ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Quotients of Poincaré Polynomials Evaluated at -1

Oliver D. Eng

DOI: 10.1023/A:1008771617131

Abstract

For a finite reflection group W and parabolic subgroup W J, we establish that the quotient of Poincaré polynomials \frac{W(t)}{W_J(t)}, when evaluated at t=-1, counts the number of cosets of W J in W fixed by the longest element. Our case-by-case proof relies on the work of Stembridge (Stembridge, Duke Mathematical Journal, 73 (1994), 469-490) regarding minuscule representations and on the calculations of \frac W( - 1 ) W J ( - 1 ) {\frac{{W\left( { - 1} \right)}}{{W_J \left( { - 1} \right)}}} of Tan (Tan, Communications in Algebra, 22 (1994), 1049-1061).

Pages: 29–40

Keywords: reflection groups; Poincaré polynomials; longest element; minuscule representations

Full Text: PDF

References

1. J.E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, New York, 1990.
2. J.E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge University Press, Cambridge,
1992. ENG
3. R.A. Proctor, “Bruhat lattices, plane partition generating functions, and minuscule representations,” European Journal of Combinatorics 5 (1984), 331-350.
4. J.R. Stembridge, “On minuscule representations, plane partitions, and involutions in complex Lie groups,” Duke Mathematical Journal 73 (1994), 469-490.
5. J.R. Stembridge, “Canonical bases and self-evacuating tableaux,” Duke Mathematical Journal 82 (1996), 585-606.
6. L. Tan, “On the distinguished coset representatives of the parabolic subgroups in finite Coxeter groups,” Communications in Algebra 22 (1994), 1049-1061.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition