A Statistic on Involutions

RAJENDRA S. DEODHAR MURALI K. SRINIVASAN Department of Mathematics, Indian Institute of Technology, Bombay, Powai, Mumbai 400076, India

Received December 14, 1998; Revised April 26, 2000

Abstract. We define a statistic, called *weight*, on involutions and consider two applications in which this statistic arises. Let I(n) denote the set of all involutions on $[n] (= \{1, 2, ..., n\})$ and let F(2n) denote the set of all fixed point free involutions on [2n]. For an involution δ , let $|\delta|$ denote the number of 2-cycles in δ . Let $[n]_q = 1 + q + \dots + q^{n-1}$ and let $\binom{n}{k}_q$ denote the *q*-binomial coefficient. There is a statistic wt on I(n) such that the following results are true.

(i) We have the expansion

$$\binom{n}{k}_{q} = \sum_{\delta \in I(n)} (q-1)^{|\delta|} q^{\operatorname{wt}(\delta)} \binom{n-2|\delta|}{k-|\delta|}.$$

(ii) An analog of the (strong) Bruhat order on permutations is defined on F(2n) and it is shown that this gives a rank- $2\binom{n}{2}$ graded EL-shellable poset whose order complex triangulates a ball. The rank of $\delta \in F(2n)$ is given by wt(δ) and the rank generating function is $[1]_q[3]_q \cdots [2n-1]_q$.

Keywords: permutation statistics, q-binomial coefficient, Bruhat order, involutions, fixed point free involutions

1. Introduction and statement of results

In this paper we define a statistic on involutions and consider two applications in which this statistic arises.

An *arc* or a 2-*cycle* is a set consisting of two distinct positive integers. We write an arc as [i, j], with i < j. For an arc [i, j], we call i the *initial point* and j the *terminal point* of the arc. The *span* of an arc [i, j] is defined as span [i, j] = j - i - 1. A pair $\{[i, j], [k, l]\}$ of disjoint arcs is said to be a *crossing* if i < k < j < l or k < i < l < j (see figure 1).

An *involution* is a finite set of pairwise disjoint arcs. For nonnegative integers n, k, let I(n) denote the set of all involutions whose arcs are contained in $[n](=\{1, 2, ..., n\})$ and let I(n, k) denote the set of involutions in I(n) with k arcs. We will always write involutions in their *standard representation* which is in increasing order of initial points.

Let δ be an involution. The number of arcs in δ is denoted by $|\delta|$. The *crossing number* of δ , denoted $c(\delta)$, is the number of pairs of arcs of δ that are crossings. Define the *weight* of δ , denoted by wt(δ), as follows:

wt(
$$\delta$$
) = $\left(\sum_{[i,j]\in\delta} \operatorname{span}[i,j]\right) - c(\delta).$

Figure 2. $\delta = \{[1, 8], [2, 6], [3, 9], [4, 7]\}.$

Example 1.1 Let $\delta = [1, 8][2, 6][3, 9][4, 7] \in I(9)$. Represent δ as shown in figure 2. Observe that there are 3 crossings. Thus $wt(\delta) = (8 - 1 - 1) + (6 - 2 - 1) + (9 - 3 - 1) + (7 - 4 - 1) - 3 = 13$.

In order to motivate our first application of the weight statistic, we define the notion of symmetric Boolean packings (see Björner [3, Exercise 7.36], and Ref. [13]). Let *P* be a finite graded rank-*n* poset with rank function $r: P \rightarrow \{0, 1, 2, ..., n\}$. For $0 \le k \le n$, let N_k denote the number of elements of *P* of rank *k*. We say that the elements $x_1, x_2, ..., x_h$ of *P* form a symmetric chain if x_{i+1} covers x_i for every i < h and $r(x_1) + r(x_h) = n$. A symmetric chain decomposition (SCD) of *P* is a covering of *P* by pairwise disjoint symmetric chains. Let B(n) denote the poset of all subsets of [n], under inclusion. We say that a subset $Q \subseteq P$ is symmetric Boolean if

- (i) Q, under the induced order, has a minimum element, say z, and a maximum element, say z'.
- (ii) Q is order isomorphic to B(r(z') r(z)).
- (iii) r(z') + r(z) = n.

A symmetric Boolean packing (SBP) of P is a covering of P by pairwise disjoint symmetric Boolean subsets. De Bruijn, Tenbergen, and Kruyswijk [4] constructed a symmetric chain decomposition of B(l), for $l \ge 0$. It follows that if P admits a SBP, then it has a SCD.

The existence of a SBP allows us to expand the rank numbers of P in terms of the binomial coefficients. Let $P = Q_1 \uplus Q_2 \uplus \cdots \uplus Q_t$ (disjoint union) be a SBP of P. Let z_i (respectively z'_i) denote the minimum (respectively, maximum) element of Q_i , i = 1, 2, ..., t. Since Q_i is order isomorphic to $B(r(z'_i) - r(z_i))$ and $r(z'_i) + r(z_i) = n$ we have

$$N_k = \sum_{i=1}^t \binom{r(z_i') - r(z_i)}{k - r(z_i)} = \sum_{i=1}^t \binom{n - 2r(z_i)}{k - r(z_i)}.$$
(1.1)

A STATISTIC ON INVOLUTIONS

Let *q* be a prime power and let $B_q(n)$ denote the poset of subspaces, under inclusion, of an *n*-dimensional vector space over \mathbb{F}_q (the finite field with *q* elements). The number of elements of rank *k* in $B_q(n)$ is the *q*-binomial coefficient $\binom{n}{k}_q$. Griggs [8] proved that $B_q(n)$ has a SCD. An explicit construction of a SCD of $B_q(n)$ was a long-standing open problem. In their beautiful recent paper [16], Vogt and Voigt solve this problem. It is not difficult to see that their construction actually yields a SBP of $B_q(n)$. It follows that the *q*-binomial coefficients admit an expansion (in the form of identity 1.1 above) in terms of the binomial coefficients. Our first application of the weight statistic is the following explicit expansion $\binom{n}{k}$ and $\binom{n}{k}_q$ are taken to be zero if n < 0 or k < 0).

Theorem 1.2

$$\binom{n}{k}_{q} = \sum_{\delta \in I(n)} (q-1)^{|\delta|} q^{\operatorname{wt}(\delta)} \binom{n-2|\delta|}{k-|\delta|}.$$

For example, we have $\binom{5}{k}_q = \binom{5}{k} + (q-1)(4+3q+2q^2+q^3)\binom{3}{k-1} + (q-1)^2(3+4q+4q^2+3q^3+q^4)\binom{1}{k-2}$.

We originally had two proofs of Theorem 1.2: a simple manipulative proof based on permutation statistics and a bijective proof based on row reduced echelon forms. The bijective proof, however, does not yield a SBP of $B_q(n)$. We feel that a fuller understanding of the construction in [16] would yield a bijective proof of Theorem 1.2 (or even a generalization of Theorem 1.2) that actually implements a SBP of $B_q(n)$. Therefore, in Section 2, we are only presenting the manipulative proof of Theorem 1.2.

Let F(2n) denote the set of all *fixed point free involutions* in I(2n), i.e., involutions in I(2n) having *n* arcs. The weight statistic defined on I(2n) restricts to F(2n). (We note that the crossing number statistic on fixed point free involutions was first defined by Stembridge [15] in his work on pfaffians.) We now define a partial order on F(2n). This partial order can be seen as an analog of the (strong) Bruhat order on permutations (Edelman [6]).

Let $\delta = [a_1, b_1][a_2, b_2] \dots [a_n, b_n] \in F(2n)$. We say that $\tau \in F(2n)$ is obtained from δ by an *interchange*, written $\delta \sim \tau$, if there exist $1 \le i < j \le n$ such that

(i) τ 's standard representation is obtained from δ by exchanging b_i and a_j . or

(ii) τ 's standard representation is obtained from δ by exchanging b_i and b_j .

Note that if $\delta \sim \tau$ then $\tau \sim \delta$. We say that τ is obtained from δ by a *weight increasing interchange* if $\delta \sim \tau$ and wt(δ) < wt(τ).

Define a partial order \leq on F(2n) as follows: Let $\delta, \tau \in F(2n)$. Then $\delta \leq \tau$ if τ can be obtained from δ by a sequence of (zero or more) weight increasing interchanges. For example, the Hasse diagram of F(6) is shown in figure 3.

For a finite graded poset *P* the rank generating function is defined by $R(P,q) = \sum_{k=0}^{n} N_k q^k$, where N_k is the number of elements of *P* of rank *k* and *n* is the rank of *P* (here *q* is an indeterminate). The following result is proved in Section 3 (below $[k]_q = 1 + q + q^2 + \cdots + q^{k-1}$).

Figure 3. Hasse diagram of F(6).

Theorem 1.3

(i) For n ≥ 1, (F(2n), ≤) is a graded poset of rank 2(ⁿ₂). The rank of δ ∈ F(2n) is given by wt(δ) and

 $R(F(2n), q) = [1]_q [3]_q [5]_q \cdots [2n-1]_q.$

(ii) For n ≥ 2, (F(2n), ≤) is EL-shellable and its order complex triangulates the ball of dimension 2(ⁿ₂) - 2.

One of the referees has kindly informed us that there is a possible relationship between the poset structure on F(2n) and the cell decomposition of the homogeneous space GL(2n)/Sp(2n), considered in Howe and Kraft [9].

Representing set partitions by means of a suitable set of arcs and by slightly extending the definition of crossing of arcs, we can define a notion of weight for set partitions. This statistic turns out to be the same as that recently defined by Johnson [10, 11]. We shall treat this topic in a future paper.

2. q-Binomial coefficients

In this section we give a proof of Theorem 1.2 based on permutation statistics. For non-negative integers n, k, define the generating function $i_q(n, k) = \sum_{\delta \in I(n,k)} q^{\operatorname{wt}(\delta)}$. We put $i_q(n, k) = 0$ if n < 0 or k < 0.

Proposition 2.1 For nonnegative integers n, k,

 $i_q(n+1,k) = i_q(n,k) + [n]_q i_q(n-1,k-1),$

with $i_q(0, k) = \delta_{0,k}$.

Proof: We first recall the proof of the identity in the q = 1 case. Define a map

$$\Upsilon: I(n+1,k) \to I(n,k) \uplus ([n] \times I(n-1,k-1))$$

as follows: Given $\delta \in I(n + 1, k)$, define $\Upsilon(\delta) = \delta$ if n + 1 is not contained in any arc of δ . If $[i, n + 1] \in \delta$ for some $i \in \{1, 2, ..., n\}$, delete arc [i, n + 1] from δ to get $\overline{\delta}$. Relabel the elements of $[n + 1] - \{i, n + 1\}$ as $\{1, 2, ..., n - 1\}$, in increasing order. Perform the corresponding relabeling of $\overline{\delta}$ to get $\delta' \in I(n - 1, k - 1)$. Define $\Upsilon(\delta) = (i, \delta')$. The map Υ is easily seen to be a bijection. In the general case we check that if $\Upsilon(\delta) = (i, \delta') \in [n] \times I(n - 1, k - 1)$, then wt $(\delta) = n - i + \text{wt}(\delta')$. This will prove the identity.

Let $\Upsilon(\delta) = (i, \delta')$. Let *p* be the number of arcs in δ with terminal points belonging to $\{i + 1, ..., n\}$. Then it is easily seen that $c(\delta) = c(\overline{\delta}) + p = c(\delta') + p$ and

$$\left(\sum_{[k,l]\in\bar{\delta}}\operatorname{span}[k,l]\right) = \left(\sum_{[k,l]\in\delta'}\operatorname{span}[k,l]\right) + p.$$

We have

$$wt(\delta) = \left(\sum_{[k,l]\in\bar{\delta}} \operatorname{span}[k,l]\right) + (n+1-i-1) - c(\delta)$$
$$= \left(\sum_{[k,l]\in\delta'} \operatorname{span}[k,l]\right) - c(\delta') + n - i$$
$$= wt(\delta') + n - i.$$

This completes the proof.

Corollary 2.2 For a nonnegative integer n,

$$\sum_{\delta \in F(2n)} q^{\operatorname{wt}(\delta)} = i_q(2n, n) = [2n - 1]_q [2n - 3]_q \cdots [1]_q.$$

Proof: Since $i_q(2n-1,n) = 0$, we have by Proposition 2.1, $i_q(2n,n) = [2n-1]_q i_q$ (2n-2, n-1). The result now follows by induction.

The following recurrence for the q-binomial coefficients was given by Goldman and Rota [7]. (See also [12]).

Proposition 2.3 For nonnegative integers n, k,

$$\binom{n+1}{k}_q = \binom{n}{k}_q + \binom{n}{k-1}_q + (q^n-1)\binom{n-1}{k-1}_q,$$

with $\binom{0}{k}_{q} = \delta_{0,k}$.

-	-	-	-	
L				
L				
L	-	-	J	

Proof of Theorem 1.2: We use the notation set up in the proof of Proposition 2.1, where a bijection $\Upsilon : I(n+1) \to I(n) \uplus ([n] \times I(n-1))$ was defined.

We will show that the right hand side satisfies the recurrence given in Proposition 2.3. We have

$$\begin{split} &\sum_{\delta \in I(n+1)} (q-1)^{|\delta|} q^{\operatorname{wt}(\delta)} \binom{n+1-2|\delta|}{k-|\delta|} \\ &= &\sum_{\delta \in I(n)} (q-1)^{|\delta|} q^{\operatorname{wt}(\delta)} \binom{n+1-2|\delta|}{k-|\delta|} \\ &+ &\sum_{i=1}^{n} \left\{ \sum_{\substack{\delta \in I(n+1) \\ |i,n+1| \in \delta}} (q-1)^{1+|\delta'|} q^{(n-i)+\operatorname{wt}(\delta')} \binom{n+1-2(|\delta'|+1)}{k-(|\delta'|+1)} \right\} \\ &= &\sum_{\delta \in I(n)} (q-1)^{|\delta|} q^{\operatorname{wt}(\delta)} \left\{ \binom{n-2|\delta|}{k-|\delta|} + \binom{n-2|\delta|}{k-1-|\delta|} \right\} \\ &+ &\sum_{i=1}^{n} \left\{ \sum_{\delta \in I(n-1)} (q-1)q^{n-i}(q-1)^{|\delta|} q^{\operatorname{wt}(\delta)} \binom{n-1-2|\delta|}{k-1-|\delta|} \right\} \\ &= \left\{ \sum_{\delta \in I(n)} (q-1)^{|\delta|} q^{\operatorname{wt}(\delta)} \binom{n-2|\delta|}{k-|\delta|} \right\} + \left\{ \sum_{\delta \in I(n)} (q-1)^{|\delta|} q^{\operatorname{wt}(\delta)} \binom{n-2|\delta|}{k-1-|\delta|} \right\} \\ &+ &\sum_{\delta \in I(n-1)} \left\{ \sum_{i=1}^{n} (q-1)q^{n-i} \right\} (q-1)^{|\delta|} q^{\operatorname{wt}(\delta)} \binom{n-1-2|\delta|}{k-1-|\delta|} \\ &= \left\{ \sum_{\delta \in I(n)} (q-1)^{|\delta|} q^{\operatorname{wt}(\delta)} \binom{n-2|\delta|}{k-|\delta|} \right\} + \left\{ \sum_{\delta \in I(n)} (q-1)^{|\delta|} q^{\operatorname{wt}(\delta)} \binom{n-2|\delta|}{k-1-|\delta|} \\ &+ (q^n-1) \left\{ \sum_{\delta \in I(n-1)} (q-1)^{|\delta|} q^{\operatorname{wt}(\delta)} \binom{n-2|\delta|}{k-|\delta|} \right\} \\ &+ (q^n-1) \left\{ \sum_{\delta \in I(n-1)} (q-1)^{|\delta|} q^{\operatorname{wt}(\delta)} \binom{n-1-2|\delta|}{k-1-|\delta|} \right\}. \end{split}$$

This completes the proof.

The following identity (Theorem 3.4, [1]) follows as a corollary to Theorem 1.2.

Corollary 2.4 For a nonnegative integer n,

$$\sum_{k=0}^{n} (-1)^{k} \binom{n}{k}_{q} = \begin{cases} (1-q)(1-q^{3})\cdots(1-q^{2m-1}) & \text{if } n = 2m \\ 0 & \text{if } n \text{ is odd} \end{cases}$$

Proof:

$$\begin{split} \sum_{k=0}^{n} (-1)^{k} \binom{n}{k}_{q} &= \sum_{k=0}^{n} (-1)^{k} \left(\sum_{\delta \in I(n)} (q-1)^{|\delta|} q^{\operatorname{wt}(\delta)} \right) \binom{n-2|\delta|}{k-|\delta|} \right) \\ &= \sum_{\delta \in I(n)} (q-1)^{|\delta|} q^{\operatorname{wt}(\delta)} \left(\sum_{k=0}^{n} (-1)^{k} \binom{n-2|\delta|}{k-|\delta|} \right) \end{split}$$

The right hand side in this expression is zero except when $n - 2|\delta| = 0$ and $k - |\delta| = 0$. In that case *n* is even, say 2*m*, and hence k = m. Then in the summation only the terms corresponding to fixed point free involutions will survive and we have, by Corollary 2.2,

$$\sum_{k=0}^{2m} (-1)^k \binom{2m}{k}_q = (-1)^m (q-1)^m \sum_{\delta \in I(2m,m)} q^{\operatorname{wt}(\delta)}$$
$$= (1-q)^m [1]_q [3]_q \cdots [2m-1]_q$$
$$= (1-q)(1-q^3) \cdots (1-q^{2m-1}).$$

3. Fixed point free involutions

In this section we give a proof of Theorem 1.3. In order to study the poset $(F(2n), \leq)$, we will realize it as an induced subposet of S(2n) (the set of permutations of [2n]), with strong Bruhat order. Let P be a finite, graded poset with minimum element $\hat{0}$ and maximum element $\hat{1}, \hat{0} \neq \hat{1}$. Let $\overline{P} = P - \{\hat{0}, \hat{1}\}$. By the *order complex* of P we mean the simplicial complex $\Delta(\overline{P})$ of chains in \overline{P} (all our simplicial complexes contain \emptyset and dim $(\emptyset) = -1$). Let $\operatorname{cov}(P) = \{(x, y) \in P \times P \mid y \text{ covers } x\}$. An *edge labeling* of P is a map $\lambda : \operatorname{cov}(P) \rightarrow \Lambda$, where Λ is some poset. An unrefinable chain $c : x_0 < x_1 < \cdots < x_n$ in P gets the induced label $\lambda(c) = (\lambda(x_0, x_1), \lambda(x_1, x_2), \ldots, \lambda(x_{n-1}, x_n))$. The chain c is said to be *rising* if $\lambda(x_0, x_1) \leq \lambda(x_1, x_2) \leq \cdots \leq \lambda(x_{n-1}, x_n)$. We say that λ is an *EL-labeling* if the following two properties are satisfied:

- 1. For every $x, y \in P$, x < y, there is a unique rising, unrefinable chain $c_{x,y}$ from x to y.
- 2. If *a* is any other unrefinable chain from *x* to *y*, $a \neq c_{x,y}$, then $\lambda(c_{x,y}) <_l \lambda(a)$ in the lexicographic order.

Björner [2] showed that if P admits an EL-labeling, then $\Delta(\bar{P})$ is shellable (for the definition of shellable complexes see [3]).

We shall need the following elementary result.

Proposition 3.1 Let P be a finite graded poset with $\hat{0}$, $\hat{1}$, $\hat{0} \neq \hat{1}$. Let $\lambda : cov(P) \longrightarrow \Lambda$ be an EL-labeling of P. Let $Q \subseteq P$ contain $\hat{0}$ and also a maximum element z (in the induced order), with $\hat{0} \neq z$. Assume that Q satisfies the following property: For all x, $y \in Q$, x < y, the unique rising chain from x to y in P lies in Q. Then Q (with induced order) is a graded poset with the same rank function as P and λ , restricted to cov(Q), is an EL-labeling of Q.

Proof: We claim that a cover x < y in Q is also a cover in P. If not, the unique rising x to y chain c in P has length ≥ 2 and $c \subseteq Q$, contradicting the cover in Q. It follows that Q is graded and has the same rank function as P. The fact that λ is an EL-labeling of Q is now clear.

We now recall some results on the strong Bruhat order on permutations. Let $\pi = \pi_1 \pi_2 \dots \pi_n$ be a permutation in S(n), $n \ge 2$. The number of inversions in π , i.e., the number of pairs (i, j) with i < j and $\pi_i > \pi_j$ is denoted $i(\pi)$. For $\sigma \in S(n)$, we write $\pi \sim \sigma$ if σ can be obtained from π by interchanging two of the π_i 's. We say σ is obtained from π by an *inversion increasing interchange* if $\pi \sim \sigma$ and $i(\pi) < i(\sigma)$. Define $\pi \le \tau$ if τ can be obtained from π by a sequence of zero or more inversion increasing interchanges. It is well known that $(S(n), \le)$ is a graded poset of rank $\binom{n}{2}$, with rank of a permutation π given by $i(\pi)$, and with rank generating function

$$R(S(n),q) = [1]_q [2]_q \cdots [n]_q.$$

Let Λ be the set of ordered pairs $(i, j) \in [n] \times [n]$ such that i < j. Linearly order Λ lexicographically. Let $\lambda : \operatorname{cov}(S(n)) \to \Lambda$ be the labeling

$$\lambda(\pi,\sigma) = (i,j),\tag{(*)}$$

where *i* and *j* are interchanged in π to get σ and *i* < *j*.

We shall need the following facts about the strong Bruhat order on S(n).

- (1) λ is an EL-labeling of $(S(n), \leq)$ (see [6]).
- (2) If $\pi = \pi_1 \pi_2 \dots \pi_n$ then σ covers π if and only if σ is obtained from π by interchanging π_i and π_j where i < j and $\pi_i < \pi_j$ and each element of the set $\{\pi_{i+1}, \dots, \pi_{j-1}\}$ is either $< \pi_i$ or $> \pi_j$.
- (3) The order complex of (S(n), ≤) triangulates the sphere of dimension (ⁿ₂) 2 and hence (S(n), ≤) is Eulerian (see [6]).
- (4) Let $\pi = a_1 a_2 \dots a_n$, $\sigma = b_1 b_2 \dots b_n$, $\pi < \sigma$. For $l \in [n]$, let $\pi^{-1}(l)$ and $\sigma^{-1}(l)$ denote the positions of l in π and σ , respectively. Let i be the smallest number such that $\pi^{-1}(i) < \sigma^{-1}(i)$. Then $\pi^{-1}(k) = \sigma^{-1}(k)$ for $k = 1, 2, \dots, i 1$. Let j be the smallest number such that j > i and $\pi^{-1}(i) < \pi^{-1}(j) \le \sigma^{-1}(i)$. Then the second element in the unique rising chain from π to σ is obtained from π by interchanging i and j (see [6]).

Consider the linearly ordered set $[\bar{n}] = \{1 < \bar{1} < 2 < \bar{2} < \cdots < n < \bar{n}\}$ and define $E(\bar{n})$ to be the set of all permutations of $[\bar{n}]$ satisfying:

1. for i = 1, 2, ..., n, *i* appears before \overline{i} .

2. 1, 2, \ldots , *n* appear in increasing order.

For instance, $E(\bar{2}) = \{1\bar{1}2\bar{2}, 12\bar{1}\bar{2}, 12\bar{2}\bar{1}\}.$

A STATISTIC ON INVOLUTIONS

Proposition 3.2 Consider the set of permutations of $[\bar{n}]$, $(n \ge 2)$, under strong Bruhat order and let λ be the edge labeling given by (*). Then the subset $E(\bar{n})$ satisfies the assumption of Proposition 3.1.

Proof: We have $\hat{0} = 1\overline{1}2\overline{2}\cdots n\overline{n} \in E(\overline{n})$. Let $z = 12 \dots n\overline{n}\overline{n-1}\dots\overline{1} \in E(\overline{n})$. Consider $\pi = \pi_1\pi_2\dots\pi_{2n} \in E(\overline{n})$. If $\pi_1\pi_2\dots\pi_n \neq 12\dots n$ then find the smallest $i \ge 2$ such that $\underline{\pi_1\pi_2}\dots\pi_{i-1} = 12\dots(i-1)$ and $i = \pi_l, l > i$. Then $\{\pi_i, \pi_{i+1}, \dots, \pi_{l-1}\} \subseteq \{\overline{1}, \overline{2}, \dots \overline{i-1}\}$. By a sequence of inversion increasing interchanges we can take π to $\pi_1\pi_2\dots\pi_{i-1}\pi_l\pi_i\dots\pi_{l-1}\pi_{l+1}\dots\pi_{2n} \in E(\overline{n})$. Repeating this step we see that $\pi \le \sigma \in E(\overline{n})$, where $\sigma = \sigma_1\sigma_2\dots\sigma_{2n}$ satisfies $\sigma_1\sigma_2\dots\sigma_n = 12\dots n$. Now by another sequence of inversion increasing interchanges it follows that $\sigma \le z$. Thus, z is the maximum element of $E(\overline{n})$.

Let $\delta, \tau \in E(\bar{n})$, with $\delta < \tau$. Let x be the least element of $[\bar{n}]$ such that $\delta^{-1}(x) < \tau^{-1}(x)$. We claim that $x \in \{\bar{1}, \bar{2}, ..., \bar{n}\}$. Assume not and let $x \in \{1, 2, ..., n\}$. Let $p = \delta^{-1}(x)$. Since every $j \in [\bar{n}]$, j < x, appears in the same positions in δ and τ , we see that τ contains an entry >x in the *p*th position. This entry thus appears before x in τ , a contradiction to the fact that $\tau \in E(\bar{n})$. Thus $x \in \{\bar{1}, \bar{2}, ..., \bar{n}\}$. Let $x = \bar{i}$.

Now let y be the smallest element in $[\bar{n}]$ such that $y > \bar{i}$ and $\delta^{-1}(\bar{i}) < \delta^{-1}(y) \le \tau^{-1}(\bar{i})$. So we can write $\delta = \alpha_1 \bar{i} \alpha_2 y \alpha_3$, for some strings $\alpha_1, \alpha_2, \alpha_3$, and where every element of the string α_2 is either $<\bar{i}$ or >y. Two cases arise:

- (i) $y = \overline{t} \in \{\overline{1}, \overline{2}, \dots, \overline{n}\}$: Then t is not an element of the string α_2 since $\overline{\iota} < t < \overline{t}$. It follows that $\alpha_1 y \alpha_2 \overline{\iota} \alpha_3 \in E(\overline{n})$.
- (ii) $y = t \in \{1, 2, ..., n\}$: In this case no element of the string α_2 is >t, as this contradicts the fact that $\delta \in E(\bar{n})$. Thus every element of the string α_2 is $<\bar{i}$ and is in fact a member of $\{\bar{1}, \bar{2}, ..., \bar{i-1}\}$. It now follows that $\alpha_1 y \alpha_2 \bar{i} \alpha_3 \in E(\bar{n})$.

From fact (4) listed previously we get that the second element of the unique rising chain from δ to τ (in $S(\bar{n})$) belongs to $E(\bar{n})$. By induction, the entire rising chain belongs to $E(\bar{n})$.

We now define a map $\phi: F(2n) \to E(\bar{n})$ as follows: Let $\delta \in F(2n)$ with $\delta = [a_1, b_1][a_2, b_2] \dots [a_n, b_n]$. In the permutation $123 \dots (2n)$, replace a_1, a_2, \dots, a_n by $1, 2, \dots, n$ respectively and replace b_1, b_2, \dots, b_n by $\bar{1}, \bar{2}, \dots, \bar{n}$ respectively to get $\phi(\delta)$. It is easily seen that $\phi(\delta) \in E(\bar{n})$. For instance, $[1, 6][2, 3][4, 7][5, 8] \in F(8)$ gets mapped to $12\bar{2}34\bar{1}\ \bar{3}\ \bar{4} \in E(\bar{4})$. It is also easily seen that ϕ is a bijection.

Proposition 3.3 For all $\delta \in F(2n)$, wt $(\delta) = i(\phi(\delta))$.

Proof: Let $\delta \in F(2n)$, with $\delta = [a_1, b_1][a_2, b_2] \dots [a_n, b_n]$. Write $\phi(\delta) = \pi = \pi_1 \pi_2$ $\dots \pi_{2n} \in E(\bar{n})$. Then $\pi_1 = 1$ and $\pi_{b_1} = \bar{1}$. Define $\pi' \in E(\overline{n-1})$ as follows: Consider $\pi_2 \dots \pi_{b_1-1} \pi_{b_1+1} \dots \pi_{2n}$, replace *i* by i-1 and \overline{i} by $\overline{i-1}$ for $i = 2, 3, \dots, n$ to get π' . Clearly,

 $i(\pi) = i(\pi') + (b_1 - 2).$

Define $\delta' \in F(2n-2)$ as follows: Consider $[a_2, b_2][a_3, b_3] \dots [a_n, b_n]$, subtract 1 from all numbers $\langle b_1$ and subtract 2 from all numbers $\rangle b_1$ to get δ' . Then

 $wt(\delta) = wt(\delta') + (b_1 - 2)$

and $\phi(\delta') = \pi'$. The result now follows by induction.

Proposition 3.4 The map ϕ is an order isomorphism.

Proof: We first show that ϕ^{-1} is order preserving. Let $\pi, \sigma \in E(\bar{n})$ with $\pi < \sigma$ and $i(\sigma) = i(\pi) + 1$. Write $\pi = \pi_1 \pi_2 \dots \pi_{2n} \in E(\bar{n})$ and $\phi^{-1}(\pi) = [a_1, b_1][a_2, b_2] \dots [a_n, b_n]$. Let σ be obtained from π by interchanging π_i and π_j , where i < j and $\pi_i < \pi_j$. If $\pi_i, \pi_j \in \{1, 2, \dots, n\}$, we cannot interchange π_i and π_j and remain in $E(\bar{n})$. A similar situation holds when $\pi_i \in \{1, 2, \dots, n\}$ and $\pi_j \in \{\bar{1}, \bar{2}, \dots, \bar{n}\}$. Thus, $\pi_i \in \{\bar{1}, \bar{2}, \dots, \bar{n}\}$. Let $\pi_i = \bar{l}$. We consider two cases:

(a) $\pi_j \in \{\overline{1}, \overline{2}, \dots, \overline{n}\}$: let $\pi_j = \overline{t}$ for some t > l (see figure 4).

In this case exchanging b_l and b_t in $\phi^{-1}(\pi)$ gives $\phi^{-1}(\sigma)$. Since ϕ^{-1} takes number of inversions to weight we have $\phi^{-1}(\pi) < \phi^{-1}(\sigma)$.

(b) $\pi_i \in \{1, 2, ..., n\}$: let $\pi_i = t$ for some t > l. Then $b_l < a_t$ (see figure 5).

Since $i(\sigma) = i(\pi) + 1$, it follows that all elements of the set $\{\pi_{i+1}, \ldots, \pi_{j-1}\}$ are either $\langle \overline{l} \ \sigma \rangle t$. This implies that no number in the set $\{b_l + 1, \ldots, a_t - 1\}$ is the initial point

Figure 5.

196

of an arc in $\phi^{-1}(\pi)$. Thus, exchanging b_l and a_t in $\phi^{-1}(\pi)$ gives $\phi^{-1}(\sigma)$ in the standard representation. Since ϕ^{-1} takes number of inversions to weight we have $\phi^{-1}(\pi) < \phi^{-1}(\sigma)$. It follows that ϕ^{-1} is order preserving.

Now we show that ϕ is order preserving. Let $\delta \in F(2n)$ with $\delta = [a_1, b_1][a_2, b_2] \dots [a_n, b_n]$. Let $\tau \sim \delta$. If τ is obtained from δ by exchanging b_i and a_j , i < j, then $\phi(\tau)$ is obtained from $\phi(\delta)$ by exchanging \overline{i} and j. Thus, $\phi(\tau) \sim \phi(\delta)$. If, on the other hand, τ is obtained from δ by exchanging b_i and b_j , i < j, then $\phi(\tau)$ is obtained from $\phi(\delta)$ by exchanging b_i and b_j , i < j, then $\phi(\tau)$ is obtained from $\phi(\delta)$ by exchanging \overline{i} and b_j .

Since ϕ takes weight to the number of inversions, a weight increasing interchange corresponds to an inversion increasing interchange.

Proof of Theorem 1.3

- (i) That (F(2n), ≤) is a graded poset, with rank function given by weight, follows from Propositions 3.1, 3.2, 3.3 and 3.4. The rank of (F(2n), ≤) = i(12...nn(n-1)...1) = 2(ⁿ₂). The rank generating function of F(2n) follows from Corollary 2.2.
- (ii) That $(F(2n), \leq)$ is EL-shellable follows from Propositions 3.1, 3.2 and 3.4. Now $\dim(\Delta(F(2n), \leq)) = 2\binom{n}{2} 2$. To prove that the order complex of F(2n) triangulates a ball we proceed as follows.

Consider the EL-labeling of $E(\bar{n})$ given by (*). We claim that there is no unrefinable chain from $\hat{0} = 1\bar{1}2\bar{2}...n\bar{n}$ to $\hat{1} = 12...n\bar{n}n - 1...\bar{1}$ with a descent at every level. Suppose there were such a chain. Since $\bar{1}$ is the least element of $[\bar{n}]$ which changes its position from $\hat{0}$ to $\hat{1}$, the last few labels of this chain must be of the form $(\bar{1}, a)$ and all other labels (i, j) must satisfy $i \neq \bar{1}$. Thus this chain splits up into $\hat{0}$ - π and π - $\hat{1}$ chains, where $\pi = 1\bar{1}23...n\bar{n}$ $n-1...\bar{2}$. Then in the π - $\hat{1}$ chain the label $(\bar{1}, 2)$ occurs before $(\bar{1}, \bar{2})$. So somewhere in between there is no descent. Thus we arrive at a contradiction. Now for a poset *P* with an EL-labeling, $\mu_P(\hat{0}, \hat{1})$ is the number of unrefinable $\hat{0} - \hat{1}$ chains with descent at every level (see [14]). It follows that $\mu_{F(2n)}(\hat{0}, \hat{1}) = 0$.

Any $2\binom{n}{2} - 3$ dimensional face of $\Delta(E(\bar{n}))$ is a maximal chain in $\overline{E(\bar{n})}$ minus one element, say of rank *i*. Let $c : x_1 < x_2 < \cdots < x_{i-1} < x_{i+1} < \cdots < x_{2\binom{n}{2}-1}$ be such a face. Consider the rank 2 interval $[x_{i-1}, x_{i+1}]$. In the poset of all permutations of $[\bar{n}], [x_{i-1}, x_{i+1}]$ has exactly 2 elements of rank *i* (since this poset is Eulerian). Thus, in $E(\bar{n})$ there are at most 2 elements of rank *i* in $[x_{i-1}, x_{i+1}]$. Thus, *c* is contained in at most two facets of $\Delta(F(2n))$. Now, a result of Danaraj and Klee [5] states that if Δ is a (pure) shellable complex, and if every face of dimension dim $\Delta - 1$ is contained in at most 2 facets, then $|\Delta|$ is either a sphere or a ball of dimension dim Δ . Since $\mu_{F(2n)}(\hat{0}, \hat{1}) = 0$, it follows that $|\Delta(F(2n))|$ is a ball of dimension $2\binom{n}{2} - 2$.

Acknowledgment

We would like to thank Professor Bruce Sagan and the referees for various constructive suggestions which led to an improvement in the exposition.

References

- 1. G.E. Andrews, The Theory of Partitions, Addison-Wesley, Reading, Mass., 1976.
- 2. A. Björner, "Shellable and Cohen-Macaulay partially ordered sets," *Trans. Amer. Math. Soc.* 260 (1980), 159–183.
- 3. A. Björner, "Homology and shellability of matroids and geometric lattices," in *Matroid Applications*, N. White (Ed.), Cambridge University Press, 1992.
- N.G. de Bruijn, C. Tengbergen, and D. Kruyswijk, "On the set of divisors of a number," *Nieuw Arch. Wiskd.* 23 (1951), 191–193.
- 5. G. Danaraj and Victor Klee, "Shellings of spheres and polytopes," Duke Math. J. 41 (1974), 443-451.
- P.H. Edelman, "The Bruhat order of the Symmetric group is lexicographically shellable," *Proc. Amer. Math. Soc.* 82 (1981), 355–358.
- 7. J.R. Goldman and G.C. Rota, "On the foundations of combinatorial theory IV: Finite vector spaces and Eulerian generating functions," *Studies in Applied Math.* **49**(3) (1970), 239–258.
- 8. J.R. Griggs, "Sufficient conditions for a symmetric chain order," SIAM J. Applied Math. 32 (1977), 807-809.
- R. Howe and H. Kraft, "Principal covariants, multiplicity-free actions, and the K-types of holomorphic discrete series," in *Geometry and Representation Theory of Real and p-adic Groups*, Cordoba, 1995, pp. 147–161. Progr. Math., 158, Birkhauser Boston, Boston, MA, 1998.
- 10. W.P. Johnson, "A q-analog of Faá di Bruno's Formula," J. Combin Theory, Ser. A 76 (1996), 305–314.
- 11. W.P. Johnson, "Some applications of the q-exponential formula," Discrete Math. 157 (1996), 207–225.
- 12. A. Nijenhuis, A. Solow, and H. Wilf, "Bijective methods in the theory of finite vector spaces," J. Combin. Theory, Ser. A 37 (1984), 80–84.
- M.K. Srinivasan, "Boolean packings in dowling geometries," *European Journal of Combinatorics* 19 (1998), 727–731.
- 14. R. Stanley, Enumerative Combinatorics-Vol. 1, Wadsworth & Brooks/Cole, Monterey California, 1986.
- J.R. Stembridge, "Nonintersecting paths, pfaffians and plane partitions," Advances in Math. 83 (1990), 96– 131.
- F. Vogt and B. Voigt, "Symmetric chain decompositions of linear lattices," *Combinatorics, Probability and Computing* 6 (1997), 231–245.