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Abstract. We give a formula for the values of irreducible unipot@amodular Brauer characters GiL(n, Fq)

at unipotent elements, whepds a prime not dividingy, in terms of (unknown!) weight multiplicities of quantum

GL,, and certain generic polynomia®s . (q). These polynomials arise as entries of the transition matrix between
the renormalized Hall-Littlewood symmetric functions and the forgotten symmetric functions. We also provide
an alternative combinatorial algorithm working in the Hall algebra for compuing(q).
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1. Introduction

Inthe character theory of the finite general linear gr@4p= GL(n, IFy), theGelfand-Graev
characterl'y, plays a fundamental role. By definition [H], is the character obtained by
inducing a “general position” linear character from a maximal unipotent subgroup. It has
support in the set of unipotent elementsGyf and for a unipotent elementof type (i.e.

the block sizes of the Jordan normal formwére the parts of the partitior) Kawanaka

[7, 3.2.24] has shown that

TaW) = (-D"A - -g?...(1—g"P), (1.1)

whereh() is the number of non-zero parts bf The starting point for this article is the
problem of calculating the operator determined by Harish-Chandra multiplicatidy.by

We have restricted our attention throughout to character values at unipotent elements,
when it is convenient to work in terms of thall algebra that is [13, Section 10.1], the
vector spacg = D, 9n, Whereg,, denotes the set of unipotent-supportegalued class
functions onGy, with multiplication coming from the Harish-Chandra induction operator.
For a partition:. of n, let; € g, denote the class function which is 1 on unipotent elements
of type A and zero on all other conjugacy classesGf. Then, {x,} is a basis for the
Hall algebra labelled by all partitions. Let : g — g be the linear operator determined by
multiplicationing by I',,. We describe in Section 2 an explicit recursive algorithm, involving
the combinatorics of addable and removable nodes, for calculating the effgacbofthe
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basis{m;}. As an illustration of the algorithm, we rederive Kawanaka'’s formula (1.1)
in2.12.

Now recall from [13] thag is isomorphic to the algebrac of symmetric functions over
C, the isomorphism sending the basis elemenbf g to the Hall-Littlewood symmetric
functionP; € Ac (renormalized asin [9, section 11.3, ex. 2]). Consider instead the element
. € g which maps under this isomorphism to tleegotten symmetric function, fe A¢
(see [9, section 1.2]). Introduce the renormalized Gelfand-Graev opefater § o yy,
wheres : g — g is the linear map witld (7r;) = qm—l)_lm for all partitionsi. We show in
Theorem 3.5 that

ﬁ)n = Z J>n1 ° J>n2 ©--+0 )?nh (n(o))v (12)
(n

1,...Nh)

summing over al(ng, ..., n,) obtained by reordering the non-zero patrits..., A, of A
in all possible ways. Thus, we obtain a direct combinatorial construction of the ‘forgotten
basis’{,} of the Hall algebra.

Let K = (K, ) denote the matrix of Kostka numbers [9, I, (6.4, = (K;_.(q))
denote the matrix of Kostka-Foulkes polynomials (renormalized as in [9, IlI, (7.11)]) and
J = (J,,,) denote the matrix withJ, , = O unlessu = A" when it is 1, where\” is the
conjugate partition to.. Consulting [9, section 1.6, section III.6], the transition matrix
between the basgs, } and{9,}, i.e. the matrixS = (S, ,,(q)) of coefficients such that

%= S, (1.3)
"

is then given by the formul® = K~1JK; in particular, this implies tha§, ,.(q) is a
polynomial inq with integer coefficients. Our alternative approach to computingsing
(1.2) allows explicit computation of the polynomias , (q) in some extra cases (e.g. when
w = (1) not easily deduced from the matrix product 1 JK .

To explain our interest in this, let, denote the irreducible unipotent characteiGyf
labelled by the partitiorh, as constructed originally in [12], and let € g denote its
projection to unipotent-supported class functions. &as the element off mapping to
the Schur functiors, under the isomorphisg — Ac (see [13]). Since, = ZM Ko 0
[9, section 1.6], we deduce that the value)gf at a unipotent element of type v can be
expressed in terms of the Kostka numbks,, and the polynomial§, ., (q) as

X)) =Y Ky 4 S,0(Q). (1.4)
"

This is a rather clumsy way of expressing the unipotent character values in the ordinary
case, but this point of view turns out to be well-suited to describing the irreducible unipotent
Brauer characters

So now suppose thatis a prime not dividingy, k is a field of characteristip and let the
multiplicative order oy modulo p beZ. In [6], James constructed for each partitioof n
an absolutely irreducible, unipotelhG,,-moduleD,, (denoted.(1, A) in [1]), and showed
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that the set of alD,, gives the complete set of non-isomorphic irreducible modules that arise
as constituents of the permutation representatiok@f on cosets of a Borel subgroup.

Let x denote the Brauer character of the modDle ands,” € g denote the projection of

XA to unipotent-supported class functions. Then, as a direct consequence of the results of
Dipper and James [3], we show in Theorem 4.6 thfat= 3", K9, whereK P, denotes

the weight multiplicity of theu-weight space in the irredumble high-weight module of
high-weighta for qguantum Gk, at anéth root of unity over a field of characterist In

other words, for a unipotent elemanbf typev, we have the modular analogue of (1.4):

xhw =Y KPS, (@ (1.5)
0

This formula reduces the problem of calculating the values of the irreducible unipotent
Brauer characters at unipotent elements to knowing the modular Kostka num‘ﬁ)@mwd

the polynomialss, , (Q).
Most importantly, taking = (1") in (1.5), we obtain the degree formula:

XD =Y KPS, an(@) (1.6)
"

where, as a consequence of (1.2) (see Example 3.7),

Su.an(@) = Z []‘[(q -1 / 1"[(q”1+ e 1)} 1.7)

summing over al(ny, ..., n,) obtained by reordering the non-zero patts . . ., un of u
in all possible ways. This formula was first proved in [1, section 5.5], as a consequence
of a result which can be regarded as the modular analogue of Zelevinsky’s branching rule
[13, section 13.5] involving the affine general linear group. The proof presented here is
independent of [1] (excepting some self-contained results from [1, section 5.1]), appealing
instead directly to the original characteristic O branching rule of Zelevinsky, together with
the work of Dipper and James on decomposition matrices. We remark that since all of the
integersS, (10 (q) are positive, the formula (1.6) can be used to give quite powkfubr
boundsfor the degrees of the irreducible Brauer characters, by exploitpgmalogue of
the Premet-Suprunenko bound for ﬂh§ *. The details can be found in [2].

To conclude this introduction, we Ilst in the table below the polynom&ls(q) for
n<4:

13 21 £
1 3|1 1-q @-D@-1
11 122_11 q11 21/-2 q-2 @-1@+2

131 1 1
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4 31 2 212 14
41-1 g-1 q-1 A-m@*-1 (@F-D@-D(@-1
31/ 2 2-qg 1-9@+2 @-1D@-2 (@-D(@@E+9>-2)
211 1-q ¢*—q+1 1-q @ -1(@ -1
21?|-3 q-3 q-3 g°+q-3 a*+09°+q-3
101 1 1 1 1

Finally, | would like to thank Alexander Kleshchev for several helpful discussions about
this work.

2. An algorithm for computing ~n

We will write A I n to indicate tha is a partition ofn, that is, a sequende= (A > A, >
...) of non-negative integers summingrio Giveni ~ n, we denote it&oung diagranby
[A]; this is the set ohodes

[ ={G, ) eNxN[1=<] =<}

By anaddable nodéfor 1), we mean a nodé € N x N such that{] U { A} is the diagram
of a partition; we denote the new partition obtained by adding the wotber by A U A.

By a removable nodéfor 1) we mean a nod® € [A] such that §]\{B} is the diagram
of a partition; we denote the new partition obtained by remownigom A by A\B. The
depth dB) of the nodeB = (i, j) € N x N is the row number. If B is removable for
A, it will also be convenient to defingB) (depending also oi!) to be the depth of the
next removable node abowin the partitioni, or O if no such node exists. For example
consider the partition = (4, 4, 2, 1), and letA, B, C be the removable nodes in order of
increasing depth:

A

C]

Then,e(A) =0,e(B) =d(A) =2,e(C) =d(B) = 3,d(C) = 4.

Now fix a prime power and letG, denote the finite general linear groGdl (n, Fy) as
in the introduction. LeV, = Fg denote the natural-dimensional leftG,-module, with
standard basig, .. ., v,. Let H, denote thaffine general linear group AG(n, Fy). This
is the semidirect produdt, = V,,G,, of G, acting on the elementary Abelian grolf.
We always work with the standard embeddiHg — G ; that identifiesH, with the
subgroup ofG, 1 consisting of all matrices of the form:
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Thus, we have a chain of subgroups-1Hy ¢ G; ¢ Hy € G, € H, C ... (by convention,
we allow the notation&g, Ho andVy, all of which denote groups with one element.)

Fori F n, letu, € G, C H, denote the upper uni-triangular matrix consisting of Jordan
blocks of sizes\y, A, ... down the diagonal. As is well-knowry, | A F n} is a set of
representatives of the unipotent conjugacy class&,inWe wish to describe instead the
unipotent classes ifl,. These were determined in [10, section 1], but the notation here
will be somewhat different. Fok + n and an addable noda for A, define the upper
uni-triangular(n + 1) x (n 4+ 1) matrixu; a € Hy C Gny1 by

us if Aisthe deepest addable node,
Uy A= )
A VpyttrgnUn  Otherwise.

If insteadA - (n 4+ 1) andB is removable fon (hence addable for\ B) defineu, g to be

a shorthand fou,\g g € Hn. To aid translation between our notation and that of [10], we
note thau, g is conjugate to the element denotgd: (1%, ) there, wherd = Adeey and

u is the partition obtained frorh by removing thed (B)th row. Then:

Lemma 2.1
(i) The set

{u,.al A Fn, Aaddable forr} = {u, g | A F (n+ 1), B removable foi.}

is a set of representatives of the unipotent conjugacy classeg.of H
(i) For A F (n+ 1) and a removable node,BCg,,, (u;)|/|Ch, (Uy 8)| = q4® — q*®,

Proof: Part (i) is a special case of [10, 1.3(i)], where all conjugacy classes of the group
H, are described. For (ii), combine the formula f@g ., (u,)| from [12, 2.2] with [10,
1.3(ii)], or calculate directly. O

For any groupG, we write C(G) for the set ofC-valued class functions o6. Let
g = P00 C DP,-0C(Gn) denote the Hall algebra as in the introduction. We recall
that g is a graded Hopf algebra in the sense of [13], with multiplicatiog ® g — g
arising from Harish-Chandra induction and comultiplicatibng — g ® g arising from
Harish-Chandra restriction, see [13, section 10.1] for fuller details. Also defined in the
introduction,g has the natural ‘characteristic function’ bagts} labelled by all partitions.

By analogy, we introduce an extended version of the Hall algebra corresponding to the
affine general linear group. This is the vector spigee P, , h,, whereb,, is the subspace
of C(Hy) consisting of all class functions with support in the set of unipotent elements of
H,, with algebra structure to be explained below. To describe a badjsdoreni - nand
an addable nod@, definer; o € C(H,) to be the class function which takes value 1 on
u,.a and is zero on all other conjugacy classe$ipf Giveni = (n 4+ 1) and a removable
B, setr, g8 = mug.8. Then, in view of Lemma 2.1(i}, A | A & partition, A addable for
A} = {m g | A a partition,B removable fon} is a basis fok.
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Now we introduce various operators as in [13, section 13.1] (but take notation instead
from [1, section 5.1]). First, fon > 0, we have the inflation operator

68 :C(Gp) — C(Hn)

defined by(e] x ) (vg) = x (g) for x € C(Gn), v € Vi, g € Gy Next, fix a non-trivial additive
charactery : Fq — C* and lety, : Vi, — C* be the character defined W(Z{‘:l Gvi) =
x(cn). The groupG, acts naturally on the characte€gV,) and one easily checks that
the subgrouH,_1 < Gy centralizesy,. In view of this, it makes sense to define for each
n > 1 the operator

e[:. :C(Hn-1) = C(Hn),
namely, the composite of inflation froht,_; to V,, H,_; with the action of;, being via the
charactery,, followed by ordinary induction fronv,H,_; to H,. Finally, forn > 1 and
1 <i < n, we have the operator

Qn :C(Gnp=i) = C(Hn)

defined inductively bye! = €} o €"}'. The significance of these operators is due to the
following lemma [13, section 13.2]:

Lemma2.2 Theoperatorp@el@---@€e):C(Gn)®C(Gn_1)®---DC(Gg) — C(Hn)
is an isometry.

We also have the usual restriction and induction operators
re§ :C(Gp) = C(Hn_p)  ind" :C(Hy1) — C(Gp).

One checks that all of the operata €], reqﬁ:fl and inqﬁ:f1 send class functions with
unipotent support to class functions with unipotent support. So, we can define the following
operators betweegmandb, by restricting the operators listed to unipotent-supported class
functions:

e:h—>b e =Pe: (2.3)
n>1

e:g—bh a=Pd =) oe; (2.4)
n>i

ind:h — g, ind=EPindy : (2.5)
n>1

res:g — b, res= Presy (2.6)
n>0

where for the last definition, r&g should be interpreted as the zero map.
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Now we indicate briefly how to makiginto a graded Hopf algebra. In view of Lemma
2.2, there are unique linear mapsh ® h — handA :h — h ® b such that

@x) o) =ej(x 1), (2.7)
Alay) = Y (6 ®€)AW), (2.8)

i+i=k
foralli, j,k > 0 andy, t, ¥ € g. One can check, using Lemma 2.2 and the fact ghat

a graded Hopf algebra, that these operations erfdaith the structure of a graded Hopf
algebra (the unitelementégr o), and the counitis the mapy + 8i oe(x) wheres:g — C
is the counit ofg). Moreover, the mapy : g — h is a Hopf algebra embedding. Unlike for
the operations of, we do not know of a natural representation theoretic interpretation for
these operations dnexcept in special cases, see [1, section 5.2].

The effect of the operators (2.3)—(2.6) on our characteristic function bases is described
explicitly by the following lemma:

Lemma 2.9 LetA F n and label the addable nodésesp. removable nodgsf A as
A1, Az, ..., As(resp. B, By, ..., Bs_1) in order of increasing depth. Also let B B, be
some fixed removable node. Then
(i) eom. = Z?:l LA
(i) eym g =qi® ZiS:r.H_ To.a — q%® Ziszr LA -
(i) resm, = Y1
(iv) ind ;B = (Q@® — g®B)m; ;
(v) indoresm; = (Q"® — Dym,.

Proof:

(i) Foru = nandA addable, we have by definition th@bm, ) (U, ) = 7 (Uy) = 6 4.

Hence gy, = >, 7, A, SUMming over all addable nodésfor .

(ii) This is a special case of [10, 2.4] translated into our notation.

(iii) For u F nandB removable(resmn,)(u, g) is zero unlessl, g is conjugate irG, to
u,, when it is one. So the result follows on observing thag is conjugate inG, to
u, ifand only if u = A.

(iv) We can write indr, g = Y_ ., Cu7r,. To calculate the coefficier, for fixed 1 = n,
we use (i), Lemma 2.1(ii) and Frobenius reciprocity.

(v) This follows at once from (iii) and (iv) sincg 5 (q%® —q®®) = g"® — 1, summing
over all removable nodeB for A. O

Lemma 2.9(i), (ii) give explicit formulae for computing the operagpr= (e,)" o &y.
The connection betweesy and the Gelfand-Graev operatgy defined in the introduction

comes from the following result:

Theorem 2.10 Forn> 1, y, =indoe,_1.
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Proof: In [1, Theorem 5.1e], we showed directly from the definitions that for any
C(Gn) and anyn > 1, the class functiory.I'y, € C(Gn.n) Obtained by Harish-Chandra
induction from(x, I'n) € C(Gm) x C(Gy) is equal to reé;:i:(eﬂ””x). Moreover, by
[1, Lemma 5.1c(iii)], we have that rég: ol = indﬁﬂ:fl. Hence,

H Gm n -
x.I'n=indg™ (e T lX)'
The theorem is just a restatement of this formula at the level of unipotent-supported class
functions. O

Example 2.11 We show how to calculatg,n(z 2 using Lemma 2.9 and the theorem.
We omit the labelr in denoting basis elements, and in the case of the intermediate basis
elements ofy, we mark removable nodes with.

|
72 |=ind°e+ B <]+ )
X
[ ]
:ind(— S P v |+ (g-1)
Rl
| |
- 42— -7 +(*-¢) )
[ X ™
=—(¢g—-1) LI @ -q-1) ‘
|
+@-( - + (" - (@’ - )
| ||
| il
-¢’(d’ - 9) +(* - ) - ) :

Example 2.12 We apply Theorem 2.10 to rederive the explicit formula (1.1) for the
Gelfand-Graev characté&y, itself. Of course, by Theorem 2.1D0, = indo ey_1(7(g)). We
will in fact prove that

et =D""Y " Y A-9d-¢)...(1-a""Nme  (213)

AFn B removable

Then (1.1) follows easily on applying ind using Lemma 2.9(iv) and the calculation in the
proof of Lemma 2.9(v).
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To prove (2.13), use induction an n = 1 being immediate from Lemma 2.9(i). For
n > 1, fixsome\ I n, label the addable and removable nodesaé$ in Lemma 2.9 and take
1 <r < s. Thanks to Lemma 2.9(ii), the;_a, -coefficient ofe, () = e o en_1(7(0))
only depends on the, g, -coefficients ofe,_1 () for 1 <i < min(r,s — 1). So by the
induction hypothesis the, a, -coefficient ofe,(r(g)) is the same as the, a -coefficient of

min(r,s—1)

D" A-g... (1-g"Y) Y eum,

i=1
which using Lemma 2.9(ii) equals

min(r,s—1)

O LT ) DO L T O Y LR L))

i=1

This simplifies to(—1)"(L—q) ... (L —g"® 1 ifr <sand(-D" 1 —q)...(1—q"®)
if r = s, as required to prove the induction step.

3. The forgotten basis

Recall from the introduction that for = n, x; € C(Gp) denotes the irreducible unipotent
character parametrized by the partitigrando;, € g is its projection to unipotent-supported
class functions. Alsof;,} denotes the ‘forgotten’ basis gf which can bedefinedas the
unigue basis of such that for each and each. - n,

o) = Z Kk,//.l?y_* (31)
ukn
Giveni - n,we writepu LjAif w = (n—j)andris < ui < A foralli =1,2,....

This definition arises in the following well-known inductive formula for the Kostka number
K., i.€. the number of standaidtableaux of weighix [9, section 1(6.4)]:

Lemma 3.2 For A - n and any composition = n, K, , = Z 1 K,.5, where j is
the last non-zero part of andv is the composition obtained fromby replacing this last

non-zero part by zero.

We will need the following special case of Zelevinsky’s branching rule [13, section 13.5]
(see also [1, Corollary 5.4d(ii)] for its modular analogue):

Theorem 3.3(Zelevinsky For A - n, feﬁ‘iﬂ,l)(w =021l S -1

Now define the map: g — gasinthe introduction by settirigr;) = qm—l)_lm foreach
partitionA and extending linearly to all gf. The significance of is that by Lemma 2.9(v),
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S oindoregm,) = ) for all A. Sety, = § o ¥, and for a partitiork, define

Py = Z )}nho~-~o)>nzo)?nl (3.4)

summing over all composition(®y, .. ., n,) obtained by reordering the= h(i) non-zero
parts ofx in all possible ways.

Theorem 3.5 Foranyi - n, 9, = y,(m)-

Proof:  We will show by induction om that

o =Y KiuPu(mo)- (3.6)

ukEn

The theorem then follows immediately in view of the definition (3.1¥of Our induction
starts trivially with the casa = 0. So now suppose that> 0 and that (3.6) holds for all
smallern. By Theorem 3.3,

reso, = Z Z €j_10,.

j=1puljr

Applying the operatoé o ind to both sides, we deduce that

=3 D 7= > Kudion(mo)

=1 pljr j=1 pLjrvE(n—j)

(we have applied the induction hypothesis)
= Z Z Z Z K w,(N1,...,NK) J/] o )’nh + O J;nz o 7>n1 (7[(0))
Nh)

(summing over(ny, ..., hy) obtained by reordering the non-zero partin all possible
ways)

= Z Z Z Kr.my..... nh,j)J;j o Vn, O"'Oﬁngo);nl(ﬂ(O))
j=1vH(n=]) (ng,....nn)

(we have applied Lemma 3.2)

= Z Z Ky (... mk))/mk “ 0 Ym, © Ymy (”(0))

(now summing overmy, ..., M) obtained by reordering the non-zero partsyah all
possible ways)

= Z Ko P (77(0))

nkENn

which completes the proof. O
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Example 3.7 Fory € g,, write degy for its value at the identity element &f,. We wish
to derive the formula (1.7) for dey. = S, 1 (q) using Theorem 3.5. So, fix+ n. Then,
by Theorem 3.5,

degd, = Y deg[fn, o0 P (m)]- (3.8)

(n1 ..... I’lh)
We will show that givery € g,
degin(x) = @™t = 1@™" % —1)... (@™ — 1) degy; (3.9)

then the formula (1.7) follows easily from (3.8). Nagw is Harish-Chandra multiplication
by I'n, SO

(qm+n_1).”(qm+1_1)
@-1...q-1

degyn(x) = degl', degy -

’

the last term being the index B, of the standard parabolic subgroup with Levi factor
Gmx Gp. This simplifies using (1.1) tig™™" —1) ... (@™ —1) degy. Finally, to calculate
degyn(x), we need to rescale usidgwhich divides this expression gg™™" — 1).

4. Brauer character values

Finally, we derive the formula (1.5) for the unipotent Brauer character values. $o let
be a prime not dividing] and x,” be the irreducible unipoterg-modular Brauer character
labelled by as in the introduction. Writin@€P(G,,) for the C-valued class functions on
Gy, with support in the set gb’-elements of5,,, we viewX,\p as an element a&€P(G,). Let

X, denote the projection of the ordinary unipotent charagteio CP(G,). Then, by [6],
we can write

%= Duux): (4.1)

puEn

and the resulting matri® = (D, _,) is theunipotent parbf the p-modular decomposition
matrix of G,. One of the main achievements of the Dipper-James theory from [3] (see e.qg.
[1, (3.5a)]) relates these decomposition numbers to the decomposition numbers of quantum
GL,.

To recall some definitions, Idt be a field of characteristip andv € k be a square
root of the image ofy in K. Let U, denote the divided power version of the quantized
enveloping algebrly(gl,) specialized ovek at the parameter, as defined originally by
Lusztig [8] and Du [4, section 2] (who extended Lusztig’s construction fsdnto gly).
For each partition. - n, there is an associated irreducible polynomial representatiop of
of high-weighti, which we denote by (). Also letV (1) denote the standard (or Weyl)
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module of high-weight.. Write

chV(x) =) Dj chL(w), (4.2)

pkn

soD’ = (D;_,) is the decomposition matrix for the polynomial representations of quantum
GL, of degreen. Then, by [3]:

Theorem 4.3(Dipper and Jamgs D; , = D, .

A

Leto,” denote the projection of” to unipotent-supported class functions. Thé} also
give a basis for the Hall algebga Inverting (4.1) and using (3.1),

of =Y D;bow= > DL K., (4.4)

pukEn w,vEn

whereD1 = (D;t) is the inverse of the matri®. On the other hand, Writing,\pjﬁ for
the multiplicity of the.-weight space ot (1), and recalling thak, , is the multiplicity
of the u-weight space o¥/ (1), we have by (4.2) that

Kuw=>_ D, KPL (4.5)

nkEn

Substituting (4.5) into (4.4) and applying Theorem 4.3, we deduce;

Theorem 4.6 of = > Ko,

ukEn

Now (1.5) and (1.6) follow at once. This completes the proof of the formulae stated in
the introduction.
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