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Abstract. We define a statistic, calledweight, on involutions and consider two applications in which this statistic
arises. LetI (n)denote the set of all involutions on [n](= {1, 2, . . . ,n})and letF(2n)denote the set of all fixed point
free involutions on [2n]. For an involutionδ, let|δ|denote the number of 2-cycles inδ. Let [n]q = 1+q+· · ·+qn−1

and let(nk)q denote theq-binomial coefficient. There is a statistic wt onI (n) such that the following results are
true.

(i) We have the expansion(
n

k

)
q
=

∑
δ∈I (n)

(q − 1)|δ|qwt(δ)

(
n− 2|δ|
k− |δ|

)
.

(ii) An analog of the (strong) Bruhat order on permutations is defined onF(2n) and it is shown that this gives a
rank-2(n2) graded EL-shellable poset whose order complex triangulates a ball. The rank ofδ ∈ F(2n) is given
by wt(δ) and the rank generating function is [1]q[3]q · · · [2n− 1]q.
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1. Introduction and statement of results

In this paper we define a statistic on involutions and consider two applications in which this
statistic arises.

An arc or a2-cycleis a set consisting of two distinct positive integers. We write an arc
as [i, j ], with i < j . For an arc [i, j ], we call i the initial point and j theterminal pointof
the arc. Thespanof an arc [i, j ] is defined as span [i, j ] = j − i − 1. A pair{[i, j ], [k, l ]}
of disjoint arcs is said to be acrossingif i < k < j < l or k < i < l < j (see figure 1).

An involution is a finite set of pairwise disjoint arcs. For nonnegative integersn, k, let
I (n) denote the set of all involutions whose arcs are contained in [n](= {1, 2, . . .n}) and let
I (n, k) denote the set of involutions inI (n) with k arcs. We will always write involutions
in theirstandard representationwhich is in increasing order of initial points.

Let δ be an involution. The number of arcs inδ is denoted by|δ|. Thecrossing number
of δ, denotedc(δ), is the number of pairs of arcs ofδ that are crossings. Define theweight
of δ, denoted by wt(δ), as follows:

wt(δ) =
( ∑

[i, j ]∈δ
span[i, j ]

)
− c(δ).
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Figure 1. A crossing.

Figure 2. δ = {[1, 8], [2, 6], [3, 9], [4, 7]}.

Example 1.1 Let δ = [1, 8][2, 6][3, 9][4, 7] ∈ I (9). Representδ as shown in figure 2.
Observe that there are 3 crossings. Thuswt(δ) = (8− 1− 1)+ (6− 2− 1)+ (9− 3− 1)
+ (7− 4− 1)− 3= 13.

In order to motivate our first application of the weight statistic, we define the notion of
symmetric Boolean packings (see Bj¨orner [3, Exercise 7.36], and Ref. [13]). LetP be a
finite graded rank-n poset with rank functionr : P→ {0, 1, 2, . . . ,n}. For 0≤ k ≤ n, let
Nk denote the number of elements ofP of rankk. We say that the elementsx1, x2, . . . , xh

of P form a symmetric chainif xi+1 coversxi for every i < h andr (x1) + r (xh) = n.
A symmetric chain decomposition(SCD) of P is a covering ofP by pairwise disjoint
symmetric chains. LetB(n) denote the poset of all subsets of [n], under inclusion. We say
that a subsetQ ⊆ P is symmetric Booleanif

(i) Q, under the induced order, has a minimum element, sayz, and a maximum element,
sayz′.

(ii) Q is order isomorphic toB(r (z′)− r (z)).
(iii) r (z′)+ r (z) = n.

A symmetric Boolean packing(SBP) ofP is a covering ofP by pairwise disjoint sym-
metric Boolean subsets. De Bruijn, Tenbergen, and Kruyswijk [4] constructed a symmetric
chain decomposition ofB(l ), for l ≥ 0. It follows that if P admits a SBP, then it has a SCD.

The existence of a SBP allows us to expand the rank numbers ofP in terms of the binomial
coefficients. LetP = Q1]Q2] · · · ]Qt (disjoint union) be a SBP ofP. Letzi (respectively
z′i ) denote the minimum (respectively, maximum) element ofQi , i = 1, 2, . . . , t . SinceQi

is order isomorphic toB(r (z′i )− r (zi )) andr (z′i )+ r (zi ) = n we have

Nk =
t∑

i=1

(
r (z′i )− r (zi )

k− r (zi )

)
=

t∑
i=1

(
n− 2r (zi )

k− r (zi )

)
. (1.1)
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Let q be a prime power and letBq(n) denote the poset of subspaces, under inclusion, of
ann-dimensional vector space overFq (the finite field withq elements). The number of
elements of rankk in Bq(n) is theq-binomial coefficient( n

k )q. Griggs [8] proved thatBq(n)
has a SCD. An explicit construction of a SCD ofBq(n) was a long-standing open problem.
In their beautiful recent paper [16], Vogt and Voigt solve this problem. It is not difficult to
see that their construction actually yields a SBP ofBq(n). It follows that theq-binomial
coefficients admit an expansion (in the form of identity 1.1 above) in terms of the binomial
coefficients. Our first application of the weight statistic is the following explicit expansion
(nk) and(nk)q are taken to be zero ifn < 0 ork < 0).

Theorem 1.2(
n

k

)
q

=
∑
δ∈I (n)

(q − 1)|δ|qwt(δ)

(
n− 2|δ|
k− |δ|

)
.

For example, we have(5k)q = (5k) + (q − 1)(4+ 3q + 2q2 + q3)( 3
k−1) + (q − 1)2(3+

4q + 4q2+ 3q3+ q4)( 1
k−2).

We originally had two proofs of Theorem 1.2: a simple manipulative proof based on per-
mutation statistics and a bijective proof based on row reduced echelon forms. The bijective
proof, however, does not yield a SBP ofBq(n). We feel that a fuller understanding of the
construction in [16] would yield a bijective proof of Theorem 1.2 (or even a generalization
of Theorem 1.2) that actually implements a SBP ofBq(n). Therefore, in Section 2, we are
only presenting the manipulative proof of Theorem 1.2.

Let F(2n) denote the set of allfixed point free involutionsin I (2n), i.e., involutions in
I (2n) havingn arcs. The weight statistic defined onI (2n) restricts toF(2n). (We note that
the crossing number statistic on fixed point free involutions was first defined by Stembridge
[15] in his work on pfaffians.) We now define a partial order onF(2n). This partial order
can be seen as an analog of the (strong) Bruhat order on permutations (Edelman [6]).

Let δ = [a1, b1][a2, b2] . . . [an, bn] ∈ F(2n). We say thatτ ∈ F(2n) is obtained fromδ
by aninterchange, writtenδ ∼ τ , if there exist 1≤ i < j ≤ n such that

(i) τ ’s standard representation is obtained fromδ by exchangingbi andaj . or
(ii) τ ’s standard representation is obtained fromδ by exchangingbi andbj .

Note that ifδ ∼ τ thenτ ∼ δ. We say thatτ is obtained fromδ by aweight increasing
interchangeif δ ∼ τ and wt(δ) < wt(τ ).

Define a partial order≤ on F(2n) as follows: Letδ, τ ∈ F(2n). Thenδ ≤ τ if τ can
be obtained fromδ by a sequence of (zero or more) weight increasing interchanges. For
example, the Hasse diagram ofF(6) is shown in figure 3.

For a finite graded posetP the rank generating function is defined byR(P,q) =∑n
k=0 Nkqk, where Nk is the number of elements ofP of rank k and n is the rank

of P (hereq is an indeterminate). The following result is proved in Section 3 (below
[k]q = 1+ q + q2+ · · · + qk−1).
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Figure 3. Hasse diagram ofF(6).

Theorem 1.3
(i) For n ≥ 1, (F(2n),≤) is a graded poset of rank2(n2). The rank ofδ ∈ F(2n) is given

bywt(δ) and

R(F(2n),q) = [1]q[3]q[5]q · · · [2n− 1]q.

(ii) For n ≥ 2, (F(2n),≤) is EL-shellable and its order complex triangulates the ball of
dimension2(n2)− 2.

One of the referees has kindly informed us that there is a possible relationship be-
tween the poset structure onF(2n) and the cell decomposition of the homogeneous space
GL(2n)/Sp(2n), considered in Howe and Kraft [9].

Representing set partitions by means of a suitable set of arcs and by slightly extending
the definition of crossing of arcs, we can define a notion of weight for set partitions. This
statistic turns out to be the same as that recently defined by Johnson [10, 11]. We shall treat
this topic in a future paper.

2. q-Binomial coefficients

In this section we give a proof of Theorem 1.2 based on permutation statistics. For non-
negative integersn, k, define the generating functioniq(n, k) =

∑
δ∈I (n,k) qwt(δ). We put

iq(n, k) = 0 if n < 0 ork < 0.

Proposition 2.1 For nonnegative integers n, k,

iq(n+ 1, k) = iq(n, k)+ [n]qiq(n− 1, k− 1),

with iq(0, k) = δ0,k.
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Proof: We first recall the proof of the identity in theq = 1 case. Define a map

ϒ : I (n+ 1, k)→ I (n, k) ] ([n] × I (n− 1, k− 1))

as follows: Givenδ ∈ I (n + 1, k), defineϒ(δ) = δ if n + 1 is not contained in any
arc of δ. If [ i, n + 1] ∈ δ for somei ∈ {1, 2, . . . ,n}, delete arc [i, n + 1] from δ to
get δ̄. Relabel the elements of [n + 1] − {i, n + 1} as {1, 2, . . . ,n − 1}, in increasing
order. Perform the corresponding relabeling ofδ̄ to get δ′ ∈ I (n − 1, k − 1). Define
ϒ(δ) = (i, δ′). The mapϒ is easily seen to be a bijection. In the general case we check
that ifϒ(δ) = (i, δ′) ∈ [n]× I (n− 1, k− 1), then wt(δ) = n− i +wt(δ′). This will prove
the identity.

Let ϒ(δ) = (i, δ′). Let p be the number of arcs inδ with terminal points belonging to
{i + 1, . . . ,n}. Then it is easily seen thatc(δ) = c(δ̄)+ p = c(δ′)+ p and( ∑

[k,l ]∈δ̄
span[k, l ]

)
=
( ∑

[k,l ]∈δ′
span[k, l ]

)
+ p.

We have

wt(δ) =
( ∑

[k,l ]∈δ̄
span[k, l ]

)
+ (n+ 1− i − 1)− c(δ)

=
( ∑

[k,l ]∈δ′
span[k, l ]

)
− c(δ′)+ n− i

= wt(δ′)+ n− i .

This completes the proof. 2

Corollary 2.2 For a nonnegative integer n,∑
δ∈F(2n)

qwt(δ) = iq(2n, n) = [2n− 1]q[2n− 3]q · · · [1]q.

Proof: Since iq(2n− 1, n)= 0, we have by Proposition 2.1,iq(2n, n)= [2n− 1]q iq
(2n− 2, n− 1). The result now follows by induction. 2

The following recurrence for theq-binomial coefficients was given by Goldman and Rota
[7]. (See also [12]).

Proposition 2.3 For nonnegative integers n, k,(
n+ 1

k

)
q

=
(

n

k

)
q

+
(

n

k− 1

)
q

+ (qn − 1)

(
n− 1

k− 1

)
q

,

with (0k)q = δ0,k.
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Proof of Theorem 1.2: We use the notation set up in the proof of Proposition 2.1, where
a bijectionϒ : I (n+ 1)→ I (n) ] ([n] × I (n− 1)) was defined.

We will show that the right hand side satisfies the recurrence given in Proposition 2.3.
We have

∑
δ∈I (n+1)

(q − 1)|δ|qwt(δ)

(
n+ 1− 2|δ|

k− |δ|
)

=
∑
δ∈I (n)

(q − 1)|δ|qwt(δ)

(
n+ 1− 2|δ|

k− |δ|
)

+
n∑

i=1

{ ∑
δ∈I (n+1)
[i,n+1]∈δ

(q − 1)1+|δ
′|q(n−i )+wt(δ′)

(
n+ 1− 2(|δ′| + 1)

k− (|δ′| + 1)

)}

=
∑
δ∈I (n)

(q − 1)|δ|qwt(δ)

{(
n− 2|δ|
k− |δ|

)
+
(

n− 2|δ|
k− 1− |δ|

)}

+
n∑

i=1

{ ∑
δ∈I (n−1)

(q − 1)qn−i (q − 1)|δ|qwt(δ)

(
n− 1− 2|δ|
k− 1− |δ|

)}

=
{ ∑
δ∈I (n)

(q − 1)|δ|qwt(δ)

(
n− 2|δ|
k− |δ|

)}
+
{ ∑
δ∈I (n)

(q − 1)|δ|qwt(δ)

(
n− 2|δ|

k− 1− |δ|
)}

+
∑

δ∈I (n−1)

{
n∑

i=1

(q − 1)qn−i

}
(q − 1)|δ|qwt(δ)

(
n− 1− 2|δ|
k− 1− |δ|

)

=
{ ∑
δ∈I (n)

(q − 1)|δ|qwt(δ)

(
n− 2|δ|
k− |δ|

)}
+
{ ∑
δ∈I (n)

(q − 1)|δ|qwt(δ)

(
n− 2|δ|

k− 1− |δ|
)}

+ (qn − 1)

{ ∑
δ∈I (n−1)

(q − 1)|δ|qwt(δ)

(
n− 1− 2|δ|
k− 1− |δ|

)}
.

This completes the proof. ¤

The following identity (Theorem 3.4, [1]) follows as a corollary to Theorem 1.2.

Corollary 2.4 For a nonnegative integer n,

n∑
k=0

(−1)k
(

n

k

)
q

=
{
(1− q)(1− q3) · · · (1− q2m−1) if n = 2m

0 if n is odd
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Proof:

n∑
k=0

(−1)k
(

n

k

)
q

=
n∑

k=0

(−1)k
( ∑
δ∈I (n)

(q − 1)|δ|qwt(δ)

)(
n− 2|δ|
k− |δ|

))

=
∑
δ∈I (n)

(q − 1)|δ|qwt(δ)

(
n∑

k=0

(−1)k
(

n− 2|δ|
k− |δ|

))
.

The right hand side in this expression is zero except whenn− 2|δ| = 0 andk− |δ| = 0.
In that casen is even, say 2m, and hencek = m. Then in the summation only the terms
corresponding to fixed point free involutions will survive and we have, by Corollary 2.2,

2m∑
k=0

(−1)k
(

2m

k

)
q

= (−1)m(q − 1)m
∑

δ∈I (2m,m)

qwt(δ)

= (1− q)m[1]q[3]q · · · [2m− 1]q

= (1− q)(1− q3) · · · (1− q2m−1). 2

3. Fixed point free involutions

In this section we give a proof of Theorem 1.3. In order to study the poset(F(2n),≤), we
will realize it as an induced subposet ofS(2n) (the set of permutations of [2n]), with strong
Bruhat order. LetP be a finite, graded poset with minimum element0̂ and maximum ele-
ment1̂, 0̂ 6= 1̂. Let P̄ = P − {0̂, 1̂}. By theorder complexof P we mean the simplicial
complex1(P̄) of chains inP̄ (all our simplicial complexes contain∅ and dim(∅) = −1).
Let cov(P) = {(x, y) ∈ P × P | y coversx}. An edge labelingof P is a mapλ :
cov(P)→ 3, where3 is some poset. An unrefinable chainc : x0 < x1 < · · · < xn in P
gets the induced labelλ(c) = (λ(x0, x1), λ(x1, x2), . . . , λ(xn−1, xn)). The chainc is said
to berising if λ(x0, x1) ≤ λ(x1, x2) ≤ · · · ≤ λ(xn−1, xn). We say thatλ is anEL-labeling
if the following two properties are satisfied:

1. For everyx, y ∈ P, x < y, there is a unique rising, unrefinable chaincx,y from x to y.
2. If a is any other unrefinable chain fromx to y, a 6= cx,y, thenλ(cx,y) <l λ(a) in the

lexicographic order.

Björner [2] showed that ifP admits an EL-labeling, then1(P̄) is shellable (for the
definition of shellable complexes see [3]).

We shall need the following elementary result.

Proposition 3.1 Let P be a finite graded poset with0̂, 1̂, 0̂ 6= 1̂. Letλ : cov(P) −→ 3 be
an EL-labeling of P. Let Q⊆ P contain0̂ and also a maximum element z(in the induced
order), with 0̂ 6= z. Assume that Q satisfies the following property: For all x, y ∈ Q, x < y,
the unique rising chain from x to y in P lies in Q. Then Q(with induced order) is a graded
poset with the same rank function as P andλ, restricted to cov(Q), is an EL-labeling of Q.
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Proof: We claim that a coverx < y in Q is also a cover inP. If not, the unique risingx
to y chainc in P has length≥2 andc ⊆ Q, contradicting the cover inQ. It follows that
Q is graded and has the same rank function asP. The fact thatλ is an EL-labeling ofQ is
now clear. 2

We now recall some results on the strong Bruhat order on permutations. Letπ =
π1π2 . . . πn be a permutation inS(n), n ≥ 2. The number of inversions inπ , i.e., the
number of pairs(i, j ) with i < j andπi > π j is denotedi (π). Forσ ∈ S(n), we write
π ∼ σ if σ can be obtained fromπ by interchanging two of theπi ’s. We sayσ is obtained
fromπ by aninversion increasing interchangeif π ∼ σ andi (π) < i (σ ). Defineπ ≤ τ if
τ can be obtained fromπ by a sequence of zero or more inversion increasing interchanges.
It is well known that(S(n),≤) is a graded poset of rank(n2), with rank of a permutationπ
given byi (π), and with rank generating function

R(S(n),q) = [1]q[2]q · · · [n]q.

Let 3 be the set of ordered pairs(i, j ) ∈ [n] × [n] such thati < j . Linearly order3
lexicographically. Letλ : cov(S(n))→ 3 be the labeling

λ(π, σ ) = (i, j ), (∗)

wherei and j are interchanged inπ to getσ andi < j .
We shall need the following facts about the strong Bruhat order onS(n).

(1) λ is an EL-labeling of(S(n),≤) (see [6]).
(2) If π =π1π2 . . . πn thenσ coversπ if and only ifσ is obtained fromπ by interchanging

πi andπ j wherei < j andπi < π j and each element of the set{πi+1, . . . , π j−1} is
either< πi or> π j .

(3) The order complex of(S(n),≤) triangulates the sphere of dimension(n2)−2 and hence
(S(n),≤) is Eulerian (see [6]).

(4) Let π = a1a2 . . .an, σ = b1b2 . . .bn, π < σ . For l ∈ [n], let π−1(l ) andσ−1(l )
denote the positions ofl in π andσ , respectively. Leti be the smallest number such
thatπ−1(i ) < σ−1(i ). Thenπ−1(k) = σ−1(k) for k = 1, 2, . . . , i − 1. Let j be the
smallest number such thatj > i andπ−1(i ) < π−1( j ) ≤ σ−1(i ). Then the second
element in the unique rising chain fromπ to σ is obtained fromπ by interchangingi
and j (see [6]).

Consider the linearly ordered set [n̄] = {1 < 1̄ < 2 < 2̄ < · · · < n < n̄} and define
E(n̄) to be the set of all permutations of [n̄] satisfying:

1. for i = 1, 2, . . . ,n, i appears beforēi.
2. 1, 2, . . . ,n appear in increasing order.

For instance,E(2̄) = {11̄22̄, 121̄ 2̄, 122̄ 1̄}.
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Proposition 3.2 Consider the set of permutations of[n̄], (n ≥ 2), under strong Bruhat
order and letλ be the edge labeling given by(∗). Then the subset E(n̄) satisfies the
assumption of Proposition3.1.

Proof: We have0̂ = 11̄22̄ · · ·nn̄ ∈ E(n̄). Let z = 12. . .nn̄n− 1 . . . 1̄ ∈ E(n̄). Con-
siderπ = π1π2 . . . π2n ∈ E(n̄). If π1π2 . . . πn 6= 12. . .n then find the smallesti ≥ 2
such thatπ1π2 . . . πi−1 = 12. . . (i − 1) andi = πl , l > i . Then{πi , πi+1, . . . , πl−1} ⊆
{1̄, 2̄, . . . ı− 1}. By a sequence of inversion increasing interchanges we can takeπ to
π1π2 . . . πi−1πlπi . . . πl−1πl+1 . . . π2n ∈ E(n̄). Repeating this step we see thatπ ≤ σ ∈
E(n̄), whereσ = σ1σ2 . . . σ2n satisfiesσ1σ2 . . . σn = 12. . .n. Now by another sequence of
inversion increasing interchanges it follows thatσ ≤ z. Thus,z is the maximum element
of E(n̄).

Letδ, τ ∈ E(n̄), with δ < τ . Letx be the least element of [n̄] such thatδ−1(x) < τ−1(x).
We claim thatx ∈ {1̄, 2̄, . . . , n̄}. Assume not and letx ∈ {1, 2, . . . ,n}. Let p = δ−1(x).
Since everyj ∈ [n̄], j < x, appears in the same positions inδ andτ , we see thatτ contains
an entry>x in the pth position. This entry thus appears beforex in τ , a contradiction to
the fact thatτ ∈ E(n̄). Thusx ∈ {1̄, 2̄, . . . , n̄}. Let x = ı̄.

Now let y be the smallest element in [n̄] such thaty > ı̄ andδ−1(ı̄) < δ−1(y) ≤ τ−1(ı̄).
So we can writeδ = α1ı̄α2yα3, for some stringsα1, α2, α3, and where every element of the
stringα2 is either<ı̄ or>y. Two cases arise:

(i) y = t̄ ∈ {1̄, 2̄, . . . , n̄}: Thent is not an element of the stringα2 sinceı̄ < t < t̄ . It
follows thatα1yα2ı̄α3 ∈ E(n̄).

(ii) y = t ∈ {1, 2, . . . ,n}: In this case no element of the stringα2 is>t , as this contradicts
the fact thatδ ∈ E(n̄). Thus every element of the stringα2 is<ı̄ and is in fact a member
of {1̄, 2̄, . . . , ı− 1}. It now follows thatα1yα2ı̄α3 ∈ E(n̄).

From fact (4) listed previously we get that the second element of the unique rising chain
from δ to τ (in S(n̄)) belongs toE(n̄). By induction, the entire rising chain belongs to
E(n̄). 2

We now define a mapφ : F(2n) → E(n̄) as follows: Letδ ∈ F(2n) with δ =
[a1, b1][a2, b2] . . . [an, bn]. In the permutation 123. . . (2n), replacea1,a2, . . . ,an by
1, 2, . . . ,n respectively and replaceb1, b2, . . . ,bn by 1̄, 2̄, . . . , n̄ respectively to getφ(δ).
It is easily seen thatφ(δ) ∈ E(n̄). For instance, [1, 6][2, 3][4, 7][5, 8] ∈ F(8) gets mapped
to 12̄234̄1 3̄ 4̄ ∈ E(4̄). It is also easily seen thatφ is a bijection.

Proposition 3.3 For all δ ∈ F(2n), wt(δ) = i (φ(δ)).

Proof: Let δ ∈ F(2n), with δ = [a1, b1][a2, b2] . . . [an, bn]. Write φ(δ)=π =π1π2

. . . π2n ∈ E(n̄). Thenπ1= 1 andπb1 = 1̄.
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Defineπ ′ ∈ E(n− 1) as follows: Considerπ2 . . . πb1−1πb1+1 . . . π2n, replacei by i − 1
andī by i − 1 for i = 2, 3, . . . ,n to getπ ′. Clearly,

i (π) = i (π ′)+ (b1− 2).

Defineδ′ ∈ F(2n− 2) as follows: Consider [a2, b2][a3, b3] . . . [an, bn], subtract 1 from
all numbers<b1 and subtract 2 from all numbers>b1 to getδ′. Then

wt(δ) = wt(δ′)+ (b1− 2)

andφ(δ′) = π ′. The result now follows by induction. 2

Proposition 3.4 The mapφ is an order isomorphism.

Proof: We first show thatφ−1 is order preserving. Letπ, σ ∈ E(n̄) with π <σ and
i (σ )= i (π)+1. Writeπ =π1π2 . . . π2n ∈ E(n̄) andφ−1(π)= [a1, b1][a2, b2] . . . [an, bn].
Let σ be obtained fromπ by interchangingπi andπ j , wherei < j andπi <π j . If πi , π j ∈
{1, 2, . . . ,n}, we cannot interchangeπi andπ j and remain inE(n̄). A similar situation
holds whenπi ∈ {1, 2, . . . ,n} andπ j ∈ {1̄, 2̄, . . . , n̄}. Thus,πi ∈ {1̄, 2̄, . . . , n̄}. Let
πi = l̄ . We consider two cases:

(a) π j ∈ {1̄, 2̄, . . . , n̄}: let π j = t̄ for somet > l (see figure 4).
In this case exchangingbl andbt in φ−1(π) givesφ−1(σ ). Sinceφ−1 takes number

of inversions to weight we haveφ−1(π) < φ−1(σ ).

(b) π j ∈ {1, 2, . . . ,n}: let π j = t for somet > l . Thenbl < at (see figure 5).

Sincei (σ ) = i (π)+ 1, it follows that all elements of the set{πi+1, . . . , π j−1} are either
<l̄ or >t . This implies that no number in the set{bl + 1, . . . ,at − 1} is the initial point

Figure 4.

Figure 5.
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of an arc inφ−1(π). Thus, exchangingbl andat in φ−1(π) givesφ−1(σ ) in the standard
representation. Sinceφ−1 takes number of inversions to weight we haveφ−1(π) < φ−1(σ ).
It follows thatφ−1 is order preserving.

Now we show thatφ is order preserving. Letδ ∈ F(2n) with δ = [a1, b1][a2, b2] . . .
[an, bn]. Let τ ∼ δ. If τ is obtained fromδ by exchangingbi andaj , i < j , thenφ(τ)
is obtained fromφ(δ) by exchanginḡı and j . Thus,φ(τ) ∼ φ(δ). If, on the other hand,
τ is obtained fromδ by exchangingbi andbj , i < j , thenφ(τ) is obtained fromφ(δ) by
exchanginḡı and j̄ . Thus, in this case also,φ(τ) ∼ φ(δ).

Sinceφ takes weight to the number of inversions, a weight increasing interchange cor-
responds to an inversion increasing interchange. 2

Proof of Theorem 1.3

(i) That (F(2n),≤) is a graded poset, with rank function given by weight, follows from
Propositions 3.1, 3.2, 3.3 and 3.4. The rank of(F(2n),≤) = i (12. . .nn̄(n− 1) . . . 1̄)
= 2(n2). The rank generating function ofF(2n) follows from Corollary 2.2.

(ii) That (F(2n),≤) is EL-shellable follows from Propositions 3.1, 3.2 and 3.4. Now
dim(1(F(2n),≤)) = 2(n2)− 2. To prove that the order complex ofF(2n) triangulates
a ball we proceed as follows.

Consider the EL-labeling ofE(n̄) given by(∗). We claim that there is no unrefinable
chain from0̂ = 11̄22̄ . . .nn̄ to 1̂ = 12. . .nn̄n− 1 . . . 1̄ with a descent at every level.
Suppose there were such a chain. Since1̄ is the least element of [n̄] which changes its
position from0̂ to1̂, the last few labels of this chain must be of the form(1̄,a) and all other
labels(i, j ) must satisfyi 6= 1̄. Thus this chain splits up intô0-π andπ -1̂ chains, where
π = 11̄23. . .nn̄ n− 1 . . . 2̄. Then in theπ -1̂ chain the label(1̄, 2) occurs before(1̄, 2̄).
So somewhere in between there is no descent. Thus we arrive at a contradiction. Now for
a posetP with an EL-labeling,µP(0̂, 1̂) is the number of unrefinablê0− 1̂ chains with
descent at every level (see [14]). It follows thatµF(2n)(0̂, 1̂) = 0.

Any 2(n2)−3 dimensional face of1(E(n̄)) is a maximal chain inE(n̄)minus one element,
say of ranki . Let c : x1 < x2 < · · · < xi−1 < xi+1 < · · · < x2(n

2
)−1 be such a face.

Consider the rank 2 interval [xi−1, xi+1]. In the poset of all permutations of [n̄], [xi−1, xi+1]
has exactly 2 elements of ranki (since this poset is Eulerian). Thus, inE(n̄) there are at most
2 elements of ranki in [xi−1, xi+1]. Thus,c is contained in at most two facets of1(F(2n)).
Now, a result of Danaraj and Klee [5] states that if1 is a (pure) shellable complex, and
if every face of dimension dim1 − 1 is contained in at most 2 facets, then|1| is either a
sphere or a ball of dimension dim1. SinceµF(2n)(0̂, 1̂) = 0, it follows that|1(F(2n))| is
a ball of dimension 2(n2)− 2. 2
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