

Proposition 3.1(Kalai [4, Theorem 3.1]) LetI" be a simplicial complexand let K be a
field. ThenA = A(T, K) is a shifted simplicial complex such that



286 DUVAL AND ROSE

(@ fi() = fi(A)fori >0,
(b) Bi(I) = Bi(A) fori > 0 (Betti numbers with coefficients in)K
and A is independent of the numbering of the verticeF of

Proposition 3.2(Kalai [11, 84, Remark (4)]) If [ is shifted thenA(T') =T

Corollary 3.3 LetI" be a simplicial complex. Thefa(A(I")) = A(I").

4. lterated homology

BecauseA = A(T) is shifted, we may writeA = (1% A’) U B. We wish to find the Betti
numbers ofA’ from T" algebraically, without first constructing. This would in effect
extend Proposition 3.1(b) ta'.

To simplify notation, we will from now on usé in place of its corresponding coboundary
operatos; = f A -.

Consider the seA; = {F € A:1 € F}, which has a natural bijection with’. Alge-
braically, A, is a basis of the subspace ifm the space of -monomials that are multiples
of f. (Note that in [17] and [8]A’ is considered directly, by examining[I']/ ker f;.)
We need to find a coboundary operator to compute the cohomology groupsferf ive
cannot usef;, since it annihilates the entire subspace. Fortunately,fitkeare linearly
independent coboundary operators, so we mayfuses a coboundary operator. Thus, the
(k — 1)st cohomology group od\’ is given by

(ke 7, T2)/(iM iy 1, f2) = (x e fuA AT fo A x = 0)/(f2 A (fLA AK2[TD).
We continue this process to find the Betti numberaéf (r < d — 1). Algebraically,
{FeA:{l...,r} € F} (which has a natural bijection Wlth”)) is a basis of the image
of frj = fiA f2 A--- A fr. Tofind the Betti numbers of mfm, we can use the weighted

coboundary operatof,+1, which is linearly independent ofy, fo, ..., f,. We make the
following definitions and notation.

Definition If " is a simplicial complexand & r < k+ 1 < d, we define

Ak[r](r) = f~[r] A Ak_r[l"] =fiAn---AfA Ak_r[l"],
ZMrI(D) = (X € AN[FI(D) : froa A X = O},
froa AN ifr<k+1

k _
BT = ifr=k+1’

HX[r1(M) = ZX[r1(0)/BX[r (D).

Notice thatBX[r](I") = AK[r + 1](I"). The HX[r](I")’s are called theth iterated coho-
mology groupsof I'. We define theth iterated Betti numbers by

BXIr (D) = dim H¥[r](I).

Ther = 0 case is just ordinary reduced cohomology.
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Remark Kalai [12] defined another version of iterated cohomology. We distinguish
between the two definitions by putting bars over his. Assumg ¥ < n. First let
F =sparify, ..., f;}. Then define

ZIr (D) = {x e AMYT): fL A A £ AX =0},
B¥[r](I") = spariFr A A[I']},

and defineH¥[r](I") and B¥[r](I") in terms of BX[r](I") and Z¥[r](I") as above. We show
below, following Corollary 4.3, that the two iterated cohomology definitions are different.

Definition Let F be a set of positive integers. Define

init(F) =min{r >0:r ¢ F} — 1
=maxr >0:[r] € F}.

In other words, initF) measures the largest “initial segment'®Rnand is 0 if there is no
initial segment (i.e., # F).

Theorem 4.1 LetI be a simplicial complexand letA(I") denote the result of applying
algebraic shifting ta". Then

BX[r](I") = #{facetsF € A(T") : |[F| =k + 1, init(F) =r}

Proof: (Very similar to the proof of the =0 case by Bjrner and Kalai, Claim 2 in
[4, Theorem 3.1].) LeA = A(T") and let

Ar]={SeA:|S =k+1, [r] C S}

We claim that

AN[Ir1(D) = sparifs: Se Ar]}. @)

First, letA={Se (ﬂ]l) :[r] € S}; sinceA is initial with respect to lexicographic ordering,
{fs: Se Aylr]} is a basis for sparfs : Se A}. Now, if y € AK[r](I), theny = fjj A x
for somex € AX'[I']. Sayx = Y yr fr; then

y=frjAx= Z +yr frop € sparifs: Se A} = sparifs: Se Arl]}.
RO =4

Conversely, ifS € Ay[r], then fs = fi;; A fs ] € AX[r](T"), and Eq. (7) follows.
Now

dim Z¥[r](I") = dim AX[r](T") — dim B*[r](I),
and, by definition,

BX[r](I) = AX[r + 1)(I");
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therefore,

BY[r1(T) = dim ZX[r](T") — dim BX[r](I")
= (dim AX[r](I") = dim B**[r](I")) — dim B¥[r](I")
= (dim AX[r]() — dim A¥*![r 4 1)(T)) — dim AX[r + 1](I)
= #A[r] — #Akpa[r + 1] = #Ak[r +1].

Further,
#Ar +1] =#{Se Ar]:r+1€ S},
and, via the bijectiors <+ S = SU {r + 1},

#Akpa[r + 1] = #{S € Agqfr]lir +1€ S}
—#Se Ar]l:ir+1¢S, SU{r +1) € A},

SO
BYIr1(T) = #AW[r] —#{Se Afr]:ir +1¢ S, SU{r +1} € A}

—#{Se A(r]:r+1e S}
=#{Se A(r]: SU{r +1} € A}.

Finally note that if f{] € SandSuU {r + 1} ¢ A, then ini{S) = r and, by Lemma 2.1,
S must be maximal, completing the proof. O

Corollary 4.2 LetI" be a simplicial complex. Then
BAIr1(T) = BA[r](A)).
Proof: Using Theorem 4.1 twice and the stability of algebraic shifting (Corollary 3.3),

BX[r](I") = #{facetsF € A(T): |F| =k+ 1, init(F) =r}
= #{facetsF € A(A(I):|F| =k+ 1, init(F) =r}
= B Irl(A (). =

Corollary 4.3 LetT be a simplicial compledet A = A(I") be the result of applying
algebraic shifting td", and define B, ..., By as in Corollary2.4. Then

B = fu(By) = g4(A").
Proof: Itis easy to see by Eq. (5) that
fu(By) = #{facetskF ¢ A(T):|F| =K+ 1+, init(F) =r}.

Then apply Theorem 4.1 and Eq. (6). |
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Remark We can now show that Kalai's iterated cohomology is different from the one
presented here. In [12], Kalai gives the formula

BXIr1(M) =#{F e AD):|Fl=k+1, FN[r]=0, FU[r] ¢ A(D)}. (8)

To see that the definitions are essentially different, consider the following 1-dimensional
shifted simplicial complexes:

3 5 3 5

N

Ap = Ag =

It is easy to check, using Eq. (8), tha}[2](A1) = 1 butBY[2](A,) = 0; it is also easy to
check, using Theorem 4.1, thalt[r](A1) = B¥[r](A,) for all k,r. These complexes are
built by taking a cone over four vertices and adjoining three of the six possible remaining
edges in the only two ways to make shifted complexes.

On the other hand, it is not hard to verify that if a simplicial complexsi$did acyclic”
(i.e., all therth iterated homology groups vanish foe= 0, . .., s) under either definition,
then it is “s-fold acyclic” under the other definition (both conditions correspond to the
algebraically shifted complex being an $-fold cone”, i.e.,A = [s] * A’ for someA’).

Remark It is easy to see now that iterated homology is not topological, i.e., that two
simplicial complexes whose realizations are homeomorphic need not have the same iterated
Bettinumbers. Simply take two triangulations of the same space that use different hnumbers of
facets; the sum of the iterated Bettinumbers is equal to the number of facets, by Theorem 4.1,
so the two triangulations will have different sets of iterated Betti numbers.

5. lterated homology and non-pure shelling

A simplicial complex is shellable [5, 6] if it can be constructed by adding one facet at a
time, so that as each facEtis added, ainiquenew minimal face, called the restriction
faceR(F), is added. Equivalently, as each facet is added, it intersects the existing complex
(previous facets) in a union of codimension 1 faces. We take the following as the formal
definition.

Definition (Bjorner-Wachs [5]) A simplicial compleK is shellableif there is a map

R:{facetsofl'} —» T
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called therestriction map and an ordering of the faceks, ..., F; of I" such that:
r=JIRF).F]: and ©)
1<i<t
R(Fa) S Fh=>acx<h. (10)

Note that condition (10) implies that the union in Eq. (9) is disjoint. Téstriction
numbers are defined by

hy (") = #{facetsF : |[F| =k, |[R(F)| = j}
and are independent of the shelling order.

In [5], the numbersy ; are defined differently, and for all complexes (not just shellable
ones). Butthéy j's equal the restriction numbers for shellable complexes [5, Theorem 3.4],
and since we are only interested in thg;’s for shellable complexes, we will usg ; to
denote shelling restriction numbers.

The original definition of shellability also requirdd to be pure; we will refer to this
property aspure shellability. In [5, 6], Bjorner and Wachs dropped the assumption of
purity, and proved basic results about general shellability.

The restriction numbers of pure shellability drgI") = #{facetsF : |R(F)| = j}, so
h;(I") = hg,;(I") for a pure(d — 1)-dimensional shellable complex. It is well-known that
a pure(d — 1)-dimensional shellable complex has homology only in top dimension (i.e.,
Bk() = 0 fork < d — 1) and thatBq_1(I") = hq(I') = hyq(I"). Bjorner and Wachs
extended this to (generalized) shelling, with the following theorem.

Proposition 5.1(Bjorner-Wachs [5, Theorem 4.1))If T is shellablethen
Br-1(I") = hyk(T")
for any k.
Iterated homology provides an algebraic interpretation of the non-diagonal restriction num-
bers (i.e.h j ('), wherek # |), generalizing Proposition 5.1. (See Corollary 5.8.)

We collect here other useful facts about shelling.

Proposition 5.2 (Bjorner-Wachs [5, Theorem 2.6])If T" is a shellable then there is a
shelling R, ..., F; of I" such that

a<b=|Fl > [Fpl
This means that we can always construct a shellable complex using higher-dimensional

facets first and lower-dimensional facets last. Recall from 84 thatHhimeasures the
largest “initial segment” of a sdt.
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Proposition 5.3(Bjorner-Wachs [6, Corollary 11.4])If A is shifted then it is shellable
with restriction numbers given by

hy,j(A) = #{facetsF € A : |F| =Kk, init(F) =k — j}.

Theorem 5.4 LetT" be simplicial complexand let A(I") denote the result of applying
algebraic shifting ta". Then

B I(T) = hikr (A)).
Proof: Apply Theorem 4.1 and Proposition 5.3. O

Example We illustrate Proposition 5.3 for the shifted complein figure 1. The shelling
order is 123, 124, 15, 16, 34, 7. The restriction faces are given by the following table.

F 123 124 15 16 34 7

R(F) ? 4 5 6 34 7

We tabulate the data. ; (A), indexing rows by and columns byj.

K, j 0 1 2 3
0 0

1 0 1

2 0 1

3 1 1 0 0

The table ofhy j (A) data differs from the table ofi_1(B;) data at the end of §2 only in
whether each column starts in the top row or ends in the bottom row. This is a consequence
of Corollary 4.3 and Theorem 5.4, singeis shifted:

hikr (A) = BHrI(A) = 1 (Br).
Collapsing is a different kind of decomposition and is closely related to shelling.

Definition (Kalai [12, 84]) A faceR of a simplicial complexT” is calledfree if it is
included in a unique facdt. The empty set is a free face Bfif and only if I" is a simplex.
(This definition is slightly nonstandard in that facets are themselves fregR) # p and
|F| = q,thenwe saR s of type (p, ). A (p, q)-collapse steps the deletion front” of a
free face of typd p, q) and all faces containing it (i.e., the deletion of the inter®| F]).
Performing a collapse step may create new free facesllApsing sequencés a sequence
of collapse steps that redufeto the empty simplicial complex.
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The following lemmaisimplicitin [12, §4]. Itis also a special case of [7, Proposition 2.2],
where ‘S-partitions” are used intead of collapsing sequences, but it is easy to see the two
concepts are equivalent.

Lemma 5.5 If a collapsing sequence of a simplicial compléxonsists of the intervals
[R:, K], ..., [Rq, F1], and each Fis a facet in the original complek, then R, ..., F is
a shelling order of". Furthermore the restriction map of this shelling is given by setting
R(F) =R.

Converselyif Gy, ..., G is a shelling order of a simplicial complédx, then

[R(G), Gy, ..., [R(Gy), G1]
is a collapsing sequence bf

Proof: The collapsing sequence and definitionRfF) give the decomposition df,
Eq. (9); eachR(Fj) being a free face at thidh collapse establishes condition (10). The
important assumption here is that edghis a facet;everycollapsing sequence gives a
decomposition that satisfies (9) and (10), but the tops of the intervals are not necessarily
facets.

The proof of the converse is similar: Condition (10) ensures that B&Gh) is free and
Eq. (9) shows that the sequence of collapses rediiceshe empty complex. O

Proposition 5.6 (Kalai [12, Theorem 4.2]) If I'” is obtained froml" by a collapse step
thenA(I') is obtained fromA (I") by a collapse step of the same type.

Theorem 5.7 If T is a shellable simplicial complexand A(I") denotes the result of
applying algebraic shifting t@", then

hij () = hi j(A()).
Proof: Let the shelling order of beGy, ..., G;. By Proposition 5.5,
[R(G1), Gt], ..., [R(G1), Gi]

is a collapsing sequence Bf and Proposition 5.6 then implies thatI") has a collapsing
sequence

[R R, ... [Re, Fi]
such that
IR =|R(Gi)| and |F|=|G;l
for all i. To apply Proposition 5.5 again to show tha¢(l") has the desired shelling, we

must show that everf; is a facet inA(T'); it suffices to show thak, is not contained in
Fy, for anya # b.
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If a > b, then at the collapse step whEgis removed as a maximal face of the remaining
complex,Fy, is still present, sd; ¢ F,. On the other hand, by Proposition 5.2, we may
assume that i& < b, then

|Ga| = |Gb|7
o]
[Fal = [Gal > [Gp| = [Fol,
andF, ¢ Fy.
Thus evenyf; is a facet, and therefore, by Proposition &5, . . ., F; is a shelling order
of A(") with
IR(F)I =R =|R(Gi)| and |F]|=IGil
foralli, sohy j(A(I)) = hy j(I). O

We can now prove the desired generalization of Proposition 5.1.
Corollary 5.8 If T is a shellable simplicial compleihen
BN = hikr (D).

Proof: By Theorems 5.4 and 5.7,

BN = higr (AD)) = hycer (D). O
6. Depth
A sequencexg, .. ., Xg) of elements of a rindR is aregular sequenceon R if eachx; is
not a zero divisor on the quotie/(xy, ..., X_1). Thedepth of a ring is the length of

the longest regular sequence Bnand the depth of a simplicial compléxis defined to

be the depth oK[T'], the face ring ofl" over K (see [16] for more details). Smith [15]
and Munkres [13] have described the depttran terms of combinatorial and topological
properties of". In[1] and [2, 8§82, 3], Byiner gives a description of the depth of a shellable
complexI" in terms of the shelling restriction numbérs; (I'). Using Theorem 5.4 we
describe depth in terms of iterated homology.

Theorem 6.1 LetI" be a simplicial complexhendepthI") = k if and only if
(@) B'[r|(I') =0fori <k; and
(b) BX[r](T") # O for somer.

Proof: Using [15, Theorem 4.8] (see also Hibi [9]), we know that dépyh= k if and
only if k is the largest integer such that tkeskeleton off” is Cohen-Macaulay. From [12,
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Theorem 5.3], this is equivalent kdbeing the largest integer such that Kigkeleton of the
shifted complexA (T) is pure. This means that all facets&{I") have dimension at least
k, and there exists a facet of dimension exaktlyrhus, in any shelling oA(T"), we have
hi j (A(T")) = 0 whenevei <k, buthy,1j(A(I")) # 0 for somej. By Theorem 5.4, this
is equivalent tg8'[r](I") = 0 if i < k, for anyr, but 4[r](I") # 0, for somer. )
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