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Abstract. We define a statistic, callegeight on involutions and consider two applications in which this statistic
arises. Let (n) denotethe setofallinvolutionson]f= {1, 2, ..., n}) and letF (2n) denote the set of all fixed point
free involutions on [B]. Foraninvolutiors, let|§| denote the number of 2-cyclesinLet[n]q = 149+ - —+q"t

and let(})q denote theg-binomial coefficient. There is a statistic wt ¢1in) such that the following results are
true.

(i) We have the expansion

n n— 28|
— — 1)l8lgWt®) .
(k)q > @-1"q (k_s)

sel(n)

(i) An analog of the (strong) Bruhat order on permutations is defineBl @m) and it is shown that this gives a
rank—?(g) graded EL-shellable poset whose order complex triangulates a ball. The rdaka®n) is given
by wt(6) and the rank generating function is 131q - - - [2n — 1]q.

Keywords: permutation statisticgj-binomial coefficient, Bruhat order, involutions, fixed point free involutions

1. Introduction and statement of results

In this paper we define a statistic on involutions and consider two applications in which this
statistic arises.
An arc or a2-cycleis a set consisting of two distinct positive integers. We write an arc
as|, j],withi < j. Foranarcil, j], we calli theinitial point and j theterminal pointof
the arc. Thespanof an arc [, j]is defined as span,[j] = ] —i — 1. Apair{[i, j], [k, 1}
of disjoint arcs is said to be@ossingifi <k < j <lork <i < < j (see figure 1).
An involutionis a finite set of pairwise disjoint arcs. For nonnegative integeks let
I (n) denote the set of all involutions whose arcs are containad {&[{1, 2, ... n}) and let
I (n, k) denote the set of involutions in(n) with k arcs. We will always write involutions
in their standard representatiowhich is in increasing order of initial points.
Let s be an involution. The number of arcsdris denoted byé$|. Thecrossing number
of §, denotec:(8), is the number of pairs of arcs étthat are crossings. Define theight
of §, denoted by w®), as follows:

WE(S) = ( > spanl, j]) — ().

[i,jles
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Figure 1L A crossing.
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Figure2 & ={[1,8],[2, 6], [3, 9], [4, 7]}

Example 1.1 Letd = [1, 8][2, 6][3, 9][4, 7] € 1 (9). Represens as shown in figure 2.
Observe that there are 3 crossings. Tm$) = 8—1-1)+®6-2—-1)+(9-3-1)
+(7—-4-1)-3=13

In order to motivate our first application of the weight statistic, we define the notion of
symmetric Boolean packings (seeoBjér [3, Exercise 7.36], and Ref. [13]). LBtbe a
finite graded ranks poset with rank function: P — {0,1,2,...,n}. ForO<k < n, let
Nk denote the number of elements®fof rankk. We say that the elements, xo, ..., X,
of P form asymmetric chainf x;,; coversx; for everyi < h andr (x) + r(x,) = n.

A symmetric chain decompositid®CD) of P is a covering ofP by pairwise disjoint
symmetric chains. LeB(n) denote the poset of all subsets of,[under inclusion. We say
that a subse@ C P is symmetric Booleaif

(i) Q, under the induced order, has a minimum elementzsayd a maximum element,
sayz.
(i) Qis orderisomorphic td(r (') —r (2)).
(i) r@)+r@ =n.

A symmetric Boolean packin@BP) of P is a covering ofP by pairwise disjoint sym-
metric Boolean subsets. De Bruijn, Tenbergen, and Kruyswijk [4] constructed a symmetric
chain decomposition d(l), forl > 0. It follows that if P admits a SBP, then it has a SCD.

The existence of a SBP allows us to expand the rank numbé&rgderms of the binomial
coefficients. LeP = Q;WQ,W - - - WQ; (disjointunion) be a SBP d?. Letz (respectively
z/) denote the minimum (respectively, maximum) elemer®@pfi = 1, 2, ..., t. SinceQ;
is order isomorphic t@8(r (z) — r (z)) andr (z) +r(z) = n we have

S (1(Z)—1(@)\ (- 2(z)
Nk_Z( k—r(z) )_Z(k—rm))' &

i=1 i=1
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Letq be a prime power and I&,(n) denote the poset of subspaces, under inclusion, of
ann-dimensional vector space ovEy (the finite field withg elements). The number of
elements of rankin By (n) is theg-binomial coefficient | )q. Griggs [8] proved thaBq(n)
has a SCD. An explicit construction of a SCDE{(n) was a long-standing open problem.

In their beautiful recent paper [16], Vogt and Voigt solve this problem. It is not difficult to

see that their construction actually yields a SBRBg{n). It follows that theg-binomial

coefficients admit an expansion (in the form of identity 1.1 above) in terms of the binomial

coefficients. Our first application of the weight statistic is the following explicit expansion
» and(y)q are taken to be zeroif < 0 ork < 0).

Theorem 1.2

n PNTY Wt(s)<n—2|8|)
(k)q— > @-1"q 151 )"

sel(n)

For example, we hav€)q = ) + (9 — 1)(4 + 39 + 20 + ¢3)(.2) + (9 — D*B+
49 +49° +39° + 9 1)-

We originally had two proofs of Theorem 1.2: a simple manipulative proof based on per-
mutation statistics and a bijective proof based on row reduced echelon forms. The bijective
proof, however, does not yield a SBP Bf(n). We feel that a fuller understanding of the
construction in [16] would yield a bijective proof of Theorem 1.2 (or even a generalization
of Theorem 1.2) that actually implements a SBMBgtn). Therefore, in Section 2, we are
only presenting the manipulative proof of Theorem 1.2.

Let F(2n) denote the set of aflxed point free involutions | (2n), i.e., involutions in
| (2n) havingn arcs. The weight statistic defined b(2n) restricts toF (2n). (We note that
the crossing number statistic on fixed point free involutions was first defined by Stembridge
[15] in his work on pfaffians.) We now define a partial orderfo¢gn). This partial order
can be seen as an analog of the (strong) Bruhat order on permutations (Edelman [6]).

Lets = [a1, bi][ag, by] . . . [an, bn] € F(2n). We say that € F(2n) is obtained from$
by aninterchangewrittens ~ t, if there exist 1< i < j < n such that

(i) 7’s standard representation is obtained frdiyy exchangingdy anda;. or
(i) t’s standard representation is obtained frdlsy exchangindy; andb;.

Note that if§ ~ ¢ thent ~ §. We say that is obtained fron$ by aweight increasing
interchangef § ~ t and wi§) < wt(t).

Define a partial ordex on F(2n) as follows: Lets, t € F(2n). Then§ < t if r can
be obtained frond by a sequence of (zero or more) weight increasing interchanges. For
example, the Hasse diagrame{6) is shown in figure 3.

For a finite graded posd® the rank generating function is defined IR(P,q) =
ZE:O Nka¥, where N is the number of elements d? of rank k and n is the rank
of P (hereq is an indeterminate). The following result is proved in Section 3 (below
[Klg =1+q+0*+---+g“".
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[1,6][2,51[3,4]

[1,5][2.6](3.4] [1,6112,41[3,5]

[1,41[2,6][3,5] [1,5][2,41(3.6] [1,61[2,3][4.5]
[1,3][2,6][4,5] [1.41[2,51(3.6] [1,51(2,3](4.6]
T [ |
[1,2)[3.6][4.,5] [1,3]2,51(4.6] [1,4112,3](5.6]
[1,2}3,5){4.6) [1,31[2,41(5.6]

[1,21[3.4]1[5,6]
Figure 3 Hasse diagram df (6).

Theorem 1.3
() Forn>1,(F(2n), <) is a graded poset of rank(}). The rank off € F(2n) is given
bywt(s) and

R(F(2n), q) = [1]g[3]¢[5]q - - - [2n — 1]q.
(i) Forn > 2, (F(2n), <) is EL-shellable and its order complex triangulates the ball of
dimensior2(}) — 2.

One of the referees has kindly informed us that there is a possible relationship be-
tween the poset structure ¢(2n) and the cell decomposition of the homogeneous space
GL(2n)/Sp(2n), considered in Howe and Kraft [9].

Representing set partitions by means of a suitable set of arcs and by slightly extending
the definition of crossing of arcs, we can define a notion of weight for set partitions. This
statistic turns out to be the same as that recently defined by Johnson [10, 11]. We shall treat
this topic in a future paper.

2. g-Binomial coefficients

In this section we give a proof of Theorem 1.2 based on permutation statistics. For non-
negative integers, k, define the generating functiog(n, k) = > k9", We put
ig(n,k) =0ifn <0ork <O0.

Proposition 2.1 For nonnegative integers, ik,
ig(n+ 1, k) =ig(n, k) +[n]giq(n — 1L, k= 1),
with iq(0, K) = o k.
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Proof: We first recall the proof of the identity in ttee= 1 case. Define a map
T:In+ LKk — I(n,kw((n] xI(n—1k-1))

as follows: Givens € | (n + 1,k), defineY(§) = § if n+ 1 is not contained in any
arc of§. If [i,n+ 1] € § for somei € {1,2,...,n}, delete arcifn + 1] from § to
gets. Relabel the elements oh[+ 1] — {i,n + 1} as{1,2,...,n — 1}, in increasing
order. Perform the corresponding relabelingdab gets’ € | (n — 1,k — 1). Define
T(§) = (i,8). The mapY is easily seen to be a bijection. In the general case we check
thatif Y(8) = (i,8) € [n] x  (n—1, k— 1), thenwi{8) = n—i +wt(8). This will prove

the identity.

Let Y'(8) = (i, ). Let p be the number of arcs iwith terminal points belonging to
{i+1,...,n}. Thenitis easily seen that§) = c(§) + p = c(§') + p and

( > span[<,|]) = ([Z span[(,l]) + p.

[k.l]eé kl]es’

We have

WE(S) = ( Z span[<,|]> +(N+1—i—1)—c@®)

[k]€é
= ( Z spank,l]) —c@)+n—i
[kI]es’
=wt(§) +n—i.
This completes the proof. O

Corollary 2.2 For a nhonnegative integer,n

Z q"'® =ig(2n,n) = [2n — 1]4[2n — 3]q - - - [Lq-
seF2n)

Proof: Sinceiq(2n—1,n)=0, we have by Proposition 2.14(2n, n) =[2n— 1]qiq
(2n —2,n — 1). The result now follows by induction. O

The following recurrence for theg-binomial coefficients was given by Goldman and Rota
[7]- (See also [12]).

Proposition 2.3 For nonnegative integers, ik,

R A P
k Jq \K/q \k-1/, k—1)4

with (D)q = So.
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Proof of Theorem 1.2: We use the notation set up in the proof of Proposition 2.1, where
a bijectionY : I(n+ 1) — I (n) W ([n] x | (n — 1)) was defined.

We will show that the right hand side satisfies the recurrence given in Proposition 2.3.
We have

n+1— 2]
_ 1)Blgw®
> (@-1"q (k—|5| )

sel (n+1)
n+1-— 2
— _ 1Sl gWt®)
> @-1Plq ( k—w|>

seT(n)
Z (q — D Igm-D+wid) (n +1-2(8"I + 1)) }

3|

i=1 | sel (n+1) k—(d'1+1
[i.,n+1]es
n— 28| n— 28|
= a-vr | (V20 ()
sg% k—13] k—1-14
: : n—1-—2|5|
— D" (g — 1)1IgM®
+;L€;D(q )a" (@ - g (k—1—|8|)}
n— 2|5 n— 2|3
— (q-— 1)5qwt(6)< )} 4 { (q-— l)qut(S)( >}
Lelzw K—13| a;@ k—1-13|
" : n—1-—2
— g _ 1)Blgwt®
+65%:l){i21:(q . }(q " (k—1—|3|)
n—2|3| n— 2|8
— (q _ 1)5th(5)< )} + { (q _ 1)5qwt(5)( >}
Leuzm K—19] ae.zm) k—1—13]
n—1-—2§|
-+m“—14 (q_lqum< )}
aeg;—l) k—1— 14
This completes the proof. O

The following identity (Theorem 3.4, [1]) follows as a corollary to Theorem 1.2.

Corollary 2.4 For a nonnegative integer,n

A-—gl-g¥---@A—9g*™YH ifn=2m

() -| "
= k/q 0 if nis odd
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Proof:

i(—l)k(r;)“ ] i(_nk( S @G- 1)|s|qm<5>> (nk—_ 2|?||)>

k=0 k=0 sel (n)
n n— 28|
=) @- 1>5th<‘”< (—1)k< ))

The right hand side in this expression is zero except wher?|§| = 0 andk — |§| = O.
In that casen is even, say &, and henc&k = m. Then in the summation only the terms
corresponding to fixed point free involutions will survive and we have, by Corollary 2.2,

2m 2m
Z(—l)k(k) ==)"@-™ Y v
k=0 q

el (2m,m)
=1- Q)m[l]q[3]q - [2m—1]q
=1-9@-g---@-g™h. O

3. Fixed point free involutions

In this section we give a proof of Theorem 1.3. In order to study the gés@n), <), we
will realize it as an induced subposet®©n) (the set of permutations of fi}), with strong
Bruhat order. LeP be a finite, graded poset with minimum elemé@rind maximum ele-
mentl, 0 # 1. LetP = P — {0, 1}. By theorder complexof P we mean the simplicial
complexA(P) of chains inP (all our simplicial complexes contaifiand dim(@) = —1).
Let couP) = {(x,y) € P x P | y coversx}. An edge labelingof P is a mapa :
cov(P) — A, whereA is some poset. An unrefinable ch@inxy < X3 < -+ <X, in P
gets the induced lab@l(c) = (A(Xg, X1), A(X1, X2), ..., A(Xn—1, Xn)). The chainc is said
to berising if A(Xg, X1) < A(X1, X2) < --- < A(Xn—1, Xn). We say thah is anEL-labeling
if the following two properties are satisfied:

1. Foreveryx, y € P, x <y, there is a unique rising, unrefinable chajr, fromx to y.
2. If aiis any other unrefinable chain fromto y, a # ¢y y, theni(cyy) < A(a) in the
lexicographic order.

Bjorner [2] showed that ifP admits an EL-labeling, ther (P) is shellable (for the
definition of shellable complexes see [3]).
We shall need the following elementary result.

Proposition 3.1 Let P be a finite graded poset with1, 0 # 1. Letx:couP) — A be
an EL-labeling of P. Let @ P contain0 and also a maximum elemen(ia the induced
order),with() # z. Assume that Q satisfies the following propdforallx,y € Q,x <y,

the unique rising chain from x to y in P lies in Q. Then(\@th induced orderis a graded
poset with the same rank function as P andestricted to coyQ), is an EL-labeling of Q.
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Proof: We claim that a covex < yin Q is also a cover irP. If not, the unique rising
to y chaincin P has length>2 andc C Q, contradicting the cover iQ. It follows that
Q is graded and has the same rank functiofad he fact that is an EL-labeling ofQ is
now clear. |

We now recall some results on the strong Bruhat order on permutationsx let
w1y . .. Ty be a permutation irs(n), n > 2. The number of inversions in, i.e., the
number of pairgi, j) withi < j andm > m; is denoted (). Foro € S(n), we write
7 ~ o If o can be obtained from by interchanging two of the;’s. We sayo is obtained
from 7z by aninversion increasing interchanger ~ o andi () < i (o). Definer < t if
7 can be obtained from by a sequence of zero or more inversion increasing interchanges.
It is well known that(S(n), <) is a graded poset of rar), with rank of a permutation
given byi (7r), and with rank generating function

R(S(n), @) = [1q[2]q - - [N]q-

Let A be the set of ordered pai(g j) € [n] x [n] such that < j. Linearly orderA
lexicographically. Lef : cov(S(n)) — A be the labeling

M, o) =, ]), (%)

wherei and| are interchanged in to geto andi < j.
We shall need the following facts about the strong Bruhat ordes(an

(1) xis an EL-labeling o{S(n), <) (see [6]).

(2) f r =mm,...m, theno coversr if and only if o is obtained fromr by interchanging
mi andrj wherei < j andm; < 7; and each element of the def 1, ..., 7j_1} is
either< mj or > ;.

(3) The order complex afS(n), <) triangulates the sphere of dimensigh— 2 and hence
(S(n), <) is Eulerian (see [6]).

(4) Letwr = aydy...an,0 = biby...by,m < o. Forl € [n], let z72() ando (1)
denote the positions ofin = ando, respectively. Let be the smallest number such
thatz (i) < o71(i). Thent (k) = o~2(k) fork = 1,2,...,i — 1. Let| be the
smallest number such that> i andz~%(i) < 7~%(j) < o~%(i). Then the second
element in the unique rising chain framto o is obtained fromr by interchanging
andj (see [6]).

Consider the linearly ordered séf][= {1 <1 <2 < 2 < --- < n < i} and define
E(N) to be the set of all permutations df][satisfying:

1. fori =1,2,...,n,i appears before
2. 1 2,...,nappearinincreasing order.

For instanceE (2) = {1122, 1212, 1221)}.
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Proposition 3.2 Consider the set of permutations[af], (n > 2), under strong Bruhat
order and leta be the edge labeling given ki¢). Then the subset @) satisfies the
assumption of Propositio®.1.

Proof: We haved = 1122--.ni € E(A). Letz = 12...nAin—1...1 € E(A). Con-
siderm = mmy...7mn € EN). If mumo...m # 12...n then find the smallest > 2
such thatrymp... i1 = 12...(i — D andi = m, | >i. Then{m;, wi;1,...,m_1} C
{(1,2,...1—1}. By a sequence of inversion increasing interchanges we canntake
M1 .. AT ... 141 - . . Ton € E(N). Repeating this step we see that< o €
E(n), wheres = 0105. .. ooy Satisfiesrio, ... on = 12...n. Now by another sequence of
inversion increasing interchanges it follows that z. Thus,z is the maximum element
of E(R).

Lets, T € E(), withd < 7. Letx be the least element aifsuch thas—%(x) < t71(x).
We claim thatx € {1,2,...,A}. Assume notand let € {1,2,...,n}. Let p = § 1(x).
Since evenyj € [N], j < X, appears in the same positionsgiandz, we see that contains
an entry>x in the pth position. This entry thus appears befare ¢, a contradiction to
the fact that € E(f). Thusx € {1,2,...,A}. Letx =T.

Now let y be the smallest element i][such thaty > Tands (1) < §~1(y) < t (D).
So we can writé = a;Ta,Y a3, for some stringas, as, oz, and where every element of the
stringay is either<T1 or >y. Two cases arise:

() y=1e {12 ...,0A): Thent is not an element of the string sincel < t < f. It
follows thata; yaolas € E(N).

(i) y=te{l 2, ...,n}: Inthis case no element of the striagis >t, as this contradicts
the factthat € E(n). Thus every element of the string is <Tand is in fact a member
of {1,2,...,1— 1}. It now follows thata; yaslas € E ().

From fact (4) listed previously we get that the second element of the unique rising chain
from § to = (in S(A)) belongs toE(R). By induction, the entire rising chain belongs to
E(R). o

We now define a mag : F(2n) — E(N) as follows: Leté € F(2n) with § =
[a1, bi][az, by] .. .[an, bn]. In the permutation 123.(2n), replaceay, ay, ..., a, by
1,2,...,nrespectively and replad®, by, ..., b, by 1,2, ..., i respectively to gep(3).
Itis easily seen that(§) € E(n). Forinstance, [16][2, 3][4, 7][5, 8] € F(8) gets mapped

to 122341 34 € E(4). Itis also easily seen thatis a bijection.
Proposition 3.3 Forall § € F(2n), wt(8) =i (¢ (3)).

Proof: Lets € F(2n), with § = [ay, bi][ap, by] ... [an, bn]. Write ¢(8) =7 = w172
...7mn € E(N). Thenmry =1 andr, =1.
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D_efinen’ € E(n—1) as follows: Considetr; . .. mwp,_17p, 41 - - - T2n, replacd byi — 1
andi byi —1fori =2,3,...,ntogetx’. Clearly,

i(m) =i(x) + (b —2).

Defines’ € F(2n — 2) as follows: Considerds, by][as, bs] . . . [an, b,], subtract 1 from
all numbers<b; and subtract 2 from all numbestsh; to gets’. Then

WE(S) = Wt(8') + (by — 2)

and¢ (8") = =’. The result now follows by induction. O
Proposition 3.4 The mapp is an order isomorphism.

Proof: We first show thatp~! is order preserving. Let,o € E(R) with 7 <o and
i(0)=i(m)+1. Writer =m175. .. 7m0 € E(R) andg—1() =[ay, bi][ap, by] . . . [an, bn].
Leto be obtained fromx by interchangingr; andrj, wherei < j andr; <. If 7y, 7j €
{1,2,...,n}, we cannot interchangs ands; and remain inE(N). A similar situation
holds whenr; € {1,2,...,n} andxj € {1,2,...,A}. Thus,m € {1,2,...,A}. Let
7; = I. We consider two cases:

(@ 7 €{1,2,...,0}: letr; =t for somet > | (see figure 4).
In this case exchangiry andby in ¢ () gives¢~1(c). Sincep ! takes number
of inversions to weight we havg () < ¢ (o).
(b) mj € {1,2,...,n}: letm; =t for somet > |. Thenb < & (see figure 5).

Sincei (o) =i () + 1, it follows that all elements of the sti.1, ..., 71} are either
<l or >t. This implies that no number in the sgg + 1,...,a — 1} is the initial point

C]I bl bt
Figure 4.
‘\\\ ~\\\ //"
AN Y 4
\ \ 4
\ \ /
\ \ !
/—\ ‘ ‘ ,
] 1 !
a o]} a

Figure 5
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of an arc ing~1(;r). Thus, exchangint anda; in ¢ () gives¢ (o) in the standard
representation. Singe ! takes number of inversions to weight we have (1) < ¢~%(0).
It follows that¢ ! is order preserving.

Now we show that) is order preserving. Let € F(2n) with § = [ag, bi][ap, by] . ..
[an, bn]. Letz ~ §. If 7 is obtained from$ by exchangindy anda;, i < j, theng(r)
is obtained fromp (8) by exchanging and j. Thus,¢(z) ~ ¢(8). If, on the other hand,
7 is obtained from$ by exchangindy andb;, i < j, then¢g(r) is obtained fromp (8) by
exchanging andj. Thus, in this case als@,(t) ~ ¢(3).

Since¢ takes weight to the number of inversions, a weight increasing interchange cor-
responds to an inversion increasing interchange. O

Proof of Theorem 1.3

() That(F(2n), <) is a graded poset, with rank function given by weight, follows from
Propositions 3.1, 3.2, 3.3 and 3.4. The ranklBt2n), <) =i(12...nAi(n—1)...1)
= 2(}). The rank generating function &f(2n) follows from Corollary 2.2.

(i) That (F(Zn) <) is EL-shellable follows from Propositions 3.1, 3.2 and 3.4. Now
dim(A(F(2n), <)) = 2(5) — 2. To prove that the order complex B{(2n) triangulates
a ball we proceed as follows.

Consider the EL-labeling oIE(n) given by (x). We claim that there is no unrefinable
chain from0 = 1122...nAto 1 = 12...nAn— 1...1 with a descent at every level.
Suppose there were such a chain. Sihds the least element ofif which changes its
position from0 to 1, the last few labels of this chain must be of the fafina) and all other
labels(i, j) must satisfyi # 1. Thus this chain splits up in@-r and=-1 chains, where
7 = 1123...nAn—1...2. Then in ther-1 chain the labell, 2) occurs beforel, 2).
So somewhere in between there is no descent. Thus we arrive at a contradiction. Now for
a posetP with an EL-labeling,up (0, 1) is the number of unrefinable — 1 chains with
descent at every level (see [14]). It follows thatn, (0, 1) = 0

Any 2(3) —3 dimensional face ok (E(M)) is a maximal chain ifE (A) minus one element,
sayofrankl Letc:Xp < Xo< -+ < X_1< Xig1 < -+ < Xa(l) - 1 be such a face.
Consider the rank 2 intervaki[_1, Xi;1]. In the poset of all permutatlons af], [%i—1, Xi+1]
has exactly 2 elements of ranksince this poset is Eulerian). Thus fin) there are at most
2 elements of rankin [X;_1, X;+1]. Thus,cis contained in at most two facetsaf F (2n)).
Now, a result of Danaraj and Klee [5] states thafifis a (pure) shellable complex, and
if every face of dimension dim — 1 is contained in at most 2 facets, thigxy is either a
sphere or a ball of dimension dim. Sinceyr n (0, 1) = 0, it follows that|A(F (2n))| is
a ball of dimension &) — 2. O
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