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Abstract. Using maps due to Ozeki and Brou´e-Enguehard between graded spaces of invariants for certain finite
groups and the algebra of modular forms of even weight we equip these invariants spaces with a differential
operator which gives them the structure of a Rankin-Cohen algebra. A direct interpretation of the Rankin-Cohen
bracket in terms of transvectant for the groupSL(2,C) is given.
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1. Introduction

Classically, there are many interesting connections between differential operators and the
theory of elliptic modular forms and many interesting results with generalizations have
been explored (see [3, 11, 15]). For instance, in 1975 H. Cohen constructed certain co-
variant bilinear operators which he used to obtain modular forms with interesting Fourier
coefficients [4]. Later, these operators were called Rankin-Cohen operators by D. Zagier
who studied the algebraic relations they satisfy [15]. Futhermore, Rankin-Cohen operators
appear as the various terms in the expansion of the composition of two symbols in a certain
symbolic calculus associated withSL(2,R) [14]. On the other hand, there are well-known
maps [2, 1, 10] between algebras of homogeneous invariants of certain finite groups graded
by the degree and the algebra of modular forms for the full modular group graded by the
weight; this is related to coding constructions of lattices (see [5, 6, 12]), a binary (resp.
ternary) code of lengthn yielding a modular form of weightn/2 (resp.n). In that context it
was natural to look for a differential operator acting on polynomials which would attach to
a pair of invariant polynomials of respective degreem, n an invariant polynomial of degree
m+ n+ 4ν, in the binary codes case orm+ n+ 2ν in the ternary codes case.

This program is achieved in the present article by using an analogue of the derivation of
order 2 in [15, Eq. (33)]. In each algebra of invariants considered we introduce a differential
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operator which sends invariants of degreen on invariants of degreen+ 4, or n+ 2 in the
ternary case.

Independently of these considerations an explanation of the analogy between Rankin-
Cohen brackets and transvectants of invariant theory already noticed in [15] is given. A
deep analogy—different from the BE maps—between modular forms and homogeneous
polynomials is emphasized. Homogeneous polynomials in two variables transform under
the action ofSL(2,C) like modular forms of weight− n

2. Invariants and modular forms

First we recall some basic facts and notations on modular forms. DenoteE2(τ ), E4(τ ),

E6(τ ) the Eisenstein series of order 2, 4, 6 and the cusp form1(τ) of weight 12 as

E2(τ ) = 1− 24
∞∑

m=1

σ1(m)q
m,

E4(τ ) = 1+ 240
∞∑

m=1

σ3(m)q
m

E6(τ ) = 1− 504
∞∑

m=1

σ5(m)q
m,

1(τ) = q
∞∏

m=1

(1− qm)24

where, as usualq = exp(2π i τ), and the sum ofr th power of divisor function isσr (m) :=∑
d|m dr . As is well-knownE4, E6 are modular forms of weight 4 and 6 butE2 is not. The

following result is due to Hecke.

Theorem 1 The algebra of modular forms of weight multiple of4 isC[E4,1].The algebra
of modular forms of even weight isC[E4,E6].

Next, we define the invariant counterpart of the preceding situation. If a finite group
G acts by linear substitution onC[x, y] then we shall denote byC[x, y]G the algebra of
invariant homogeneous polynomials in the variablesx, y, and byC[x, y]G

k the degreek
part of the preceding. LetM2, N2 denote the following 2 by 2 matrices

M2 = 1√
2

(
1 1

1 −1

)
and

N2 =
(

1 0

0 i

)
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These two matrices generate a matrix groupH2 of order 192. There is a subgroupG2 ≤ H2

of index 2 defined as the kernel of the following linear character defined on the generators
of H2 as

χ(M2) = −1

χ(N2) = 1

Define the following invariants for the group〈M2, N2〉 of degree 8 and 24, respectively:

ψ8 = x8+ 14x4y4+ y8,

and

ν24 = x4y4(x4− y4)4.

It is well-known and easy to check by computer that

C[x, y]H2 = C[ψ8, ν24].

Similarly, we have

C[x, y]G2 = C[ψ8, k12],

wherek12 is an invariant introduced by Klein [6]

k12 := x12− 33(x8y4+ x4y8)+ y12.

The following result is due to Brou´e-Enguehard [2].

Theorem 2 The map

φ1 : C[ψ8, ν24] → C[E4,1]

defined by

φ1(h(ψ8, ν24)) = h(E4,1)

is an algebra isomorphism.

The range of this map was extended recently by Ozeki [10] to the ring of even weight
modular forms.

Theorem 3 The map

φ2 : C[ψ8, k12] → C[E4, E6]
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defined by

φ2(h(ψ8, k12)) = h(E4, E6)

is an algebra isomorphism.

A similar result also due to Brou´e-Enguehard [2] uses the groupG3 := 〈M3, N3〉 where

M3 = 1√
3

(
1 2

1 −1

)
and

N3 =
(

1 0

0 j

)
,

with j a complex cubic root of unity. It turns out thatG3 is abstractly isomorphic to
SL2(F3) [6]. Primary invariants forG3 are

ψ4 := x4+ 8xy3,

as well as

k6 := x6− 20x3y3− 8y6.

It is known that

C[x, y]G3 = C[ψ4, k6].

Theorem 4 The map

φ3 : C[ψ4, k6] → C[E4, E6]

given by

φ3(h(ψ4, k6)) = h(E4, E6)

is an algebra isomorphism.

3. Rankin-Cohen brackets

We begin by recalling the setting of [15]. Letf (τ ) (resp.g(τ )) denote a modular form of
weightk (resp.l ). Let D be the differential operatorq d

dq . Consider, following [15, (21) p. 63]
the homogeneous polynomial of degreen in two variablesX,Y

Hν(k, l ; X,Y) :=
∑

r+s=ν
(−1)r

(
ν + k− 1

s

)(
ν + l − 1

r

)
Xr Ys.
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The Rankin-Cohen bracket of indexν can then be expressed as

[ f, g]ν := Hν(k, l ; Dτ1, Dτ2)( f (τ1)g(τ2)) | τ1=τ2=τ

In view of the maps defined in the preceding section it is natural, from a categorical stand-
point, to define the Rankin-Cohen bracket of two polynomials as the preimage of the RC
bracket of their respective images. Specifically, two invariantsK , L of degree 2k and 2l
being given we define their RC bracket as

〈K , L〉ν := φ−1
j ([φ j (K ), φ j (L)]ν),

for j = 2, 3. In order to treat the two groupsG2,G3 in a unified manner we view the
respective invariants as polynomials in two variablesQ, R say which will be the two
generators of the invariant algebra namely the pair(ψ8, k12), (ψ4, k6).

First note that, by the modularity of the Rankin-Cohen bracket iff, g are modular forms
of even weight then so is [f, g]n for all integersn. Therefore [f, g]n will be in C[E4, E6].
It is known that on that space the derivationD acts by the formula [15, (32)]

D f = k

12
E2 f + δ( f )

wherek is the weight of f andδ( f ) is a derivation of order 2 on the algebraC[E4, E6].
DefineD the invariant analogue of the derivationδ as

D := −R

3

∂

∂Q
− Q2

2

∂

∂R

With this notation indeed we have forh ∈ C[x, y]
G j
n the relation

δ(φ j (h)) = φ j (D(h))

for j = 1, 2. We are now in a position to state the main result of this section.

Theorem 5 The Rankin-Cohen bracket for G2-invariants K, L of respective degrees2k, 2l
(or G3 invariants of degree k, l ) is given by

〈K , L〉ν =
∑

r+s=ν

(
ν + k− 1

s

)(
ν + l − 1

r

)
fr gs

where fr and gs are defined recursively by the recurrences

fr+1 = D( fr )− Q

144
r (r + k− 1) fr−1
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and

gs+1 = D(gs)− Q

144
s(s+ l − 1)gs−1

with initial conditions f0 = K , g0 = L.

Proof: Follows by the preceding discussion from [15, Prop. 1] withφ = E2/12, 8 =
−E4/144. 2

This somewhat abstract formulation can be made more explicit in each of the two cases
at hand by going back to variablesx, y. We will give detailed calculations forG2 and a
sketch forG3.

Corollary 1 The Rankin-Cohen bracket of orderν for K ∈ C[x, y]G2
2k , and L∈ C[x, y]G2

2l

is a polynomial inC[x, y]G2
2k+2l+4ν, given by the expression in Theorem5 where

D = 1

24

(
x(5y4− x4)

∂

∂x
+ y(5x4− y4)

∂

∂y

)
.

Proof: Let h(x, y) be an arbitrary invariant inC[x, y]G2. To expressD in variablesx, y
we writeh(x, y) = ĥ(Q, R) and differentiate on both sides to get

∂h/∂x dx+ ∂h/∂ dy= ∂ ĥ/∂Q dQ+ ∂ ĥ/∂R dR.

After expressingdx, dy as a function ofdQ, dRand identifying coefficients ofdQ, dRon
both sides we get

J∂ ĥ/∂Q = ∂h/∂x ∂R/∂y− ∂h/∂y ∂R/∂x

J∂ ĥ/∂R = ∂h/∂y ∂Q/∂x − ∂h/∂x ∂Q/∂y

whereJ := ∂Q/∂x ∂R/∂y − ∂Q/∂y ∂R/∂x, the determinant of the Jacobian matrix for
the change of variables. For convenience setF := Q3 − R2. Then it can be shown, after
plugging the preceding expressions into its definition that the derivation operator can be
expressed as:

D = (∂F/∂y ∂/∂x − ∂F/∂x ∂/∂y)/6J

Clearly this part of the calculation does not depend on the special BE map under consider-
ation. Now we specialize toQ = ψ8, R= k12 to get

J = −1728x3y3(x4− y4)3,

and

F = 108x4y4(x4− y4)4.
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Therefrom we obtain

∂F/∂x = 432x3y4(5x4− y4)(x4− y4)3

∂F/∂y = 432x4y3(x4− 5y4)(x4− y4)3. 2

For instance this yieldsD(ψ8) = −k12/3 andD(k12) = −ψ2
8

2 . The analogue of the
preceding forG3 is:

Corollary 2 The Rankin-Cohen bracket of orderν for K ∈C[x, y]G3
k , and L∈ C[x, y]G3

l

is a polynomial inC[x, y]G3
k+l+2ν , given by the expression in Theorem5 where

D = 1

12

(
(−x3+ 4y3)

∂

∂x
+ 3x2y

∂

∂y

)
.

Proof: We specialize the preceding toQ = ψ4 andR= k6 to get

J = −384y2(x3− y3)2,

and

F = 64y3(x3− y3)3.

Therefore we obtain

∂F/∂x = 576x2y3(x3− y3)2

∂F/∂y = 192y2(x3− 4y3)(x3− y3)2. 2

For instance this yieldsD(ψ4) = −k6/3.

4. Transvectants

The relationship between transvectants and Rankin Cohen brackets is stated as an open
problem in [15, §7] and as immediate in [7, p. 102]. In this section we make this connection
explicit. Recall from [7, p. 99] Cayley’s so-calledÄ process:

Ä := det

(
∂x1 ∂y1

∂x2 ∂y2

)
a second order differential operator in 4 variablesx1, y1, x2, y2. To quote [13] “this operator
plays the role forGL(n,C) of the Reynolds operator for finite groups” (in our casen = 2).
Ther th transvectant of twofunctions UandV is defined in [7, (3.99),p. 99) as

(U,V)r := Är (U (x1, y1)V(x2, y2)) | xi=x, yi=y
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According to [15, p. 63] the polynomialsHn(k, l ; X,Y) admit the alternative expression

Hn(k, l ; X,Y) := 1

n!

(
det

(
∂ξ X

∂η Y

))n

(ξn+k−1ηn+l−1) | ξ=η=1

Plugging these two expressions into the definition of the Rankin-Cohen brackets we
obtain

[ f, g]n = 1

n!
(U,V)n

∣∣∣∣
x=τ,y=1

,

whereU,V are defined as a function off, g as

U (x, y) := yn+k−1 f (x)

V(x, y) := yn+l−1g(x)

With these notations in mind we obtain a new proof of the modularity of the Rankin-Cohen
bracket.

Theorem 6 Let f, g be modular forms of weight k, l for some group0 ⊆ SL(2,Z). Then
for any integer n≥ 0 we have that[ f, g]n is a modular form of weight k+ l + 2n for 0.

Proof: The relative invariance by0 follows by noticing like in [7, Proof of Thm 3.45]
the equivariance ofÄ under linear change of variables. The computation of weight of the
forms comes from the fact that the operatorD increases the weight by 2. 2

The fact that the weight of the Rankin-Cohen bracket of two forms isk+ l + 2n instead
of k + l − 2n for the transvectant of ordern of two homogeneous polynomials of degrees
k, l is simply explained if one compares the functional equation of modular forms and the
action of( ab

cd
)∈SL(2,C) on an homogeneous polynomialH of degreen in variablesx, y

given by [7, Eq. 3.9]

H((ap+ b)/(cp+ d)) = (cp+ d)−n H(p),

with p = x/y. Formally this is the transformation law of a modular form of weight−n.
The weight of a RC bracket is therefore−k − l − 2r = −(k + l + 2r ) as it should. This
suggests an alternative formula for the Rankin-Cohen bracket: the projective formula for
transvectant as in [7, Thm 3.46].

Theorem 7 Let f, g be modular forms of weights−m,−n.Then the Rankin-Cohen bracket
of order r is

[ f, g]r = 1

r !

r∑
k=0

(−1)k
(

r

k

)
(m− k)!

(m− r )!

(n− r + k)!

(n− r )!
Dr−k f Dkg,

where for an integer N we set(−N)! = (−1)N N!.
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Proof: The proof follows after some algebra from [15, (1)]:

[ f, g]ν =
∑

r+s=ν
(−1)r

(
ν + k− 1

s

)(
ν + l − 1

r

)
Ds f Dr g,

by lettingn = r, r = k, s= r − k, k = −m, l = −n. 2

5. Conclusion

Since the times of Klein [6] the analogies between invariant theory and modular forms have
emerged. We explore these similarities for Rankin-Cohen brackets. Klein’s approach was
developped in modern times by Brou´e and Enguehard [2] in relation with coding theory.
This aspect is reflected in the first part of the paper. In §4 we develop another approach where
a polynomial of degreed transforms under the action ofSL(2,C) like a modular form of
weight−d. This explains the similarity between Rankin-Cohen brackets and transvectants
as observed in [15].
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