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Abstract. Using maps due to Ozeki and BeuEnguehard between graded spaces of invariants for certain finite
groups and the algebra of modular forms of even weight we equip these invariants spaces with a differential
operator which gives them the structure of a Rankin-Cohen algebra. A direct interpretation of the Rankin-Cohen
bracket in terms of transvectant for the grdsig2, C) is given.
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1. Introduction

Classically, there are many interesting connections between differential operators and the
theory of elliptic modular forms and many interesting results with generalizations have
been explored (see [3, 11, 15]). For instance, in 1975 H. Cohen constructed certain co-
variant bilinear operators which he used to obtain modular forms with interesting Fourier
coefficients [4]. Later, these operators were called Rankin-Cohen operators by D. Zagier
who studied the algebraic relations they satisfy [15]. Futhermore, Rankin-Cohen operators
appear as the various terms in the expansion of the composition of two symbols in a certain
symbolic calculus associated wiL(2, R) [14]. On the other hand, there are well-known
maps [2, 1, 10] between algebras of homogeneous invariants of certain finite groups graded
by the degree and the algebra of modular forms for the full modular group graded by the
weight; this is related to coding constructions of lattices (see [5, 6, 12]), a binary (resp.
ternary) code of length yielding a modular form of weight/2 (respn). In that context it
was natural to look for a differential operator acting on polynomials which would attach to
a pair of invariant polynomials of respective degmeen an invariant polynomial of degree
m+ n+4v, in the binary codes case or+ n + 2v in the ternary codes case.

This program is achieved in the present article by using an analogue of the derivation of
order 2in[15, Eq. (33)]. In each algebra of invariants considered we introduce a differential
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operator which sends invariants of degreen invariants of degree + 4, orn + 2 in the
ternary case.

Independently of these considerations an explanation of the analogy between Rankin-
Cohen brackets and transvectants of invariant theory already noticed in [15] is given. A
deep analogy—different from the BE maps—between modular forms and homogeneous
polynomials is emphasized. Homogeneous polynomials in two variables transform under
the action ofSL(2, C) like modular forms of weight- n

2. Invariants and modular forms

First we recall some basic facts and notations on modular forms. Déngéte, E4(7),
Eg(7) the Eisenstein series of order£ 6 and the cusp formA () of weight 12 as

Ex(1) =1—24) o1(mq™,

m=1
Ea(t) = 14240)  o3(m)q"”
m=1
Ee(r) = 1-504) os(m)q"™,
m=1
Am)y=q]]a-qm*

m=1

where, as usual = exp(2zit), and the sum of " power of divisor function is; (m) :=
Zd|m d". As is well-knownE,4, Eg are modular forms of weight 4 and 6 big is not. The
following result is due to Hecke.

Theorem1 The algebra of modular forms of weight multipleda$ C[ E4, A]. The algebra
of modular forms of even weight® E4, Es].

Next, we define the invariant counterpart of the preceding situation. If a finite group
G acts by linear substitution o8[x, y] then we shall denote bg[x, y]® the algebra of

invariant homogeneous polynomials in the variabtey, and byC[x, y]¢ the degree
part of the preceding. Lé¥l,, N, denote the following 2 by 2 matrices

e )

(o)

and

No



RANKIN-COHEN BRACKETS AND INVARIANT THEORY 7

These two matrices generate a matrix gréiyof order 192. There is a subgro@ < H,
of index 2 defined as the kernel of the following linear character defined on the generators
of Hy as

x(Mz) = -1
x(N2) =1

Define the following invariants for the group/,, N,) of degree 8 and 24, respectively:
Yg = X8 + 14x*y* + y8,
and
20 = Xy (x* — yH*.
It is well-known and easy to check by computer that
CIx. y1™ = C[yss, vad).
Similarly, we have
Clx. y1°* = Cl¥s. ke2].
wherek;, is an invariant introduced by Klein [6]
kiz = x*2 — 33(x8y* + x4y®) + y*2.
The following result is due to BraiEnguehard [2].
Theorem 2 The map
¢1:C[s, v24] — C[E4, A]
defined by
$1(N(Ys, v24)) = h(Es, A)
is an algebra isomorphism.

The range of this map was extended recently by Ozeki [10] to the ring of even weight
modular forms.

Theorem 3 The map

¢2 . C[rs, k12] — C[Ea, Eg]
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defined by
$2(h(Ys, ki2)) = h(E4, Es)
is an algebra isomorphism.

A similar result also due to BraiEnguehard [2] uses the gro@a := (Ms, N3) where

=Gl )

N—<1 0)
3= o)

with j a complex cubic root of unity. It turns out th&; is abstractly isomorphic to
SLy(F3) [6]. Primary invariants foGs are

and

Vs = X 4 8xy°,
as well as

ke := x® — 20x3y® — 8y°.
Itis known that

Clx, Y1 = C[a, ke].
Theorem 4 The map

¢3 1 C[Y4, ke] — C[E4, Ee]
given by

$3(N(Ya, ke)) = h(E4, Eg)

is an algebra isomorphism.

3. Rankin-Cohen brackets

We begin by recalling the setting of [15]. Lét(z) (resp.g(r)) denote a modular form of
weightk (respl). Let D be the differential operat«)rf—q. Consider, following [15, (21) p. 63]
the homogeneous polynomial of degrei two variablesX, Y

H 1 XY = Y (- (” e 1) <"+: - 1)xrvs.

r+s=v
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The Rankin-Cohen bracket of indexcan then be expressed as

[f, g]v = Hv(k’ I; Drl’ Drz)( f (Tl)g(TZ)) | T1=T2=T
In view of the maps defined in the preceding section it is natural, from a categorical stand-
point, to define the Rankin-Cohen bracket of two polynomials as the preimage of the RC

bracket of their respective images. Specifically, two invaridhtd of degree R and 2
being given we define their RC bracket as

(K, L), 1= ¢; (4§ (K), ¢ (L),
for j = 2,3. In order to treat the two groups,, Gz in a unified manner we view the
respective invariants as polynomials in two variab@sR say which will be the two
generators of the invariant algebra namely the paé; ki2), (¥4, ke).
First note that, by the modularity of the Rankin-Cohen brackét gf are modular forms

of even weight then so isf[ g], for all integersn. Therefore [f, g], will be in C[E4, Eg].
It is known that on that space the derivatibracts by the formula [15, (32)]

k

wherek is the weight off and§(f) is a derivation of order 2 on the algebtdE,, Eg].
DefineD the invariant analogue of the derivatiémas

With this notation indeed we have fare C[x, y]fj the relation
8(¢j(h)) = ¢;(D(h))
for j =1, 2. We are now in a position to state the main result of this section.

Theorem5 The Rankin-Cohen bracket for@nvariants K, L of respective degreeX, 2|
(or G invariants of degree ) is given by

k-1 | —1
<K,L>u=2(”+S )(”r )frgs

r+s=v

where f and g are defined recursively by the recurrences

fria=D(fy) — %r(r k=D f
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and

Os+1 = D(Qs) — 1—345(5 +1—1D0gs1

with initial conditions § = K, go = L.

Proof: Follows by the preceding discussion from [15, Prop. 1] witk= E,/12, ® =
—E4/144. O

This somewhat abstract formulation can be made more explicit in each of the two cases
at hand by going back to variablesy. We will give detailed calculations fd&, and a
sketch forGs.

Corollary1  The Rankin-Cohen bracket of ordefor K e C[x, y]5?, and L € C[x, y]5?
is a polynomial inC[Xx, y]26|f+2,+4v, given by the expression in Theor&where

d

1 4 4

ad
5x* —yhH— ).
+y6x* -y 8y>
Proof: Leth(x, y) be an arbitrary invariant i€[x, y]®2. To expres®D in variablesx, y
we writeh(x, y) = h(Q, R) and differentiate on both sides to get
ah/ax dx+ dh/d dy = 9h/0Q dQ+ 9h/oR dR

After expressinglx, dy as a function ofiQ, dR and identifying coefficients adlQ, dR on
both sides we get

J3ah/3Q = ah/ax dR/dy — dh/dy IR/dx
Joh/aR = ah/ay aQ/ax — ah/ax aQ/dy

whereJ = dQ/dx dR/dy — 9Q/dy dR/dx, the determinant of the Jacobian matrix for
the change of variables. For convenienceBet= Q% — R2. Then it can be shown, after
plugging the preceding expressions into its definition that the derivation operator can be
expressed as:

D = (3F/dy 3/ax — IF /ax 3/dy)/6J

Clearly this part of the calculation does not depend on the special BE map under consider-
ation. Now we specialize tQ = g, R = ki, to get

J = —17283y3 (x* — yh3,
and

F = 108*y*(x* — yh?.
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Therefrom we obtain

aF Jox = 4323y*(5x* — yH(x* — yH?
oF /oy = 432X4y3(x* — By (x* — yh3. O

For instance this yield®(yg) = —ki2/3 andD(kip) = —"L;Z. The analogue of the
preceding foiG3 is:

Corollary 2  The Rankin-Cohen bracket of ordefor K e C[x, y]*, and L € C[x, y]~*

is a polynomial inC[x, y]ffjwu, given by the expression in Theor&where

D= %((—ﬁ + 4y3)%( + 3x%y aiy)

Proof: We specialize the preceding @ = v, andR = kg to get
J = —384y%(x3 — y3)2,

and
F =64y3(x3 — y%)3.

Therefore we obtain

aF /ox = 576x2y3(x® — y3)?
oF /oy = 192y%(x3 — 4y®)(x® — y3)2. O

For instance this yield®(y4) = —Kg/3.

4. Transvectants

The relationship between transvectants and Rankin Cohen brackets is stated as an open
problemin [15, §7] and as immediate in [7, p. 102]. In this section we make this connection
explicit. Recall from [7, p. 99] Cayley’s so-calle@ process:

Oy, 0
Q= det( o >
aXz a)’Z
a second order differential operator in 4 variablgsy, X2, y». To quote [13] “this operator

plays the role foGL(n, C) of the Reynolds operator for finite groups” (in our case 2).
Ther!" transvectant of twéunctions UandV is defined in [7, (3.99),p. 99) as

(U, V) 1= Q" (U (X1, y)V (X2, ¥2)) | x=x. yi=y
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According to [15, p. 63] the polynomiald, (k, |; X, Y) admit the alternative expression

1 0 X n
Ha(k, I X, Y) := m(det( ; Y)) EIY e
: n

Plugging these two expressions into the definition of the Rankin-Cohen brackets we
obtain

3

1
[f.dln= = (U, V)y
n: x=t,y=1

whereU, V are defined as a function df g as

Ux,y) =y 1 x)
V(x,y) =y gx)

With these notations in mind we obtain a new proof of the modularity of the Rankin-Cohen
bracket.

Theorem 6 Let f, g be modular forms of weight kfor some groud” € SL(2, Z). Then
for any integer n> 0 we have thaf f, g], is a modular form of weight k-1 + 2n for I.

Proof: The relative invariance by follows by noticing like in [7, Proof of Thm 3.45]
the equivariance of2 under linear change of variables. The computation of weight of the
forms comes from the fact that the operabincreases the weight by 2 O

The fact that the weight of the Rankin-Cohen bracket of two forrkstid + 2n instead
of k + 1 — 2n for the transvectant of orderof two homogeneous polynomials of degrees
k, | is simply explained if one compares the functional equation of modular forms and the
action of(‘;‘g) € SL(2, C) on an homogeneous polynomidl of degreen in variablesx, y
given by [7, Eq. 3.9]

H((@ap+b)/(cp+d)) = (cp+d)""H(p),

with p = x/y. Formally this is the transformation law of a modular form of weigtnt.

The weight of a RC bracket is therefork — | — 2r = —(k + 1 + 2r) as it should. This
suggests an alternative formula for the Rankin-Cohen bracket: the projective formula for
transvectant as in [7, Thm 3.46].

Theorem7 Let f, g be modular forms of weightsm, —n. Then the Rankin-Cohen bracket
of orderr is

r (r)(m—k)l (n—r+k)!Dr7kakg’

_1 k
[f,g]r_r—|2(—1) k/(m-=r) (n—r)!

* k=0

where for an integer N we set-N)! = (—1)NNLI.
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Proof: The proof follows after some algebra from [15, (1)]:

(VK= v+ -1\
[f,g]V=Z(—1)< s )( . )Dng,

r+s=v

by lettingn=r,r =k, s=r —k, k=-m, | = —n. O

5. Conclusion

Since the times of Klein [6] the analogies between invariant theory and modular forms have
emerged. We explore these similarities for Rankin-Cohen brackets. Klein's approach was
developped in modern times by Bmanhd Enguehard [2] in relation with coding theory.
This aspectis reflected in the first part of the paper. In 84 we develop another approach where
a polynomial of degred transforms under the action 81(2, C) like a modular form of
weight—d. This explains the similarity between Rankin-Cohen brackets and transvectants
as observed in [15].
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