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Abstract. We give a formula for the values of irreducible unipotentp-modular Brauer characters ofGL(n,Fq)

at unipotent elements, wherep is a prime not dividingq, in terms of (unknown!) weight multiplicities of quantum
GLn and certain generic polynomialsSλ,µ(q). These polynomials arise as entries of the transition matrix between
the renormalized Hall-Littlewood symmetric functions and the forgotten symmetric functions. We also provide
an alternative combinatorial algorithm working in the Hall algebra for computingSλ,µ(q).
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1. Introduction

In the character theory of the finite general linear groupGn = GL(n,Fq), theGelfand-Graev
character0n plays a fundamental role. By definition [5],0n is the character obtained by
inducing a “general position” linear character from a maximal unipotent subgroup. It has
support in the set of unipotent elements ofGn and for a unipotent elementu of typeλ (i.e.
the block sizes of the Jordan normal form ofu are the parts of the partitionλ) Kawanaka
[7, 3.2.24] has shown that

0n(u) = (−1)n(1− q)(1− q2) . . .
(
1− qh(λ)

)
, (1.1)

whereh(λ) is the number of non-zero parts ofλ. The starting point for this article is the
problem of calculating the operator determined by Harish-Chandra multiplication by0n.

We have restricted our attention throughout to character values at unipotent elements,
when it is convenient to work in terms of theHall algebra, that is [13, Section 10.1], the
vector spaceg =⊕n≥0 gn, wheregn denotes the set of unipotent-supportedC-valued class
functions onGn, with multiplication coming from the Harish-Chandra induction operator.
For a partitionλ of n, letπλ ∈ gn denote the class function which is 1 on unipotent elements
of type λ and zero on all other conjugacy classes ofGn. Then, {πλ} is a basis for the
Hall algebra labelled by all partitions. Letγn : g→ g be the linear operator determined by
multiplication ing by0n. We describe in Section 2 an explicit recursive algorithm, involving
the combinatorics of addable and removable nodes, for calculating the effect ofγn on the
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basis{πλ}. As an illustration of the algorithm, we rederive Kawanaka’s formula (1.1)
in 2.12.

Now recall from [13] thatg is isomorphic to the algebra3C of symmetric functions over
C, the isomorphism sending the basis elementπλ of g to the Hall-Littlewood symmetric
function P̃λ ∈ 3C (renormalized as in [9, section II.3, ex. 2]). Consider instead the element
ϑλ ∈ g which maps under this isomorphism to theforgotten symmetric function fλ ∈ 3C
(see [9, section I.2]). Introduce the renormalized Gelfand-Graev operatorγ̂n = δ ◦ γn,
whereδ : g→ g is the linear map withδ(πλ) = 1

qh(λ)−1πλ for all partitionsλ. We show in
Theorem 3.5 that

ϑλ =
∑

(n1,...,nh)

γ̂n1 ◦ γ̂n2 ◦ · · · ◦ γ̂nh

(
π(0)

)
, (1.2)

summing over all(n1, . . . ,nh) obtained by reordering the non-zero partsλ1, . . . , λh of λ
in all possible ways. Thus, we obtain a direct combinatorial construction of the ‘forgotten
basis’{ϑλ} of the Hall algebra.

Let K = (Kλ,µ) denote the matrix of Kostka numbers [9, I, (6.4)],K̃ = (K̃λ,µ(q))
denote the matrix of Kostka-Foulkes polynomials (renormalized as in [9, III, (7.11)]) and
J = (Jλ,µ) denote the matrix withJλ,µ = 0 unlessµ = λ′ when it is 1, whereλ′ is the
conjugate partition toλ. Consulting [9, section I.6, section III.6], the transition matrix
between the bases{πλ} and{ϑλ}, i.e. the matrixS= (Sλ,µ(q)) of coefficients such that

ϑλ =
∑
µ

Sλ,µ(q)πµ, (1.3)

is then given by the formulaS = K−1JK̃ ; in particular, this implies thatSλ,µ(q) is a
polynomial inq with integer coefficients. Our alternative approach to computingϑλ using
(1.2) allows explicit computation of the polynomialsSλ,µ(q) in some extra cases (e.g. when
µ = (1n)) not easily deduced from the matrix productK−1JK̃ .

To explain our interest in this, letχλ denote the irreducible unipotent character ofGn

labelled by the partitionλ, as constructed originally in [12], and letσλ ∈ g denote its
projection to unipotent-supported class functions. So,σλ is the element ofg mapping to
the Schur functionsλ under the isomorphismg→ 3C (see [13]). Sinceσλ′ =

∑
µ Kλ,µϑµ

[9, section I.6], we deduce that the value ofχλ′ at a unipotent elementu of typeν can be
expressed in terms of the Kostka numbersKλ,µ and the polynomialsSµ,ν(q) as

χλ′(u) =
∑
µ

Kλ,µSµ,ν(q). (1.4)

This is a rather clumsy way of expressing the unipotent character values in the ordinary
case, but this point of view turns out to be well-suited to describing the irreducible unipotent
Brauer characters.

So now suppose thatp is a prime not dividingq, k is a field of characteristicp and let the
multiplicative order ofq modulop be`. In [6], James constructed for each partitionλ of n
an absolutely irreducible, unipotentkGn-moduleDλ (denotedL(1, λ) in [1]), and showed
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that the set of allDλ gives the complete set of non-isomorphic irreducible modules that arise
as constituents of the permutation representation ofkGn on cosets of a Borel subgroup.
Let χ p

λ denote the Brauer character of the moduleDλ, andσ p
λ ∈ g denote the projection of

χ
p
λ to unipotent-supported class functions. Then, as a direct consequence of the results of

Dipper and James [3], we show in Theorem 4.6 thatσ
p
λ′ =

∑
µ K p,`

λ,µϑµ whereK p,`
λ,µ denotes

the weight multiplicity of theµ-weight space in the irreducible high-weight module of
high-weightλ for quantum GLn, at an`th root of unity over a field of characteristicp. In
other words, for a unipotent elementu of typeν, we have the modular analogue of (1.4):

χ
p
λ′(u) =

∑
µ

K p,`
λ,µSµ,ν(q) (1.5)

This formula reduces the problem of calculating the values of the irreducible unipotent
Brauer characters at unipotent elements to knowing the modular Kostka numbersK p,`

λ,µ and
the polynomialsSµ,ν(q).

Most importantly, takingν = (1n) in (1.5), we obtain the degree formula:

χ
p
λ′(1) =

∑
µ

K p,`
λ,µSµ,(1n)(q) (1.6)

where, as a consequence of (1.2) (see Example 3.7),

Sµ,(1n)(q) =
∑

(n1,...,nh)

[
n∏

i=1

(qi − 1)

/ h∏
i=1

(qn1+···+ni − 1)

]
(1.7)

summing over all(n1, . . . ,nh) obtained by reordering the non-zero partsµ1, . . . , µh of µ
in all possible ways. This formula was first proved in [1, section 5.5], as a consequence
of a result which can be regarded as the modular analogue of Zelevinsky’s branching rule
[13, section 13.5] involving the affine general linear group. The proof presented here is
independent of [1] (excepting some self-contained results from [1, section 5.1]), appealing
instead directly to the original characteristic 0 branching rule of Zelevinsky, together with
the work of Dipper and James on decomposition matrices. We remark that since all of the
integersSµ,(1n)(q) are positive, the formula (1.6) can be used to give quite powerfullower
boundsfor the degrees of the irreducible Brauer characters, by exploiting aq-analogue of
the Premet-Suprunenko bound for theK p,`

λ,µ. The details can be found in [2].
To conclude this introduction, we list in the table below the polynomialsSλ,µ(q) for

n ≤ 4:

1

1 1

2 12

2 −1 q − 1
12 1 1

3 21 13

3 1 1− q (q2− 1)(q − 1)
21 −2 q − 2 (q − 1)(q + 2)
13 1 1 1
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4 31 22 212 14

4 −1 q − 1 q − 1 (1− q)(q2− 1) (q3− 1)(q2− 1)(q − 1)
31 2 2− q (1− q)(q + 2) (q2− 1)(q − 2) (q2− 1)(q3+ q2− 2)
22 1 1− q q2− q + 1 1− q (q3− 1)(q − 1)
212 −3 q − 3 q − 3 q2+ q − 3 q3+ q2+ q − 3
14 1 1 1 1 1

Finally, I would like to thank Alexander Kleshchev for several helpful discussions about
this work.

2. An algorithm for computing γn

We will write λ ` n to indicate thatλ is a partition ofn, that is, a sequenceλ = (λ1 ≥ λ2 ≥
. . .) of non-negative integers summing ton. Givenλ ` n, we denote itsYoung diagramby
[λ]; this is the set ofnodes

[λ] = {(i, j ) ∈ N× N | 1≤ j ≤ λi }.

By anaddable node(for λ), we mean a nodeA ∈ N×N such that [λ] ∪ {A} is the diagram
of a partition; we denote the new partition obtained by adding the nodeA to λ by λ ∪ A.
By a removable node(for λ) we mean a nodeB ∈ [λ] such that [λ]\{B} is the diagram
of a partition; we denote the new partition obtained by removingB from λ by λ\B. The
depth d(B) of the nodeB = (i, j ) ∈ N × N is the row numberi . If B is removable for
λ, it will also be convenient to definee(B) (depending also onλ!) to be the depth of the
next removable node aboveB in the partitionλ, or 0 if no such node exists. For example
consider the partitionλ = (4, 4, 2, 1), and letA, B,C be the removable nodes in order of
increasing depth:

Then,e(A) = 0, e(B) = d(A) = 2, e(C) = d(B) = 3, d(C) = 4.
Now fix a prime powerq and letGn denote the finite general linear groupGL(n,Fq) as

in the introduction. LetVn = Fn
q denote the naturaln-dimensional leftGn-module, with

standard basisv1, . . . , vn. Let Hn denote theaffine general linear group AGL(n,Fq). This
is the semidirect productHn = VnGn of Gn acting on the elementary Abelian groupVn.
We always work with the standard embeddingHn ↪→ Gn+1 that identifiesHn with the
subgroup ofGn+1 consisting of all matrices of the form:
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Thus, we have a chain of subgroups 1= H0 ⊂ G1 ⊂ H1 ⊂ G2 ⊂ H2 ⊂ . . . (by convention,
we allow the notationsG0, H0 andV0, all of which denote groups with one element.)

Forλ ` n, letuλ ∈ Gn ⊂ Hn denote the upper uni-triangular matrix consisting of Jordan
blocks of sizesλ1, λ2, . . . down the diagonal. As is well-known,{uλ | λ ` n} is a set of
representatives of the unipotent conjugacy classes inGn. We wish to describe instead the
unipotent classes inHn. These were determined in [10, section 1], but the notation here
will be somewhat different. Forλ ` n and an addable nodeA for λ, define the upper
uni-triangular(n+ 1)× (n+ 1) matrixuλ,A ∈ Hn ⊂ Gn+1 by

uλ,A =
{

uλ if A is the deepest addable node,

vλ1+···+λd(A)uλ otherwise.

If insteadλ ` (n+ 1) andB is removable forλ (hence addable forλ\B) defineuλ,B to be
a shorthand foruλ\B,B ∈ Hn. To aid translation between our notation and that of [10], we
note thatuλ,B is conjugate to the element denotedcn+1(1(k), µ) there, wherek = λd(B) and
µ is the partition obtained fromλ by removing thed(B)th row. Then:

Lemma 2.1
(i) The set

{uλ,A | λ ` n, A addable forλ} = {uλ,B | λ ` (n+ 1), B removable forλ}

is a set of representatives of the unipotent conjugacy classes of Hn.

(ii) For λ ` (n+ 1) and a removable node B, |CGn+1(uλ)|/|CHn(uλ,B)| = qd(B) − qe(B).

Proof: Part (i) is a special case of [10, 1.3(i)], where all conjugacy classes of the group
Hn are described. For (ii), combine the formula for|CGn+1(uλ)| from [12, 2.2] with [10,
1.3(ii)], or calculate directly. 2

For any groupG, we write C(G) for the set ofC-valued class functions onG. Let
g = ⊕

n≥0 gn ⊂
⊕

n≥0 C(Gn) denote the Hall algebra as in the introduction. We recall
that g is a graded Hopf algebra in the sense of [13], with multiplication¦ : g ⊗ g → g

arising from Harish-Chandra induction and comultiplication1 : g → g ⊗ g arising from
Harish-Chandra restriction, see [13, section 10.1] for fuller details. Also defined in the
introduction,g has the natural ‘characteristic function’ basis{πλ} labelled by all partitions.

By analogy, we introduce an extended version of the Hall algebra corresponding to the
affine general linear group. This is the vector spaceh =⊕n≥0 hn wherehn is the subspace
of C(Hn) consisting of all class functions with support in the set of unipotent elements of
Hn, with algebra structure to be explained below. To describe a basis forh, givenλ ` n and
an addable nodeA, defineπλ,A ∈ C(Hn) to be the class function which takes value 1 on
uλ,A and is zero on all other conjugacy classes ofHn. Givenλ ` (n+ 1) and a removable
B, setπλ,B = πλ\B,B. Then, in view of Lemma 2.1(i),{πλ,A | λ a partition,A addable for
λ} = {πλ,B | λ a partition,B removable forλ} is a basis forh.
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Now we introduce various operators as in [13, section 13.1] (but take notation instead
from [1, section 5.1]). First, forn ≥ 0, we have the inflation operator

en
0 : C(Gn)→ C(Hn)

defined by(en
0χ)(vg)=χ(g) for χ ∈C(Gn), v ∈Vn, g∈Gn. Next, fix a non-trivial additive

characterχ :Fq → C× and letχn : Vn→ C× be the character defined byχn(
∑n

i=1 ci vi ) =
χ(cn). The groupGn acts naturally on the charactersC(Vn) and one easily checks that
the subgroupHn−1 < Gn centralizesχn. In view of this, it makes sense to define for each
n ≥ 1 the operator

en
+ : C(Hn−1)→ C(Hn),

namely, the composite of inflation fromHn−1 to Vn Hn−1 with the action ofVn being via the
characterχn, followed by ordinary induction fromVn Hn−1 to Hn. Finally, for n ≥ 1 and
1≤ i ≤ n, we have the operator

en
i : C(Gn−i )→ C(Hn)

defined inductively byen
i = en

+ ◦ en−1
i−1 . The significance of these operators is due to the

following lemma [13, section 13.2]:

Lemma 2.2 The operator en0⊕en
1⊕· · ·⊕en

n : C(Gn)⊕C(Gn−1)⊕· · ·⊕C(G0)→ C(Hn)

is an isometry.

We also have the usual restriction and induction operators

resGn
Hn−1

: C(Gn)→ C(Hn−1) indGn
Hn−1

: C(Hn−1)→ C(Gn).

One checks that all of the operatorsen
0, e

n
+, resGn

Hn−1
and indGn

Hn−1
send class functions with

unipotent support to class functions with unipotent support. So, we can define the following
operators betweeng andh, by restricting the operators listed to unipotent-supported class
functions:

e+ : h→ h, e+ =
⊕
n≥1

en
+; (2.3)

ei : g→ h, ei =
⊕
n≥i

en
i = (e+)i ◦ e0; (2.4)

ind :h→ g, ind=
⊕
n≥1

indGn
Hn−1
; (2.5)

res :g→ h, res=
⊕
n≥0

resGn
Hn−1

(2.6)

where for the last definition, resG0
H−1

should be interpreted as the zero map.
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Now we indicate briefly how to makeh into a graded Hopf algebra. In view of Lemma
2.2, there are unique linear maps¦ : h⊗ h→ h and1 : h→ h⊗ h such that

(eiχ) ¦ (ej τ) = ei+ j (χ ¦ τ), (2.7)

1(ekψ) =
∑

i+ j=k

(ei ⊗ ej )1(ψ), (2.8)

for all i, j, k ≥ 0 andχ, τ, ψ ∈ g. One can check, using Lemma 2.2 and the fact thatg is
a graded Hopf algebra, that these operations endowh with the structure of a graded Hopf
algebra (the unit element ise0π(0), and the counit is the mapeiχ 7→ δi,0ε(χ)whereε : g→ C
is the counit ofg). Moreover, the mape0 : g→ h is a Hopf algebra embedding. Unlike for
the operations ofg, we do not know of a natural representation theoretic interpretation for
these operations onh except in special cases, see [1, section 5.2].

The effect of the operators (2.3)–(2.6) on our characteristic function bases is described
explicitly by the following lemma:

Lemma 2.9 Let λ ` n and label the addable nodes(resp. removable nodes) of λ as
A1, A2, . . . , As (resp. B1, B2, . . . , Bs−1) in order of increasing depth. Also let B= Br be
some fixed removable node. Then,

(i) e0πλ =
∑s

i=1πλ,Ai ;
(ii) e+πλ,B = qd(B)

∑s
i=r+1πλ,Ai − qe(B)

∑s
i=r πλ,Ai .

(iii) res πλ =
∑s−1

i=1 πλ,Bi ;
(iv) ind πλ,B = (qd(B) − qe(B))πλ;
(v) ind◦ resπλ = (qh(λ) − 1)πλ.

Proof:

(i) For µ ` n andA addable, we have by definition that(e0πλ)(uµ,A) = πλ(uµ) = δλ,µ.
Hence,e0πλ =

∑
A πλ,A, summing over all addable nodesA for λ.

(ii) This is a special case of [10, 2.4] translated into our notation.
(iii) For µ ` n andB removable,(resπλ)(uµ,B) is zero unlessuµ,B is conjugate inGn to

uλ, when it is one. So the result follows on observing thatuµ,B is conjugate inGn to
uλ if and only ifµ = λ.

(iv) We can write indπλ,B =
∑

µ`n cµπµ. To calculate the coefficientcµ for fixedµ ` n,
we use (iii), Lemma 2.1(ii) and Frobenius reciprocity.

(v) This follows at once from (iii) and (iv) since
∑

B(q
d(B)−qe(B)) = qh(λ)−1, summing

over all removable nodesB for λ. 2

Lemma 2.9(i), (ii) give explicit formulae for computing the operatoren = (e+)n ◦ e0.
The connection betweenen and the Gelfand-Graev operatorγn defined in the introduction
comes from the following result:

Theorem 2.10 For n ≥ 1, γn = ind ◦ en−1.
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Proof: In [1, Theorem 5.1e], we showed directly from the definitions that for anyχ ∈
C(Gm) and anyn ≥ 1, the class functionχ.0n ∈ C(Gm+n) obtained by Harish-Chandra
induction from(χ, 0n) ∈ C(Gm) × C(Gn) is equal to resHm+n

Gm+n
(em+n

n χ). Moreover, by
[1, Lemma 5.1c(iii)], we have that resHm+n

Gm+n
◦ em+n
+ = indGm+n

Hm+n−1
. Hence,

χ.0n = indGm+n

Hm+n−1

(
em+n−1

n−1 χ
)
.

The theorem is just a restatement of this formula at the level of unipotent-supported class
functions. 2

Example 2.11 We show how to calculateγ2π(3,2) using Lemma 2.9 and the theorem.
We omit the labelπ in denoting basis elements, and in the case of the intermediate basis
elements ofh, we mark removable nodes with×.

Example 2.12 We apply Theorem 2.10 to rederive the explicit formula (1.1) for the
Gelfand-Graev character0n itself. Of course, by Theorem 2.10,0n = ind◦en−1(π(0)). We
will in fact prove that

en−1π(0) = (−1)n−1
∑
λ`n

∑
B removable

(1− q)(1− q2) . . .
(
1− qh(λ)−1

)
πλ,B (2.13)

Then (1.1) follows easily on applying ind using Lemma 2.9(iv) and the calculation in the
proof of Lemma 2.9(v).
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To prove (2.13), use induction onn, n = 1 being immediate from Lemma 2.9(i). For
n > 1, fix someλ ` n, label the addable and removable nodes ofλ as in Lemma 2.9 and take
1 ≤ r ≤ s. Thanks to Lemma 2.9(ii), theπλ,Ar -coefficient ofen(π(0)) = e+ ◦ en−1(π(0))

only depends on theπλ,Bi -coefficients ofen−1(π(0)) for 1 ≤ i ≤ min(r, s− 1). So by the
induction hypothesis theπλ,Ar -coefficient ofen(π(0)) is the same as theπλ,Ar -coefficient of

(−1)n−1(1− q) . . .
(
1− qh(λ)−1

)min(r,s−1)∑
i=1

e+πλ,Bi ,

which using Lemma 2.9(ii) equals

(−1)n−1(1− q) . . .
(
1− qh(λ)−1

)min(r,s−1)∑
i=1

(
δr,i q

d(Bi ) − qe(Bi )
)
.

This simplifies to(−1)n(1− q) . . . (1− qh(λ)−1) if r < s and(−1)n(1− q) . . . (1− qh(λ))

if r = s, as required to prove the induction step.

3. The forgotten basis

Recall from the introduction that forλ ` n, χλ ∈ C(Gn) denotes the irreducible unipotent
character parametrized by the partitionλ, andσλ ∈ g is its projection to unipotent-supported
class functions. Also,{ϑλ} denotes the ‘forgotten’ basis ofg, which can bedefinedas the
unique basis ofg such that for eachn and eachλ ` n,

σλ′ =
∑
µ`n

Kλ,µϑµ. (3.1)

Givenλ ` n, we writeµ⊥ jλ if µ ` (n − j ) andλi+1 ≤ µi ≤ λi for all i = 1, 2, . . . .
This definition arises in the following well-known inductive formula for the Kostka number
Kλ,µ, i.e. the number of standardλ-tableaux of weightµ [9, section I(6.4)]:

Lemma 3.2 For λ ` n and any compositionν |= n, Kλ,ν =
∑

µ⊥ j λ
Kµ,ν̄ , where j is

the last non-zero part ofν and ν̄ is the composition obtained fromν by replacing this last
non-zero part by zero.

We will need the following special case of Zelevinsky’s branching rule [13, section 13.5]
(see also [1, Corollary 5.4d(ii)] for its modular analogue):

Theorem 3.3(Zelevinsky) For λ ` n, resGn
Hn−1

χλ′ =
∑

j≥1

∑
µ⊥ j λ

ej−1χµ′ .

Now define the mapδ : g→ g as in the introduction by settingδ(πλ) = 1
qh(λ)−1πλ for each

partitionλ and extending linearly to all ofg. The significance ofδ is that by Lemma 2.9(v),
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δ ◦ ind ◦ res(πλ) = πλ for all λ. Setγ̂n = δ ◦ γn and for a partitionλ, define

γ̂λ =
∑

(n1,...,nh)

γ̂nh ◦ · · · ◦ γ̂n2 ◦ γ̂n1 (3.4)

summing over all compositions(n1, . . . ,nh) obtained by reordering theh = h(λ) non-zero
parts ofλ in all possible ways.

Theorem 3.5 For anyλ ` n, ϑλ = γ̂λ(π(0)).

Proof: We will show by induction onn that

σλ′ =
∑
µ`n

Kλ,µγ̂µ
(
π(0)

)
. (3.6)

The theorem then follows immediately in view of the definition (3.1) ofϑλ. Our induction
starts trivially with the casen = 0. So now suppose thatn > 0 and that (3.6) holds for all
smallern. By Theorem 3.3,

resσλ′ =
∑
j≥1

∑
µ⊥ j λ

ej−1σµ′ .

Applying the operatorδ ◦ ind to both sides, we deduce that

σλ′ =
∑
j≥1

∑
µ⊥ j λ

γ̂ j (σµ′) =
∑
j≥1

∑
µ⊥ j λ

∑
ν`(n− j )

Kµ,ν γ̂ j ◦ γ̂ν
(
π(0)

)
(we have applied the induction hypothesis)

=
∑
j≥1

∑
µ⊥ j λ

∑
ν`(n− j )

∑
(n1,...,nh)

Kµ,(n1,...,nh)γ̂ j ◦ γ̂nh ◦ · · · ◦ γ̂n2 ◦ γ̂n1

(
π(0)

)
(summing over(n1, . . . ,nh) obtained by reordering the non-zero partsν in all possible
ways)

=
∑
j≥1

∑
ν`(n− j )

∑
(n1,...,nh)

Kλ,(n1,...,nh, j )γ̂ j ◦ γ̂nh ◦ · · · ◦ γ̂n2 ◦ γ̂n1

(
π(0)

)
(we have applied Lemma 3.2)

=
∑
η`n

∑
(m1,...,mk)

Kλ,(m1,...,mk)γ̂mk ◦ · · · ◦ γ̂m2 ◦ γ̂m1

(
π(0)

)
(now summing over(m1, . . . ,mk) obtained by reordering the non-zero parts ofη in all
possible ways)

=
∑
η`n

Kλ,ηγ̂η
(
π(0)

)
which completes the proof. 2
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Example 3.7 Forχ ∈ gn, write degχ for its value at the identity element ofGn. We wish
to derive the formula (1.7) for degϑλ = Sλ,(1n)(q) using Theorem 3.5. So, fixλ ` n. Then,
by Theorem 3.5,

degϑλ =
∑

(n1,...,nh)

deg
[
γ̂nh ◦ · · · ◦ γ̂n1

(
π(0)

)]
. (3.8)

We will show that givenχ ∈ gm,

degγ̂n(χ) = (qm+n−1− 1)(qm+n−2− 1) . . . (qm+1− 1) degχ; (3.9)

then the formula (1.7) follows easily from (3.8). Nowγn is Harish-Chandra multiplication
by 0n, so

degγn(χ) = deg0n degχ · (q
m+n − 1) . . . (qm+1− 1)

(qn − 1) . . . (q − 1)
,

the last term being the index inGm+n of the standard parabolic subgroup with Levi factor
Gm×Gn. This simplifies using (1.1) to(qm+n−1) . . . (qm+1−1) degχ.Finally, to calculate
degγ̂n(χ), we need to rescale usingδ, which divides this expression by(qm+n − 1).

4. Brauer character values

Finally, we derive the formula (1.5) for the unipotent Brauer character values. So letp
be a prime not dividingq andχ p

λ be the irreducible unipotentp-modular Brauer character
labelled byλ as in the introduction. WritingCp(Gn) for theC-valued class functions on
Gn with support in the set ofp′-elements ofGn, we viewχ p

λ as an element ofCp(Gn). Let
χ̇λ denote the projection of the ordinary unipotent characterχλ to Cp(Gn). Then, by [6],
we can write

χ̇λ =
∑
µ`n

Dλ,µχ
p
µ , (4.1)

and the resulting matrixD = (Dλ,µ) is theunipotent partof the p-modular decomposition
matrix of Gn. One of the main achievements of the Dipper-James theory from [3] (see e.g.
[1, (3.5a)]) relates these decomposition numbers to the decomposition numbers of quantum
GLn.

To recall some definitions, letk be a field of characteristicp andv ∈ k be a square
root of the image ofq in K. Let Un denote the divided power version of the quantized
enveloping algebraUq(gln) specialized overk at the parameterv, as defined originally by
Lusztig [8] and Du [4, section 2] (who extended Lusztig’s construction fromsln to gln).
For each partitionλ ` n, there is an associated irreducible polynomial representation ofUn

of high-weightλ, which we denote byL(λ). Also let V(λ) denote the standard (or Weyl)
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module of high-weightλ. Write

ch V(λ) =
∑
µ`n

D′λ,µch L(µ), (4.2)

soD′ = (D′λ,µ) is the decomposition matrix for the polynomial representations of quantum
GLn of degreen. Then, by [3]:

Theorem 4.3(Dipper and James) D′λ,µ = Dλ′,µ′ .

Letσ p
λ denote the projection ofχ p

λ to unipotent-supported class functions. The{σ p
λ } also

give a basis for the Hall algebrag. Inverting (4.1) and using (3.1),

σ
p
λ′ =

∑
µ`n

D−1
λ′,µ′σµ′ =

∑
µ,ν`n

D−1
λ′,µ′Kµ,νϑν (4.4)

whereD−1 = (D−1
λ,µ) is the inverse of the matrixD. On the other hand, writingK p,`

λ,µ for
the multiplicity of theµ-weight space ofL(λ), and recalling thatKλ,µ is the multiplicity
of theµ-weight space ofV(λ), we have by (4.2) that

Kµ,ν =
∑
η`n

D′µ,ηK p,`
η,ν . (4.5)

Substituting (4.5) into (4.4) and applying Theorem 4.3, we deduce:

Theorem 4.6 σ
p
λ′ =

∑
µ`n

K p,`
λ,µϑµ.

Now (1.5) and (1.6) follow at once. This completes the proof of the formulae stated in
the introduction.
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