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Abstract. In A.S. Buch and W. Fultonlfivent Math. 135(1999), 665-687] a formula for the cohomology

class of a quiver variety is proved. This formula writes the cohomology class of a quiver variety as a linear
combination of products of Schur polynomials. In the same paper it is conjectured that all of the coefficients in
this linear combination are non-negative, and given by a generalized Littlewood-Richardson rule, which states that
the coefficients count certain sequences of tableaux called factor sequences. In this paper | prove some special
cases of this conjecture. | also prove that the general conjecture follows from a stronger but simpler statement,
for which substantial computer evidence has been obtained. Finally | will prove a useful criterion for recognizing
factor sequences.

Keywords: quiver varieties, Littlewood-Richardson rule, Schur functions, Young tableaux

1. Introduction

The goal of this paper is to prove some combinatorial results about a formula for quiver
varieties given in [4].

Let X be a non-singular complex variety akg —- E; — E, — --- — E, a sequence
of vector bundles and bundle maps ovér A set ofrank conditionsfor this sequence is
a collection of non-negative integers= (rj) for 0 < i < j < n. This data defines a
degeneracy locus iX,

@ (E,) = {x e X|rank(Ei(x) = Ej(x)) <rj Vi < j}.

Letr; denote the rank of the bundlg. We will demand that the rank conditions can
occur, i.e. that there exists a sequence of vector spaces and lineaMnapd/; — -+ —
Vj so that dinfV;) = r; and rankV; — V;) = rj. This is equivalent to the conditions
rj < min(ri j—1, fi+1j) fori < j,andrij —rij_1 —riy1j +riqpj—1>0forj —i > 2.

Given two vector bundlekE andF on X and a patrtitior, we lets, (F — E) denote the
super-symmetric Schur polynomial in the Chern roots of these bundles. By definition this
is the determinant of the matrix who€e j)th entry is the coefficient of the term of degree
Ai + j —i inthe formal power series expansion of the quotient of total Chern polynomials
G(EY)/c(FY).



152 BUCH

The expected (and maximal) codimension for the IqRue&E,) in X is

dr) = Z(ri,j—l = rij) - (Mg, — rij)-

i<j

The main result of [4] gives a formula for the cohomology clasafE,) when it has this
codimension:

[ (E)] =) Cu(r) S, (Ex — Eo) -+, (En — Eq).
I

Here the sum is over sequences of partitigns: (i1, ..., in); the coefficients, (r) are
certain integers given by an explicit combinatorial algorithm which is described in Section
2. These coefficients are known to generalize Littlewood-Richardson coefficients as well
as the coefficients appearing in Stanley symmetric functions [3, 4]. The formula specializes
to give new expressions for all known types of Schubert polynomials related to type A
geometry [7].

There is noimmediate geometric reason for the products of Schur polynomials appearing
in the formula. However, it is even more surprising that the coefficignits all seem to be
non-negative. Attempts to prove this has led to a conjecture saying that these coefficients
count the number of different sequences of tableaux satisfying certain conditions [4]. These
sequences are callégictor sequenceand are defined in Section 2.

The main result in this paper is a proof of this conjecture in some special cases which
include all situations where the sequerieghas up to four bundles. We will also show
that the conjecture follows from a stronger but simpler conjecture, for which substantial
computational verification has been obtained. For both of these results, a sign-reversing
involution on pairs of tableaux constructed by S. Fomin plays a fundamental role.

In Section 2 we will explain the algorithm for computing the coefficienis ), as well as
the conjectured formula for these coefficients. In Section 3 we will prove a useful criterion
for recognizing factor sequences. Section 4 gives an account of Fomin’s involution, which
in Section 5 is used to formulate the stronger conjecture mentioned above. Finally, Section
6 contains a proof of this stronger conjecture in special cases.

The work described in this paper, some of which was announced in [1], can be viewed
as a continuation of a joint geometric project with W. Fulton, which resulted in the quiver
formula described in [4]. We would like to thank him for introducing us to the subject of
degeneracy loci during this very pleasant collaboration, and also for numerous suggestions,
ideas, comments, etc. during the work on this paper. We are also extremely grateful to S.
Fomin who provided the vital involution mentioned above, and who also collaborated with
us in the attempts to prove the conjecture. Finally we thank Frank Sottile for many useful
suggestions for improving our exposition.

2. Description of the algorithm

This section explains the algorithm for computing the coefficienis) as well as the
conjecture for these coefficients. We will first explain this in the ordinary case described
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in the introduction. Then we will extend the notions to a more general situation, which for
many purposes is easier to work with.

We will need some notation. Let = Z[hy, hy, .. .] be the ring of symmetric functions.
The variableh; may be identified with the complete symmetric function of dedred
| = (a1, a, ..., ap) is a sequence of integers, define the Schur fundiioa A to be the
determinant of the x p matrix whose(i, j)th entry isha 4 j_i:

s = detthg+j_i)1<i,j<p-

(Here one sethy = 1 andh_q = 0 forg > 0.) A Schur function is always equal to either
zero or plus or minus a Schur functignfor a partitioni. This follows from interchanging
the rows of the matrix defining,. Furthermore, the Schur functions given by partitions
form a basis for the ring of symmetric functions [6, 10].

We will give the algorithm for computing the coefficiew(r ) by constructing an element
P: in thenth tensor power of the ring of symmetric functiong”, such that

P =) cus,® ®S,
I

It is convenient to arrange the rank conditions iraak diagram

Eo — E]_ — EZ e AR —> En
oo r 22 Mnn
lo1 ) s M—1n
o2 M—2n

lon

In this diagram we replace each small triangle of numbers

lij-1  Titaj
Fjj

by a rectangleR; with ri ;1 ; — rjj rows and; j_; — rj; columns.

R;; = Ti4l,j — Tij

Tij—1 — Tij
These rectangles are then arrangediiecédangle diagram

R01 R12 v Rn—l,n
Ry e Rn—2,n

ROn
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It turns out that the information carried by the rank conditions is very well represented
in this diagram. First, the expected codimensitn) for the locus; (E,) is equal to
the total number of boxes in the rectangle diagram. Furthermore, the condition that the
rank conditions can occur is equivalent to saying that the rectangles get narrower when one
travels south-west, while they get shorter when one travels south-east. Finally, the element
P, depends only on the rectangle diagram.

We will define P, € A®" by induction omn. Whenn = 1 (corresponding to a sequence
of two vector bundles), the rectangle diagram has only one rect&gleRy;. In this case
we set

Pr :SR S A®1

whereRis identified with the partition for which itis the Young diagram. This case recovers
the Giambelli-Thom-Porteous formula.

If n > 2 we letr denote the bottom rows of the rank diagram. Thenis a valid set of
rank conditions, so by induction we can assume that

Pr= Z Cu(F)Sy, ® - @Sy, , (1)
”w

is a well defined element of®"~1. Now P; is obtained fromP; by replacing each basis
elements,, ® --- ® S, , in (1) with the sum

n—1
_S_ H c_|s Q@ Qs
77 | | Ro1
TLyenry Tpn—1 =1
TlyeenyTn—1 .

This sum s over all partitions,, . .., on_1 andry, .. ., tn_1 such that; has fewer rows than
R -1i and each Littlewood-Richardson coefficigjt, is non-zero. A diagram consisting
of arectanglér_1 ; with (the Young diagram of) a partition attached to its right side, and
7j_; attached beneath should be interpreted as the sequence of integers giving the number
of boxes in each row of this diagram.

It can happen that the rectand®_; ; is empty, since the number of rows or columns can
be zero. If the number of rows is zero, thenis required to be empty, and the diagram is
the Young diagram of;_;. If the number of columns is zero, then the algorithm requires
that the length o#; is at most equal to the number of rows—ri_1; of R_1;, and the
diagram consists af; in the topr;j — ri_1; rows andz_; below this, possibly with some
zero-length rows in between.

Next we will describe the conjectured formula for the coefficients ). We will need
the notions of (semistandard) Young tableaux and multiplication of tableaux. In particular
we shall make use of the row and column bumping algorithms for Schensted insertion. See
for example [11, 13], or [6].

A tableau diagranfor a set of rank conditions is a filling of all the boxes in the corre-
sponding rectangle diagram with integers, such that each rectBpdglecomes a tableau
T;. Furthermore, it is required that the entries of each tablgare strictly larger than the

Rn—l,n

Tn—1
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entries in tableaux abovk in the diagram, within 45 degree angles. These are the tableaux
T withi <k < < jandk,I) # G, j).

A factor sequencdor a tableau diagram witln rows is a sequence of tableaux
(W4, ..., W,), which is obtained as follows: Ifi=1 then the only factor sequence is
the sequencé€Ty;) containing the only tableau in the diagram. When 2, a factor se-
quence is obtained by first constructing a factor sequédege. . ., U,,_;) for the bottom
n — 1 rows of the tableau diagram, and choosing arbitrary factorizations of the tableaux in
this sequence:

U =h- Q.

In other words we must choose tabled®andQ; such that); is their product in the plactic
monoid [6, 9]. Then the sequence

(Wi, ..., W) = (Tor- P, Q1+ Tao- Po, ..., Qo Taoan)

is the factor sequence for the whole tableau diagram. The conjecture from [4], which is the
theme of this paper, can now be stated as follows:

Conjecture 1 The coefficient, (r) is equal to the number of different factor sequences
(Wi, ..., W,) for any fixed tableau diagram for the rank conditionsuch thatw; has
shapey; for eachi.

This conjecture first of all implies that the coefficiefgr) are non-negative and that
they are independent of the side lengths of empty rectangles in the rectangle diagram.
In addition it implies that the number of factor sequences only depends on the rectangle
diagram and not on the choice of a filling of its boxes with integers.

Example 1 Suppose we are given a sequence of four vector bundles and the following
rank conditions:

Fy - B - Ey - Ej
1 4 3 3

These rank conditions then give the following rectangle diagram:

] 0
| O
O

From the bottom row of this diagram we get

P;:S].
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Then using the algorithm we obtain

Pf:Sj®S4]+1®SE
and

P, = $D®SD:D®SD + SD®SED®SH + 1®SHJ:|®SD -+
1®SHH®SH -+ 1®SED:|®SH + 1@8[]3@3@.

Thus the formula for the cohomology classf(E,) has six terms. Now, one possible
tableau diagram for the given rank conditions is the following:

e [l1 [
.

This diagram has the following six factor sequences:

[l [1]1]2]
(@ 6,0, @08, 0,52, m),

@55, 0,05, (w,,).

Since only the rectangle diagram matters for the formula, we will often depict a rank
diagram simply as a triangle of dots in place of a triangle of numbers. This is especially
convenient when working with paths through the rank diagram, which we shall do shortly.
Such a diagram will often be decorated with the rectangles from the rectangle diagram, or
by the tableaux from a tableau diagram. When this is done, each rectangle or tableau is put
in the middle of the triangle of dots representing the numbers that produced the rectangle.
In this way the rank conditions used in the above example would be represented by the
diagram:

. . . .
M O
. . .
| O
. °
O

We will now introduce a generalization of the formula fr. Define apaththrough the
rank diagram to be a union of line segments between neighboring rank conditions, which
form a continuous path fromy, to r,, such that any vertical line intersects this path at most
once.
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The length of a path is the number of line segments it contains (which is betvareha).
Given a pathy of length¢, we will define an elemerf, € A®. Itis convenient to identify
the basis elements af®¢ with labelings of the line segments pfby partitions. More
generally, ifl4, ..., |, are sequences of integers, then we will identify the labeling of the
line segments iy by these sequences, left to right, with the elensgrg - - - ® s, € A®-.

All basis elements occurring iR, with non-zero coefficient will assign the empty partition
to line segments on the left and right sides of the rank diagram. isfthe highest path,
going horizontally frontgg to ry,, thenP, is equal toP, .

We defineP, inductively as follows. Ify is the lowest possible path, going frag to
fon tOrnn, thenwe seP, = 1@1®---®1¢ A®2 |n other wordsP, is equal to the
single basis element which assigns the empty partition to each line segments diny
other path, then we can find a pathwhich is equal ta/, except it goes lower at one place,
in one of the following ways:

Y Y
®

Case 1: /\
Case 2:

By induction we may assume thgj. is well defined.
If we are in Case 1 we now obtal, from P, by replacing each basis element

occurring inP,, with the sum

s A )
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For Case 2, leR be the rectangle associated to the triangle whesady’ differ. ThenP,
is obtained fromP, by replacing each basis element

occurring inP,, with zero ifo has more rows thaR, and otherwise with the element:

An easy induction shows that this definition is independent of the choice of the/path
The elemenP, has geometric meaning similar to that®f. It describes the cohomology
class of a degeneracy loc@s (y) defined in [4].

If we are given a tableau diagram, the notion of a factor sequence can also be extended
to paths. Any factor sequence for a pathwill contain one tableau for each line segment
in y. As with elements o”A®¢, we will often regard such a sequence as a labeling of the
line segments iy with tableaux.

If y is the lowest path fromyg to rg, torp, then the only factor sequence is the sequence
@, ..., %) which assigns the empty tableau to each line segment. Otherwise we can find a
lower pathy’ as in Case 1 or Case 2 above. In order to obtain a factor sequencevior
must first construct one fagr'.

If we are in Case 1, let .., W, ...) be a factor sequence for such thatV is the label
of the displayed line segment, and Wt= P - Q be an arbitrary factorization &. Then
the sequenceé..., P, Q,...) is a factor sequence for. For Case 2, leT be the tableau
corresponding to the rectandgre If (..., Q, P, ...) is a factor sequence for with Q and
P the tableaux assigned to the displayed line segments(thenQ-T - P, ...) is a factor
sequence fop.

Finally we define coefficients, (y) € Z by the expression

P, = ZCM(V)SM ®--®Sy € A%

"
wherel is the length ofy. Conjecture 1 then has the following generalization:

Conjecture 1A The coefficient,, (y) is equal to the number of different factor sequences
(Wi, ..., W,) for the pathy, such that\; has shape; for eachi.

3. A criterion for factor sequences

In this section we will prove a simple criterion for recognizing factor sequences. As in the
previous section we will start by discussing ordinary factor sequences.
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Let {Tj} be a tableau diagram and I&t4, . .., W,) be a sequence of tableaux. At first
glance it would appear that to check if this sequence is a factor sequence, we would have to
find all factor sequenced)y, . .., Un_1) for the bottorn — 1 rows of the tableau diagram,
as well as all factorizationd; = P, - Q;, to see if our sequenadVi, ..., W,) is obtained
from any of these, i.eW, = Q;_1 - Ti_1; - B for all i. Equivalently we could find all
factorizations of eachV; into three factordM = Qi_1 - Ti—1i - B (with Qo = P, = 9),
and check if(Py - Qq, ..., Pn_1- Qn_1) is a factor sequence for any of these choices. The
criterion for factor sequences allows us to check this for just one factorization ofdach

Notice that if the sequena®Vi, . . ., W,) is a factor sequence, obtained from an inductive
factor sequencéUs, ..., U,_1) as above, then the conditions on the filling of a tableau
diagram imply that the entries of each tabl@awy ; are strictly smaller than the entries of
Qi_1 andP.. This implies thatVi = Q;_1 - Ti_1i - P contains the rectangular tableau
Ti_q1i in its upper-left corner.

We shall therefore investigate ways to factor a tableau into three pieces, one of which is a
contained rectangular tableau.

A trivial way to factor any tableau is by cutting it along a horizontal or vertical line. Let
T be atableau and > 0 an integer. LeU the topa rows of T, andD the rest ofT. Then
T = D - U. We will call this factorization théorizontal cutthroughT after theath row.
Vertical cuts are defined similarly.

Lemmal LetT = P.Q beany factorization of T and let a be the number of rows in Q.
The following are equivalent

(i) T =P -Qisahorizontal cut.

(i) Theithrow of T has the same number of boxes as thedw of Q forl <i < a.
(i) Whenever the top row of P has a box in column [, the ah row of Q has a strictly

smaller box in this column (unless=a0).

Similarly, if P has b columnsthen T= P .- Q is a vertical cut iff the first b columns of
T and P have the same heighif§ the boxes in the last column of P are smaller than or
equal to the boxes in similar positions in the first column of Q.

Proof: Itis clear that (i) implies (ii) and (iii). If (iii) is true ther® and Q fit together to
form a tableau withQ in the topa rows andP below. By taking a horizontal cut through
this tableau, we see that it must be the produdPafhd Q. But then it is equal ta and
(i) follows. Finally, suppose (ii) is true. When the boxeskare column bumped intQ
to form the productl, all of these boxes must then stay below #tle row. This process
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therefore reconstruct® below Q and (i) follows. The statements about vertical cuts are
proved similarly. O

Now let W be any tableau whose shape contains a rectafiyfewith a rows andb
columns. We define theanonical factorizatiorof W with respect to the rectang(e)? to
be the one obtained by first taking a horizontal cut throwghfter theath row, and then a
vertical cut through the top part &¥ after thebth column.

w=|T Pr_,JzQ-T-P
o/

Note that this definition depends aneven wherb is zero and the rectangib)? is empty.
When the product of three table&y T, andP looks like in this picture, we shall say that
the pair of tableauxQ, P) fits aroundthe rectangular tableall.

More generally, leQQq be the part ofV below T, P, the part ofW to the right ofT, and
let Z be the remaining part betwe&y and Py.

W:TPO,_‘—J

QZ

LI

We define ssimple factorizatiorof W with respect to the rectang(®)? to be any factor-
izationW = Q- T - P, such thatQ = Qo - Q andP = P - P, for some factorization
z=0.P.

Note thatifZ = Q- P is any factorization o and if we putQ = Q- QandP = P- P,
thenQ- T - P = W. This follows becaus® = P - P, must be a horizontal cut through,
and thereford - P = P - T - Py. In fact, given arbitrary tableau® and P one can show
thatQ- P = Zifandonlyif Q- Q- T - P - P, = W, but we shall not need this here.

We are now ready to formulate the criterion for factor sequences{R;g¢tbe the set of
rectangles corresponding to the tableau diagigh If (Wi, ..., W,) is afactor sequence,
a simple factorization of anw will always be with respect to the relevant rectanBles i
from the rectangle diagram.

Theorem1 Let(Wi,..., Wy) be asequence of tableaux such that eacledMtains T_1

in its upper-left corner. Let W= Q;_1 - Ti_1; - P be any simple factorization of With
respect to the rectangle;R ;. Then(Wi, ..., W,) is a factor sequence if and only ifQ
and R, are empty tableaux an@P; - Qq, ..., P_1 - Qn_1) is a factor sequence for the
bottom n— 1 rows of the tableau diagrarf;}.

We shall derive this result from Proposition 1 below. Since this criterion can be ap-
plied recursively to the sequen¢B; - Q4, ..., Pi_1- Qn_1), it gives an easy algorithm to
determine if a sequenddV, ..., W,) is a factor sequence. An easy way to produce the
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simple factorizations required by the theorem is to take the canonical factorization of each
W;. When this choice is made, the work required in the algorithm essentially consists of
n(n — 1)/2 tableau multiplications. Note also that this method makes use of the height of
any empty rectangles in the rectangle diagram.

To prove this criterion we need some definitions. [Iebe a tableau whose shape is
the rectanglégb)? with a rows andb columns. We will consider pairs of tableagX, Y)
such that all entries iiX andY are strictly larger than the entries ©f For such a pair, let
X = Xo - X be the vertical cut throug after thebth column, and le¥ =Y - Y, be the
horizontal cut after rova.

x =| Xo X

LI

If (X’,Y’)is another pair of tableaux, we will writexX, Y) &= (X, YY) if either

1. for some factorizatior):( = M- NwehaveX' = Xpo-MandY' =N .Y, or
2. for some factorizatiof = M - N we haveX’ = X - M andY’ = N - Y.

Note that this implies thaX’ - T - Y/ = X - T - Y. In the first case this follows because
X-T=Xo-T-XandX -T = Xo-T - M, and the second case is similar. We will et
denote the transitive closure of the relatien This notation depends on the choiceTaf
as well as the numbeesandb if T is empty.

Lemma 2 Let W be a tableau containing T in its upper-left corner. Suppose that the
entries of T are smallerthan all other entriesin W. If3AQ - T- P isasimple factorization

of W with respect to the rectangt®)?, and W = X - T - Y is any factorizationthen
(X,Y) - (Q, P).

Proof: LetX = Xg- X be the vertical cut througX after columrb, and puty’ = X - Y.
Thenlety’ =Y’ Yy be the horizontal cut through’ after rowa, and putX” = Xo - Y.

We claim that the pai¢X”, Yj) fits aroundT. Using Lemma 1 and that the entriesTof
are smaller than all other entries, it is enough to prove thab thg th entry in the top row
of X" is strictly larger than thgth entry in the bottom row o¥;. This will follow if the
b+ jth entry in the top row oX” is larger than or equal to thgh entry in the top row of
Y’. SinceX” = Xo - Y’ andXg has at mosb columns, this follows from an easy induction
on the number of rows of".

It follows from the claim thatWWw = X" - T - Yy is the canonical factorization &, and
therefore we haveX, Y) = (Xo, Y) = (X7, Yg) = (Q, P) as required. O
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Notice that if W = X - T - Y is a simple factorization andX, Y) &= (X’,Y’), then
W = X' T - Y must also be a simple factorization. It follows that Lemma 2 would be
false without the requirement théf = Q - T - P is simple.

Lemma3 Leta>0 be an integerand let Y and S be tableaux with productAY - S.
Let A= A- Ao and Y =Y - Yy be the horizontal cuts 'Ehrough Aand Y after rpwaand
IetY~= M-N be any factorization. Then NYp - S= A’ - Aq for some tableaw, and
M. A =A.

Yo Ao
A

g

Proof: The first statement follows from the observation that the bottom roWws adn’t
influence the top part of - S, which is a consequence of the row bumping algorithm. Lemma
1 then shows that the factorizatign= (M - A) - Aqis a horizontal cut, st1 - A’ = A as
required. O

Lemma 4 Lety be a path through the rank diagrarand let(..., A,B-C,...) be a
factor sequence for such that the product BC is the label of a down-going line segment.
Then(..., A- B, C,...) is also a factor sequence for.

e

Proof: We will first consider the case where the line segment correspondiAgtmes
up. Lety’ be the path under that cuts short this line segment and its successor.

A/ NB-C
A-B-C

Then by definition(..., A- B - C,...) is a factor sequence fgr’, which means that
(...,A-B,C,...) is afactor sequence for. In generaly lies over a path like the one
above, and the general case follows from this. O

Similarly one can prove thatif .., A- B, C,...) is a factor sequence for a path, such
that A - B is the label of an up-going line segment, then , A, B - C, ...) is also a factor
sequence for this path.

Proposition1 Lety andy’be paths related as in Ca2ef Sectior2,andlet(..., W, ...)
be a factor sequence fogr such that W is the label of the displayed horizontal line
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segment.

IfW = Q-T-P isany simple factorization of Wwhen(.. ., Q, P, ...) is afactor sequence
for y'.

Proof: Since(..., W, ...) is a factor sequence fgr, there exists a factorizatio =
X-T-Ysuchthat..., X,Y,...)isafactorsequence fgf. By Lemma2we havéX, Y) —
(Q, P). ltis therefore enough to show that(X, Y) &= (X, Y/) then(..., X", Y’,..)isa
factor sequence for’.

Let a be the number of rows in (the rectangle correspondindta@nd lety = Y - Y,
be the horizontal cut throug¥l after theath row. We will do the case where a factor of
Y is moved toX, the other case is proved using a symmetric argument. We then have a
factorizationY =M - N such thatX’ =X - M andY’'=N - Y,. We can assume that the
pathsy andy’ go down after they meet, and that the original factor sequence fer
(...,W,S ...

PutA =Y .S Then(..., X, A, ...) is a factor sequence for the path with these labels
in the picture. Now lefl’ be the rectangular tableau associated to the lower triangle, and
let A=U - T’V be the canonical factorization @& Since this is a simple factorization
we may assume by induction that ., X, U, V, ...) is a factor sequence. Using Lemma

3 we deduce thaN - Yo - S = U’ - T’ . V for some tableaw’, such thatM - U’ =

U. Since(..., X, M -U’,V,..)) is a factor sequence, so(s.., X - M,U’, V,...) by
Lemma4. Thismeansthat.., X -M,U’-T"-V,..)=(.., X, Y-S ..)isafactor
sequence, which in turn implies that.., X', Y’, S, ...) is a factor sequence faor’ as
required. O

The proof of Proposition 1 also gives the following:

Corollary 1 Let(..., X,Y,...) be a factor sequence for the pathin the proposition.
If (X,Y) = (X, Y)then(..., X', Y’,...)is also a factor sequence for.

Proof of Theorem 1: The “if” implication follows from the definition. If the sequence
(W, ..., W,) is a factor sequence, them applications of Proposition 1 shows that
(Qo, P1, Q1, P2, ..., Qn_1, Pn) is a factor sequence for the path with these labels.
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Wy W, Wy . W,
Qoewe Qn-\ Pr
-y P-Q2
It follows that Qo and P, are empty, andP; - Qi, ..., P,_1 - Qn_1) is a factor sequence
for the bottorn — 1 rows. This proves “only if”. O

4. An involution of Fomin

In this section we will describe a sign-reversing involution on pairs of tableaux constructed
by Sergey Fomin. The purpose of this involution is to cancel out the difference be-
tween the coefficients, (r) produced by the algorithm in Section 2, and their conjectured
values.

Fix an integera > 0. If P and Q are tableaux of shapesandt such thatP has at
mosta rows, we IetS(%) denote the symmetric functisy € A wherel is the sequence
of integersl = (o1, ...,0a,, 71, 72, ...). Let P, be the set of all pairgQ, P) such that
S(£) # 0 and such thaP and Q do not fit together as a tableau wikhin the topa rows
angQ below. This means that thath row of P must be shorter than the top row Qf or
some box in the top row d must be smaller than or equal to the box in the same position
of theath row of P. For example, ia = 2 the following pairs are ifP,:

4]7]

6]

3(3

6
)

[@2 ]
o [

?

[eeJin ]

[3]s[6f7] [1]3]718]
EF, BEFS) and ¢

Lemma 5 (Fomin’s involutior) There exists an involution ¢, with the property that if
(Q, P) is mapped tqQ’, P’) then
) Q-P=Q-P
(i) S(g) =—S(g). and
(iii) the first column of Qis equal to the first column of Q.

Fomin supplied the proof of this lemma in the form of the beautiful algorithm described
below. While Fomin’s original description uses path representations of tableaux, we have
translated the algorithm into notation that is closer to the rest of this paper.

We will work with diagrams with weakly increasing rowg hese will be “Young dia-
grams” for finite sequences of non-negative integers, where all boxes are filled with inte-
gers so that the rows are weakly increasing. Empty rows are allowed as in the following
example:

2]3[6]6]
34]s6]7]7]

[+T6]
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A violation for such a diagram to be a tableau is a box in the second row or below, such
that there is no box directly above it, or the box directly above it is not strictly smaller. The
above diagram has 4 violations in its second row and 2 in row four.

If D is a diagram with weakly increasing rows, and iis the sequence of row lengths,
we putS(D) =s, € A. LetrectD) denote the tableau obtained by multiplying the rows of
D together, from bottom to top. We will identify a pai®, P) € P, with the diagramD
consisting ofP in the topa rows andQ below. For this diagram we then hag- P =
recD) andS(§) = S(D).

We will start by taking care of the special case whare- 1 and bothP and Q have
at most one row. In this case Lemma 5 without property (iii) is equivalent to the identity
Se.x = h¢ehy —h,1hg_1 in the plactic monoid, which is a special case of a result by Lascoux
and Sclutzenberger [9, 12]. The simple proof of this result given in [5] develops techniques
which Fomin used to establish Lemma 5 in full generality.

Lemma6 Let D be adiagram with two rows and at least one violation in the second row.
Then there exists a unique diagram €dich thatrect(D’) = rect D) and SD’) = —S(D).
Furthermore D’ also has two rows and at least one violation in the second row. The
leftmost violations of D and Dappear in the same column and contain the same number.
The parts of D and Dto the left of this column agree.

Proof: Let p andq be the lengths of the top and bottom rows®f The requirement
S(D’) = —S(D) then implies thaD’ must have two rows witly — 1 boxes in the top row
and p + 1 in the bottom row. Now it follows from the Pieri formula [6, section 2.2] that
the product reg¢D) of the rows inD has at most two rows. Furthermore, singeontains
a violation, the second row of ré@) has at most] — 1 boxes. Using the Pieri formula
again, this implies that there is exactly one way to factor2rtnto a row of lengthp + 1
times another of length — 1. This establishes the existence and uniqueneBg.of
Explicitly, one may use the inverse row bumping algorithm to obtain this factorization
of rect(D). This is done by bumping out a horizontal stripgpf- 1 boxes which includes
all boxes in the second row, working from right to left.
Let x be the leftmost violation oD, whereD has the form:

E |

| A
D=—%TT F -

Suppose the partd and B each contairt boxes. Now form the produdt - E and letc;
andd; be the boxes of this product as in the picture:

. _ leieofealea] -+ - Tex)
F E_d1d2 R .

Sincex is a violation inD, it must be smaller than all boxeskhandF. Therefore we have

F.E=zlalelesles -+ led
“ dldy - 4]
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Now since eachl; > c; it follows that if a horizontal strip of length —t — 1 is bumped off
this tableaux will remain where it is. In other words we can factorF - E intox- F’'- E’
such that - F’ andE’ are rows of lengthg — t + 1 andg — t — 1 respectively. Since the
entries ofA andB are no larger thar, the product® - x - F" andA- E’ are rows of lengths
p + 1 andg — 1. But the product of these rows is réY, so they must be the rows &f’
by the uniqueness. This proves tlizithas the stated properties. O

Notice that the uniqueness also implies that the transformation of diagrams described in
the lemma is inverse to itself, i.e. an involution.

Now supposeD is any diagram with weakly increasing rows. Then Lemma 6 can be
applied to any subdiagram of two consecutive rows, such that the second of these rows
contains a violation. If this subdiagram is replaced by the new two-row diagram given by
the lemma, we arrive at a diagraldi satisfyingS(D’) = —S(D) and rectD’) = rect(D).

We will call this anexchange operatiobhetween the two rows db.

We shall need an ordering on the violations in a diagram. Here the smallest of two
violations is the south-west most one. If the two violations are equally far south-west, then
the north-west most one is smaller. In other words, a violation inirawd columnj is
smaller than another in row and columnj’ iff j —i < j’—i’,orj—i = j —i"and
i<

Notice that when an exchange operation between two rows is carried out, violations may
appear or disappear in these two rows as well as in the row below them. However, the
properties given in Lemma 6 imply that all of the changed violations will be larger than
the left-most violation in the second of the rows exchanged. It follows that the minimal
violation in a diagram will remain constant if any (sequence of) exchange operations is
carried out. Similarly, all boxes south-west of the minimal violation will remain fixed.

Proofof Lemma5: GivenapailQ, P) € P, letDg, p be the finite set of all non-tableau
diagramsD with weakly increasing rows, such that réd) = Q - P andS(D) = +S(2),
and so that the minimal violation iB is in rowa + 1. The pair(Q, P) is then identified
with one of the diagrams in this set. We will describe an involution of thé>zep and
another of the complement &, N Dq p in Dg, p. The restriction of Fomin’'s involution to
PaNDq,p is then obtained by applying the involution principle of Garsia and Milne [8] to
these involutions.

The involution of Dg p simply consists of doing an exchange operation between the
rowsa anda + 1 of a diagram. This is possible because all diagrams are required to have
a violation in rowa + 1.

Now note that a diagrar® € Dq p is in the complement oP, N Dq p if and only if
D has a violation outside the + 1st row. We take the involution dPg p\ P, to be an
exchange operation between the row of the minimal violation outsidearewi, and the
row above this violation. This is indeed an involution since the minimal violation outside
row a + 1 stays the same.

These involutions now combine to give an involution7df N Dq p by the involution
principle. To carry it out, start by forming the diagram wihin the topa rows andQ below
it. Then do an exchange operation between soand rowa + 1. If all violations in the
resulting diagram are in roev+ 1 we are doneP’ is then the to@ rows of this diagram and
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Q' is the rest. Otherwise we continue by doing an exchange operation between the row of
the minimal violation outside roa+ 1 and the row above it, followed by another exchange
operation between roa and rowa + 1. We continue in this way until all violations are in
rowa+ 1.

Finally, the properties oP” and Q' follow from the properties of exchange operations.
In particular, the requiremeﬂ(%) = —S(%) follows because we always carry out an odd
number of exchange operations. O

Example 2 The pair(P, Q) = (EFF™,EEF™) in P, gives the following sequence of
exchange operations:

3[7]8]
4]7

78] 1 1
2 2
6[7] ~ [3]s]6 ~ (3
14] 14]

PN (4]

[3]
4
5

[3]
4]7]718}
5]6]

6[7[7]8]

|4>mm._.
o
lPLﬂN‘»—-|

This pair therefore corresponds®’, Q') = (B2 E) by Fomin’s involution.

There are examples of pai(®, P) for which the setP, N Dg p has more than two
diagrams, all with the same first column. This means that the involution constructed above
is not the only one that satisfies the conditions of Lemma 5. One way to produce different
involutions is to use another ordering among violations. The only property of the order
that we have used is that when an exchange operation is carried out, any violations that are
created or removed by this operation must be larger than the leftmost violation in the second
of the rows being exchanged. For example, given any irrational parainetéd, 1), we
obtain a new order by letting a violation in positi@n j ) be smaller than another in position
(i’,jHifandonlyif j — & < j/ —&i’.

5. The stronger conjecture

In this section we present a simple conjecture which implies Conjecture 14. et path
through the rank diagram which at some triangle has an angle pointing down:

LetT be therectangular tableau associated to this triangle, and suppose the corresponding
rectangle haa rows andb columns.

If X andY are tableaux whose entries are strictly larger than the entrig€s afd if Y
has at mosa rows, we will let

Tl—y_TYF—I
X—JX_:—'J
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denote the diagram consistingDf Y in the topa rows andX below. The sequence of row
lengths of this diagram then gives an eIemsnTg'(—Y) in the ring of symmetric functiona.

Note that(X, Y) fits aroundT if and only if the diagram’” is a tableau.
Suppose thatX, Y) does not fit around andS(%) is non zero. LeX = Xo- X be the

vertical cut througtX after thebth column. Ther(X, Y) is an element of the s@t, defined

in the previous section. LéK’, Y’) be the result of applying Fomin’s involution to this pair,
and setX’ = X, - X'. Since the first columns of and X’ agree X’ consists 0fXg with X’
attached to its right side by Lemma 1. It follows ti&t'-) = —S(L¥). (Note that one
could also get froniX, Y) to (X’, Y’) by applying Fomin’s involution to the pafiX, T -Y).)

Conjecture 2 Let(..., X,Y,...) be afactor sequence fprwith X andY the labels of
the displayed line segments, such thfadhas at mosa rows. SupposéX, Y) does not fit
aroundT and S(1¥) # 0. If X’ andY’ are obtained fronX andY by applying Fomin’s
involution as descrlbed above, théen., X', Y’, .. ) is also a factor sequence fpr

If we fix the location of the down-pointing angle of (i.e. the location ofT in the
tableau diagram), then the strongest case of this conjecture is when the yegbe$ as
low as possible. If Conjecture 2 is true for all locations of the down-pointing angle, then
the conjectured formula for the coefficiems(y ) is correct.

Theorem 2 Conjecture 1A follows from Conjectuge

Proof: If Wy, ..., W, are diagrams with weakly increasing rows, e.g. tableaux, we will
write S(Wy, ..., W) = S(Wp) ® --- ® S(W,) € A®‘. With this notation we must prove
that if y is a path of lengtit, then

R,:ZS(WL...,W@) )

(W)

where the sum is over all factor sequen¢és) for y.
Lety’ be a path under as in Case 1 or Case 2 of Section 2. By induction we can assume
that Conjecture 1A is true for’, i.e.

Py =) SU,...,Up) ®)

L)

where this sum is over the factor sequencegfolWe must prove that the right hand side of
(2) is obtained by replacing each basis element of (3) in the way prescribed by the definition
of P,. If we are in Case 1 then this follows from the Littlewood-Richardson rule [6, section
5.1]: If U is a tableau of shape ando andt are partitions, then there ac¢, ways to
factorU into a product) = P - Q such thatP has shape andQ has shape.

Assume we are in Case 2. By induction we then know fat= > S(..., X,Y,...)
where the sum is over all factor sequences, X, Y, ...) for y’; X andY are the labels
of the two line segments whegé is lower thany. Let T be the rectangular tableau of the
corresponding triangle, and late the number of rows in its rectangle. Then by definition
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we get

P= > s(%) (4)
(eees )

XY,...

where the sum is over all factor sequences, X, Y, ...) for y’ such thatY has at mosa
rows.
Now suppose we have a factor sequeqce, X, Y, ...) such that the diagra@l isa

tableau. Then this tableau must be the proddefrl - Y, and saof.. ., % ...) is a factor
sequence fop. Thus the ternts(. .., % ...) matches one of the terms of (2). On the

other hand it follows from Proposition 1 that every term of (2) is matched in this way.

We conclude from this that the terms in (2) is the subset of the terms in (4) which
come from factor sequences such thgt Y) fits aroundT. We claim that the sum of the
remaining termsin (4) is zero. Infactif.., X, Y, ...) is afactor sequence for such that
(X, Y) doesn't fit aroundr andS(%) # 0, then we may apply Fomin’s involution in the
way described above to get tableaxkandY’. If Conjecture 2 is true, then the sequence
(..., X, Y’,...) is also a factor sequence, and sir&:(%‘(—\,(') = —S(%), the terms of (4)
given by these two factor sequences cancel each other out. O

The number of factor sequences for a tableau diagram can be extremely large. For this
reason it is almost impossible to verify Conjecture 1 or Conjecture 1A directly by counting
factor sequences. In contrast, instances of Conjecture 2 can be tested easily even on large
examples. Given a tableau diagram and a path, one can generate a factor sequence for
this path by choosing factorizations of tableaux by random. Then one can apply Fomin’s
involution to the sequence, and use the criterion of Proposition 1 to check that the result is
still a factor sequence. Such checks have been carried out repeatedly for each of 500,000
randomly chosen tableau diagrams with up to 10 rows of tableaux, without finding any
violations of Conjecture 2. Together with the results in the next section, we consider this
to be convincing evidence for the conjectures.

6. Proof in a special case

In this final section we will show that Conjecture 2 is true in certain special cases. These
cases will be sufficient to prove the conjectured formuladgair) when all rectangles in
and below the fourth row of the rectangle diagram are empty, and when no two non-empty
rectangles in the third row are neighbors. This covers all situations with at most four vector
bundles.

Let y be a path through the rank diagram with a down-pointing angle as in the previous
section. LetR be the rectangle of the corresponding triangle.
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We will describe two cases where Conjecture 2 can be proved. Both cases require a
special configuration of the rectangles surroundifig SupposeR is the rectangleR;;

in the rectangle diagram. We will say that a different rectarigfle= Ry is below Rif
k<i<j<l. Risstrictly below Rif k <i < j <.

Proposition 2 Conjecture2 is true fory if all rectangles strictly below R are empty.

[l ]
L] e []

rectangles

Note that this covers all rectangles on the left and right sides of the rectangle diagram.

Proof: LetT be the tableau corresponding® and let(..., X, Y, ...) be a factor se-
quence for. Since all tableau on the line going south-west frérim the tableau diagram
are narrower thaf, it follows that alsoX has fewer columns thah. Similarly Y has fewer
rows thanT. But this means thatX, Y) fits aroundT and the statement of Conjecture 2 is
trivially true. a

In the other situation we shall describe, we allow three non-empty tableaux betmv
shown in the picture.

All other tableaux belowl are required to be empty. Let be the higher angt’ the
lower of the two paths in the diagram.

Lemma?7 Let(..., X,Y,...) bealabeling of the line segments)dfwith tableaux. The
following are equivalent

Q) (.., XY,...) isafactor sequence for'.
(2 (..., X-T-Y,...)is afactor sequence far and the part of X that is wider than T
and the part of Y that is taller than T have entries only from C.

Proof: Itis clear that (1) implies (2). For the other implication, Mit= X - T - Y and

letW = X’- T - Y’ be the canonical factorization ¥f. Then it follows from Proposition
lthat(..., X', Y’,...) is afactor sequence for. Since(X,Y) — (X', Y’) by Lemma 2,
we may assume thaX, Y) = (X', Y').
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We will handle the case where a factor of the bottom palt &f moved toX, the other
case being symmetric. This means that for some tablane haveX’ = X - M and
Y = M - Y'. Since the bottom part of has entries only fron€, this is also true foM.

We may assume that andy’ go down outside the displayed angle and that our factor
sequenceis...,U, X, Y, V,..).

w
U X - \4

Then by definition there exists a factorizatiGn= C; - C;, such thatA- C; = U - X" and
C,-B=Y'-V. SinceU - X - M consists ofA with C; attached on its right side, and since
all entries ofM are strictly larger than the entries 4f it follows thatU - X consists ofA
with some tableat; attached on the right side. Furtherm@g- M = C; by Lemma 1.

PutC, =M -C,. Thenwe have€; -C, =C,A-C;=U - X,andC,-B=Y - V. It
follows that(..., U, X, Y, V,...) is a factor sequence as required. O

Proposition 3 Conjecture2 is true for the pathy’ in Lemmay.

Proof: Let(..., X,Y,...) be a factor sequence for which satisfies the conditions in
Conjecture 2, and leX’ andY’ be the tableaux obtained frokandY using Fomin’s invo-
lution. Since the part oX that is wider tharT has entries only fror®, the same will be true
for X’ by Lemma 5 (iii). SinceY’ has fewer rows tham and since..., X'-T-Y’,...) =
(..., X-T-Y,...) isafactor sequence for, it follows from Lemma7that..., X', Y',...)

is a factor sequence for'. O

Corollary 2 Conjecturel is true if all rectangles in and below the fourth row of the
rectangle diagram are emptyand if no two non-empty rectangles in the third row are
neighbors.

Proof: When the rectangle diagram satisfies these properties, then all instances of Con-
jecture 2 follow from either Proposition 2 or Proposition 3. The corollary therefore follows
from Theorem 2. O

In Section 2 we defined a rectangle diagram to be something you get by replacing the
small triangles of numbers in a rank diagram with rectangles. However, everything we have
done is still true if one defines a rectangle diagram to be any diagram of rectangles, each
given by a number of rows and columns, such that the number of rows decreases when one
moves south-east while the number of columns decreases when one moves south-west. This
definition is slightly more general because the side lengths of the rectangles in a rectangle
diagram obtained from rank conditions satisfy certain relations. Although we don’t know
any geometric interpretation of these more general rectangle diagrams, they seem to be the
natural definition for combinatorial purposes.



172 BUCH

References

abownN

~N o

10.
11.
12.

13.

. A.S. Buch, “Chern class formulas for degeneracy lociPiac. Formal Power Series and Alg. Combields

Institute, Toronto, 1998, pp. 103-113.

. A.S. Buch, “Combinatorics of degeneracy loci,” Ph.D. Thesis, The University of Chicago, 1999.

. A.S. Buch, “Stanley symmetric functions and quiver varietidsyirnal of Algebra235(2001), 243-260.

. A.S. Buch and W. Fulton, “Chern class formulas for quiver varietiesgnt. Math.135(1999), 665-687.
. S. Fomin and C. Greene, “Noncommutative Schur functions and their applicatidissfete Math.193

(1998), 179-200.

. W. Fulton,Young TableauxCambridge University Press, 1997.
. W. Fulton, “Universal Schubert polynomial&uke Math. J96 (1999), 575-594.
. A.M. Garsia and S.C. Milne, “Method for constructing bijections for classical partition identitieBfoc.

Nat. Acad. Sci. U.S.A.8(1981), 2026—-2028.

. A. Lascoux and M.-P. Scitvenberger, “Le monde plaxique,” inNoncommutative Structures in Algebra and

Geometric Combinatorics (Naples, 1978bl. 109 of Quad. “Ricerca Sci! Rome, 1981, pp. 129-156.

1.G. MacdonaldSymmetric Functions and Hall Polynomia@xford University Press, Oxford, 1979.

B.E. SagariThe Symmetric GroyjBrooks/Cole Advanced Books & Software, 1991.

M.-P. Schitzenberger, “La correspondance de Robinson,” in Lecture Notes in Math. Vol. 579, pp. 59-113,
1977.

R.P. Stanleygnumerative Combinatorics. Vol, €ambridge University Press, 1999.



