ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Kazhdan-Lusztig Polynomials for 321-Hexagon-Avoiding Permutations

Sara C. Billey and Gregory S. Warrington

DOI: 10.1023/A:1011279130416

Abstract

In (Deodhar, Geom. Dedicata, 36(1) (1990), 95-119), Deodhar proposes a combinatorial framework for determining the Kazhdan-Lusztig polynomials P x , w in the case where W is any Coxeter group. We explicitly describe the combinatorics in the case where W = \mathfrak S n W = \mathfrak{S}_n (the symmetric group on n letters) and the permutation w is 321-hexagon-avoiding. Our formula can be expressed in terms of a simple statistic on all subexpressions of any fixed reduced expression for w. As a consequence of our results on Kazhdan-Lusztig polynomials, we show that the Poincaré polynomial of the intersection cohomology of the Schubert variety corresponding to w is (1+ q) l(w) if and only if w is 321-hexagon-avoiding. We also give a sufficient condition for the Schubert variety X w to have a small resolution. We conclude with a simple method for completely determining the singular locus of X w when w is 321-hexagon-avoiding. The results extend easily to those Weyl groups whose Coxeter graphs have no branch points ( B C n , F 4, G 2).

Pages: 111–136

Keywords: 321-hexagon-avoiding; Kazhdan-Lusztig polynomials; Schubert varieties; singular locus; defect graph

Full Text: PDF

References

1. A. Beilinson and J. Bernstein, “Localization of g-modules,” C.R. Acad. Sci. Paris Ser. I Math 292 (1981), 15-18.
2. S. Billey, W. Jockusch, and R. Stanley, “Some combinatorial properties of Schubert polynomials,” J. Alg. Comb. 2 (1993), 345-374.
3. S. Billey and V. Lakshmibai, Singular Loci of Schubert Varieties, Birkh\ddot auser, Number 182 in Progress in Mathematics. Boston, 2000.
4. B. Bollobás. Graph Theory, Springer-Verlag, New York, 1979.
5. R. Bott and H. Samelson, “Applications of the theory of Morse to symmetric spaces,” Amer. J. Math. 80 (1958), 964-1029.
6. N. Bourbaki, Groups et Algebres de Lie, vol. 4-6. Masson,
1957. BILLEY AND WARRINGTON
7. F. Brenti, “A combinatorial formula for Kazhdan-Lusztig polynomials,” Invent. Math. 118(2), (1994), 371- 394.
8. F. Brenti, “Combinatorial expansions of Kazhdan-Lusztig polynomials,” J. London Math. Soc. 55(2), (1997), 448-472.
9. F. Brenti, “Kazhdan-Lusztig polynomials and R-polynomials from a combinatorial point of view,” Discrete Math. 193(1-3), (1998), 93-116.
10. F. Brenti and R. Simion, Enumerative aspects of some Kazhdan-Lusztig polynomials. Preprint, 1998.
11. J.-L. Brylinski and M. Kashiwara, “Kazhdan-Lusztig conjectures and holonomic systems,” Invent. Math. 64 (1981), 387-410.
12. J.B. Carrell, “The Bruhat graph of a Coxeter group, a conjecture of Deodhar, and rational smoothness of Schubert varieties,” Proceedings of Symposia in Pure Math. 56(Part 1), (1994), 53-61.
13. M. Demazure. “Désingularization des variétés de Schubert généralisées,” Ann. Sc. E.N.S. 4(7), (1974), 53-58.
14. V. Deodhar, “Local Poincaré duality and non-singularity of Schubert varieties,” Comm. Algebra 13 (1985), 1379-1388.
15. V. Deodhar, “A combinatorial settting for questions in Kazhdan-Lusztig theory,” Geom. Dedicata 36(1), (1990), 95-119.
16. V. Deodhar, “A brief survey of Kazhdan-Lusztig theory and related topics,” Proceedings of Symposia in Pure Math 56(1), 1994.
17. C.K. Fan, “A Hecke algebra quotient and properties of commutative elements of a Weyl group,” Ph.D. Thesis, MIT, 1995.
18. C.K. Fan, “Schubert varieties and short braidedness,” Trans. Groups 3(1), (1998), 51-56.
19. C.K. Fan and R.M. Green, “Monomials and Temperley-Lieb algebras,” Journal of Algebra 190 (1997), 498- 517.
20. J.E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge University Press, Cambridge, UK, 1990.
21. D. Kazhdan and G. Lusztig, “Representations of Coxeter groups and Hecke algebras,” Inv. Math. 53 (1979), 165-184.
22. D. Kazhdan and G. Lusztig, “Schubert varieties and Poincaré duality,” Proc. Symp. Pure. Math., A.M.S. 36 (1980), 185-203.
23. F. Kirwan, An Introduction to Intersection Homology Theory, Longman Scientific and Technical, London, 1988.
24. D.E. Knuth, The Art of Computer Programming, vol.
3. Addison-Wesley, Reading, MA, 1973.
25. V. Lakshmibai and B. Sandhya, “Criterion for smoothness of Schubert varieties in S L(n)/B,” Proc. Indian Acad. Sci. (Math Sci.) 100(1), (1990), 45-52.
26. A. Lascoux, “Polynomes de Kazhdan-Lusztig pour les varietes de Schubert vexillaires,” (French) [Kazhdan- Lusztig polynomials for vexillary Schubert varieties]. C.R. Acad. Sci. Paris Sr. I Math. 321(6), (1995), 667-670.
27. A. Lascoux and M.P. Sch\ddot utzenberger, “Polynomes de Kazhdan & Lusztig pour les Grassmanniennes,” (French) [Kazhdan-Lusztig polynomials for Grassmannians]. Astérisque 87-88 (1981), 249-266, Young tableaux and Schur functions in algebra and geometry (Toruń, 1980).
28. G. Lusztig, “Tight monomials in quantized enveloping algebras,” Israel Math. Conf. Proc. 7 (1993), 117-132.
29. R. Simion and F.W. Schmidt, “Restricted permutations,” European J. of Combinatorics 6 (1985), 383-406.
30. J. Stembridge, “On the fully commutative elements of Coxeter groups,” J. Alg. Combin. 5(4), (1996), 353-385.
31. J. Stembridge, “The enumeration of fully commutative elements of Coxeter groups,” J. Alg. Combin. 7(3), (1998), 291-320.
32. J. Tits, “Le probl`eme des mots dans les groupes de Coxeter,” Symposia Math 1:175-185, 1968; Ist. Naz. Alta Mat. (1968), Symposia Math., vol. 1, Academic Press, London.
33. A. Vainshtein, B. Shapiro, and M. Shapiro, “Kazhdan-Lusztig polynomials for certain varieties of incomplete flags,” Discrete Math. 180 (1998), 345-355.
34. G.X. Viennot, “Heaps of pieces. I. Basic definitions and combinatorial lemmas,” Graph Theory and its Applications: East and West, Jinan, pp. 542-570, 1986.
35. G.S. Warrington, In preparation. Ph.D. Thesis, Harvard University.
36. A.V. Zelevinski\?i, “Small resolutions of singularities of Schubert varieties,” Functional Anal. Appl. 17(2), (1983), 142-144.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition