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Abstract. Let Tn be the space of fully-grown n-trees and let Vn and V ′
n be the representations of the symmetric

groups �n and �n+1 respectively on the unique non-vanishing reduced integral homology group of this space.
Starting from combinatorial descriptions of Vn and V ′

n , we establish a short exact sequence of Z�n+1-modules,
giving a description of V ′

n in terms of Vn and Vn+1. This short exact sequence may also be deduced from work of
Sundaram.

Modulo a twist by the sign representation, Vn is shown to be dual to the Lie representation of �n , Lien . Therefore
we have an explicit combinatorial description of the integral representation of �n+1 on Lien and this representation
fits into a short exact sequence involving Lien and Lien+1.
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Introduction

The space of fully-grown n-trees Tn was described in [7]. This is a topological space with
an action of the symmetric group �n+1. It has the homotopy type of a bouquet of spheres
and its unique non-vanishing reduced homology group affords a representation of �n+1,
the tree representation.

The space Tn arises naturally in joint work of the author with Alan Robinson on ‘gamma
homology’, a homology theory for coherently homotopy commutative algebras (E∞-
algebras) [8]. This is motivated by the problem in stable homotopy theory of develop-
ing an obstruction theory for E∞ structures on ring spectra. The representation of �n+1

on Tn plays an important role. Character calculations were carried out in [7] and related
representations were studied in [11].

The same representation has arisen in several other contexts. As will be shown below,
it is closely related to the �n+1 action on Lien , the multilinear component of the free Lie
algebra on n generators. This action is due originally to Kontsevich and has been studied
by Getzler and Kapranov [4].

In [6] Mathieu studies the same action on the top component of the rational cohomology
of the complement of the braid arrangement. By looking at integral cohomology, he shows
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that the action does not come from an action of a transformation group on the complement
of the braid arrangement. It is possible that the results of this paper may shed some further
light on this.

This and related representations have been extensively studied by Sundaram via subposets
of the partition lattice [10]; see also [9]. Related work in the rational situation has also been
carried out by Hanlon [5]. Finally, the same representation arises in the homology of the
complex of ‘not 2-connected’ graphs [1].

The aim of the present paper is to study the integral representation of �n+1 on Tn . Let Vn

and V ′
n denote the representations of �n and �n+1 respectively on the unique non-vanishing

reduced integral homology group of the tree space Tn . We start from explicit combinatorial
descriptions of these representations, involving shuffles. In the first section, these are used
to deduce various properties of the representations. In particular, we prove (1.8) that there
is a short exact sequence of Z�n+1-modules

0 → Vn+1 → Ind�n+1
�n

Vn → V ′
n → 0 .

This generalizes the rational direct sum decomposition

Ind�n+1
�n

Vn
∼= V ′

n ⊕ Vn+1 ,

of Q�n+1-modules of [11, 3.4]. We note that the short exact sequence of Z�n+1-modules
may also be deduced from the work of Sundaram [10] which uses entirely different methods.
We end the first section with a simple example where the sequence does not split over the
integers.

The second section establishes the relationship between the integral tree representation Vn

of �n and Lien . We use a direct combinatorial argument to prove that there is an isomorphism
of Z�n-modules

Lien
∼= Hom(Vn, Z[−1]),

where Z[−1] denotes the sign representation. Related results were proved by Barcelo [2].
From this result and those of the first section, we recover the fact that Lien carries an
action of �n+1 and we have an explicit combinatorial description for this Z�n+1-module.
This integral representation of �n+1 fits into a short exact sequence involving Lien and
Lien+1.

1. The symmetric group representations, Vn and V′
n

The symmetric group �n is the group of permutations of the set {1, . . . , n}. Permutations are
written in cycle notation and multiplied from right to left, so for example (1 2)(2 3) = (1 2 3).
The identity permutation is written 1. We regard �n as contained in �n+1 as the subgroup
of permutations fixing n + 1, and similarly the group ring Z�n is a subring of Z�n+1. We
denote the sign of a permutation π by ε(π) ∈ {−1, 1}.

Our starting point is the following description of representations Vn and V ′
n of �n and

�n+1 respectively.
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Definition 1.1 Recall that π ∈ �n is an (i, n − i)-shuffle if π(1) < π(2) < · · · < π(i)
and π(i + 1) < π(i + 2) < · · · < π(n). For i = 1, . . . , n − 1, define

si,n−i =
∑

ε(π)π ∈ Z�n and s̄i,n−i =
∑

ε(π)π−1 ∈ Z�n ,

where each sum is over all (i, n − i)-shuffles π in �n . We set s0,n = sn,0 = s̄0,n = s̄n,0 = 1.

Now we define the integral representations Vn and V ′
n of �n and �n+1 respectively as

follows. As a left Z�n-module Vn has a single generator, denoted cn , subject to the relations

s̄i,n−i cn = 0, for i = 1, . . . , n − 1.

Let tn+1 = (−1)n(1 2 . . . n + 1) ∈ Z�n+1. As a Z�n+1-module V ′
n also has a single

generator, which we denote again by cn , subject to the relations

s̄i,n−i cn = 0, for i = 1, . . . , n − 1;

(1 − tn+1)cn = 0.

It is proved in [12] that Vn and V ′
n are the representations of �n and �n+1 respectively given

by the unique non-vanishing reduced homology group of the space of fully grown n-trees,
Tn . In particular, the restriction of V ′

n to �n is Vn .

Notation 1.2 Let pn,i = (n i)(n − 1 i + 1)(n − 2 i + 2) · · · ∈ �n , for i = 1, . . . , n, and
let ρn,i = (−1)n−iε(pn,i )pn,i ∈ Z�n .

Lemma 1.3 ([12, III.3.1]) For i = 1, . . . , n, in Vn we have the relations

ρn,i cn = s̄i−1,n−i cn .

Proof: We use downward induction on i . When i = n the result is trivial, since both sides
of the equation above are equal to cn . Now suppose the result holds for i + 1. It is clear that
if π is an (i, n − i)-shuffle, then either π(i) = n or π(n) = n. Let s̄(i)

i,n−i = ∑
ε(π)π−1,

where the sum is over (i, n − i)-shuffles such that π(i) = n. Then s̄i,n−i = s̄(i)
i,n−i + s̄i,n−i−1

for i = 1, . . . , n − 1. Hence

0 = s̄i,n−i cn = s̄(i)
i,n−i cn + s̄i,n−i−1cn

= s̄(i)
i,n−i cn + ρn,i+1cn by induction hypothesis.

Now π is an (i, n − i)-shuffle such that π(i) = n if and only if π(i i + 1 . . . n) is an
(i − 1, n − i)-shuffle. Thus (i i + 1 . . . n)−1s̄(i)

i,n−i = (−1)n−i s̄i−1,n−i . Furthermore, (i i +
1 . . . n)−1ρn,i+1 = (−1)n−i+1ρn,i . Composing each side of the above with the permutation
(i i + 1 . . . n)−1 gives the result. ✷

Next we give some identities in the group ring Z�n , which will be useful in studying our
representations.
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Lemma 1.4 Let νn = (1 − µn−1,n)(1 − µn−2,n) · · · (1 − µ1,n) ∈ Z�n, where µi,n =
(−1)n−i (i i + 1 . . . n). Then, for i = 1, . . . , n − 1

νnsi,n−i = 0 .

Proof: This is a straightforward deduction from relations in the group ring Z�n given by
Garsia in [3]. A special case of [3, 2.2] (modulo an introduction of signs) is
pn,1νn pn,1si,n−i = 0, for i = 1, . . . , n−1. Since pn,1si,n−i = sn−i,i pn,1, for i = 1, . . . , n−1,
the required result follows. ✷

Proposition 1.5 As a Z-module, Vn is free of rank (n − 1)!. A basis is given by {πcn | π
∈ �n−1}.

Proof: Note that {pn,i | i = 1, . . . , n} is a set of coset representatives for �n−1 in �n . The
equations of 1.3 express the action of each of these on the generator cn in terms of only
πcn’s where π ∈ �n−1. Therefore, {πcn | π ∈ �n−1} is a generating set for Vn .

Now we claim that in Vn , {πcn | π ∈ �n−1} is linearly independent. Equivalently, we
show that, for zπ ∈ Z and ai ∈ Z�n ,

∑
π∈�n−1

zππ =
n−1∑
i=1

ai s̄i,n−i ⇒ zπ = 0 for all π ∈ �n−1.

For suppose some zπ �= 0; without loss of generality, we may assume z1 �= 0 (since
otherwise we multiply by π−1). For σ ∈ �n , let C(σ ) ∈ Z denote the coefficient of σ in∑n−1

i=1 ai s̄i,n−i . Then if x = ∑
σ∈�n

xσ σ , set C(x) = ∑
σ∈�n

xσ C(σ ). Consider νn as in 1.4.
Let ai = ∑

π∈�n
(ai )ππ . Then C(νn) is the sum over i and over π in �n of (ai )π multiplied

by the coefficient of π in νnsi,n−i , which is zero by 1.4. Thus C(1) = C(1 − νn). Now note
that 1 − νn is a Z-linear combination of permutations in �n\�n−1. But in

∑
π∈�n−1

zππ we
have z1 �= 0 and the coefficient of each σ ∈ �n\�n−1 is zero, giving a contradiction. ✷

Now we prove certain identities in the integral group ring Z�n+1, which will be used to
establish the module structure of V ′

n .

Proposition 1.6 For k = 1, . . . , n, s̄k,n+1−k(1 − tn+1) is an element of the left ideal∑n−1
i=1 Z�n+1s̄i,n−i of Z�n+1.

Proof: Let µi,n ∈ Z�n be as in 1.4. We show that, for k = 1, . . . , n,

s̄k,n+1−k(1 − tn+1) = (1 − µk+1,n+1)s̄k,n−k + (µk,n+1 − tn+1)s̄k−1,n+1−k .

As in the proof of 1.3, we have

(∗) s̄k,n+1−k = µk,n+1s̄k−1,n+1−k + s̄k,n−k, for k = 1, . . . , n.

Hence, the required result is equivalent to

s̄k,n+1−k tn+1 = µk+1,n+1s̄k,n−k + tn+1s̄k−1,n+1−k ,
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that is

s̄k,n+1−k = µk+1,n+1s̄k,n−k t−1
n+1 + tn+1s̄k−1,n+1−k t−1

n+1 .

This identity may be derived in a similar manner to (∗). A (k, n + 1 − k)-shuffle π must
have either π(1) = 1 or π(k + 1) = 1. Now note that α is a (k, n − k)-shuffle if and only
if (1 2 . . . n + 1)α(k + 1 k + 2 . . . n + 1)−1 is a (k, n + 1 − k)-shuffle taking k + 1 to 1.
Furthermore, σ is a (k −1, n +1− k)-shuffle if and only if (1 2 . . . n +1)σ (1 2 . . . n +1)−1

is a (k, n + 1 − k)-shuffle fixing 1. The result follows. ✷

Corollary 1.7 The following relations hold in Ind�n+1
�n

Vn = Z�n+1 ⊗Z�n Vn ,

s̄k,n+1−k((1 − tn+1) ⊗ cn) = 0 for k = 1, . . . , n.

Proof: By 1.6, s̄k,n+1−k(1 − tn+1) = ∑n−1
i=1 xi s̄i,n−i , for some xi in Z�n+1. So

s̄k,n+1−k((1 − tn+1) ⊗ cn) =
n−1∑
i=1

xi s̄i,n−i ⊗ cn =
n−1∑
i=1

xi ⊗ s̄i,n−i cn = 0. ✷

Theorem 1.8 There is a short exact sequence of Z�n+1-modules

0 → Vn+1 → Ind�n+1
�n

Vn → V ′
n → 0 .

Proof: The Z�n+1-module Vn+1 is determined by the relations s̄i,n+1−i cn+1 = 0 for
i = 1, . . . , n. Let θ : Vn+1 → Ind�n+1

�n
Vn be defined by

θ(xcn+1) = x(1 − tn+1) ⊗ cn, for x ∈ Z�n+1.

By 1.7, θ respects the relations, so θ is a well-defined Z�n+1-module homomorphism.
Next we claim θ is injective. From 1.5, Vn+1 has a basis {πcn+1 | π ∈ �n}. For Ind�n+1

�n
Vn

= Z�n+1 ⊗Z�n Vn we have a basis {t i
n+1 ⊗ σcn | σ ∈ �n−1, i = 0, . . . , n}. Let x =∑

π∈�n
xππ , for xπ ∈ Z. Then

θ(xcn+1) =
∑
π∈�n

xππ(1 − tn+1) ⊗ cn =
∑
π∈�n

1 ⊗ xππcn ± tπ(1)
n+1 ⊗ xπ π̄cn ,

where π̄ = t−π(1)
n+1 π tn+1 ∈ �n . Then θ(xcn+1) = 0 implies

∑
π∈�n ,π(1)=k xπ π̄cn = 0 for

k = 1, . . . , n, which in turn implies
∑

π∈�n ,π(1)=k xπ (n n+1−k)π̄cn = 0 for k = 1, . . . , n.
But

{(n n + 1 − k)π̄cn | π ∈ �n, π(1) = k}
= {(n n + 1 − k)t−k

n+1π tn+1cn | π ∈ �n, π(1) = k}
= {σcn | σ ∈ �n−1} ,
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which is linearly independent by 1.5. Hence, xπ = 0 for all π ∈ �n and θ is injective.

Let � : Ind�n+1
�n

Vn → V ′
n be defined by

�(x ⊗ cn) = xcn , for x ∈ Z�n+1.

This is clearly a well-defined surjective Z�n+1-module homomorphism. Furthermore,

�θ(xcn+1) = �(x(1 − tn+1) ⊗ cn) = x(1 − tn+1)cn = 0 ,

so �θ = 0.

Now let � : V ′
n → (Ind�n+1

�n
Vn)/θ(Vn+1) be the homomorphism of Z�n+1-modules de-

termined by �(cn) = [1⊗cn]. The relations determining the module V ′
n are s̄i,n−i cn = 0 for

i = 1, . . . , n and (1 − tn+1)cn = 0. We have �(s̄i,n−i cn) = [s̄i,n−i ⊗ cn] = [1 ⊗ s̄i,n−i cn] =
[0]. Also �((1− tn+1)cn) = [(1− tn+1)⊗ cn] = [0]. So � is a well-defined Z�n+1-module
homomorphism. It is clear that � is surjective.

The set {σcn | σ ∈ �n−1} is a basis for V ′
n . Consider the elements �(σcn) = [1 ⊗ σcn]

for σ ∈ �n−1. The elements 1 ⊗ σcn , for σ ∈ �n−1, are independent in Ind�n+1
�n

Vn and
clearly remain independent on passing to the quotient by θ(Vn+1). Thus � is injective.

So V ′
n

∼= Ind�n+1
�n

Vn/θ(Vn+1) and the sequence is exact. ✷

The short exact sequence of Z�n+1-modules of 1.8 may also be deduced from the work
of Sundaram; see particularly 1.1 and the proof of 3.5 in [10].

Proposition 1.9 The short exact sequence of 1.8 splits if n + 1 is inverted.

Proof: If n + 1, the index of �n in �n+1, is invertible in the ring R then the restriction
map

res�n+1,�n : Ext1R�n+1
(V ′

n, Vn+1) → Ext1R�n
(V ′

n, Vn+1)

is injective. But, from 1.5, Vn+1 is free over �n , so Ext1R�n
(V ′

n, Vn+1) = 0. Thus
Ext1R�n+1

(V ′
n, Vn+1) = 0 when n + 1 is invertible in R. ✷

Example 1.10 We consider the case n = 2. Here V2 is the trivial representation of �2,
with basis c2; V ′

2 is the trivial representation of �3 with basis c2; Ind�3
�2

V2 is a 3-dimensional
module, with basis α = 1⊗ c2, β = t3 ⊗ c2, γ = t2

3 ⊗ c2, and V3 is a 2-dimensional module
with basis c3, (1 2)c3. By 1.8, θ(V3) is a submodule of Ind�3

�2
V2, with basis θ(c3) = α − β,

θ((1 2)c3) = α − γ . The quotient (Ind�3
�2

V2)/θ(V3) is the trivial representation of �3, V ′
2.

Now any trivial submodule of Ind�3
�2

V2 has basis a multiple of α + β + γ . The matrix
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changing the basis α, β, γ to α − β, α − γ , α + β + γ is




1 −1 0

1 0 −1

1 1 1


 .

This has determinant 3. So if we invert 3, the trivial module V ′
2 is a complementary sub-

module to θ(V3) in Ind�3
�2

V2. However, if 3 is not inverted, θ(V3) is not a direct summand

of Ind�3
�2

V2.

2. The relationship with Lien

The free Lie algebra on n generators is the subalgebra generated by brackets [a, b] =
ab − ba of the algebra of all Z-linear combinations of words in an alphabet with n letters.
Then Lien is that part of the free Lie algebra consisting of Z-linear combinations of brackets
which contain each generator exactly once. There is a natural left action of �n on Lien by
permuting the generators. The main result of this section is Theorem 2.6, which establishes
an isomorphism of Z�n-modules

Lien
∼= Hom(Vn, Z[−1]) ,

where Vn is the representation defined in §1 and Z[−1] denotes the sign representation.
We begin with the following result, which is well-known. For a proof see [3], for example.

Proposition 2.1 As a Z-module, Lien is free of rank (n − 1)!. Let

An = [...[[an, an−1], an−2] . . . a1] ∈ Lien .

Then the elements π An for π ∈ �n−1 are generators for Lien as a free abelian group.

We need the following notation, in addition to that of §1.

Notation 2.2 Let τn denote the (unsigned) n-cycle (1 2 . . . n) in �n. We define inductively
elements θn,k ∈ Z�n−1, for each n ≥ 2 and for k = 1, . . . , n by

θ2,1 = −1, θn,1 = θn−1,1
(
τ−1

n−1 − 1
)
, for n ≥ 3,

θ2,2 = 1, θn,k = τn−1θn−1,k−1τ
−1
n−1, for k = 2, . . . , n.

It follows easily that θn,n = 1.

In 1.3, we gave the action of the permutation pn,k on the generator cn of Vn . The following
result describes the action of this element on the generator An of Lien .
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Proposition 2.3 For all n ≥ 2 and for k = 1, . . . , n,

pn,k An = θn,k An .

Proof: The proof is by a double induction. First we fix k = 1 and use induction on n
to prove that pn,1 An = θn,1 An for all n. This is evident for n = 2. Assume the result for
j < n. Let Bn−1 = [. . . [[bn−1, bn−2], bn−3] . . . b1], where bi = ai , for i = 1, . . . , n − 2,
and bn−1 = [an−1, an]. Then

pn,1 An = [...[[a1, a2], a3] . . . an]

= [[ ... [[a1, a2], . . . an−2], an], an−1] + [...[[a1, a2], . . . an−2], [an−1, an]]

= θn−1,1[[ ... [[an, an−2], . . . , a2], a1], an−1] + pn−1,1 Bn−1 by hypothesis

= θn−1,1(n − 1 n − 2 . . . 1)An + θn−1,1 Bn−1 by induction hypothesis

= θn−1,1(n − 1 n − 2 . . . 1)An − θn−1,1 An since θn−1,1 ∈ Z�n−2

= θn−1,1
(
τ−1

n−1 − 1
)

An = θn,1 An .

Now suppose that pn−1,k−1 An−1 = θn−1,k−1 An−1 for given n and k. This time set bi =
ai+1 for i = 1, . . . , n − 1. Then, for k > 1,

pn,k An = pn,k[ ... [[an, an−1], an−2] . . . a1]

= pn−1,k−1[[ ... [[bn−1, bn−2], bn−3] . . . b1], a1]

= θn−1,k−1[[ ... [[bn−1, bn−2], bn−3] . . . b1], a1] by hypothesis

= τn−1θn−1,k−1τ
−1
n−1 An

= θn,k An .

The general result now follows by induction. ✷

The following lemma gives an alternative description of the elements θn,k .

Lemma 2.4 For n ≥ 2 and k = 1, . . . , n,

θn,k =
∑

(−1)(n−π−1(k))π,

where the sum is over all permutations π in �n−1 such that pn,kπpn,π−1(k) is a (π−1(k)− 1,

n − π−1(k))-shuffle.

Proof: Let Xn,k = ∑
(−1)(n−π−1(k))π , where the sum is over all permutations π in �n−1

such that pn,kπpn,π−1(k) is a (π−1(k) − 1, n − π−1(k))-shuffle. First we consider the case
k = 1. Since X2,1 = −1 = θ2,1, it is sufficient to show that Xn,1 = Xn−1,1(τ

−1
n−1 − 1). Let

π ∈ �n−1 be a summand of Xn,1, that is σ = pn,1πpn,π−1(1) is a (π−1(1)− 1, n −π−1(1))-
shuffle. Note that σ(π−1(1)) = 1. It follows that either σ(π−1(1) + 1) = 2, in which case
π(n − 1) = n − 1; or σ(1) = 2, in which case π(1) = n − 1.
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In the first case, it is straightforward to check that π also appears in Xn−1,1 but with
opposite sign. In the second case, we may check that πτn−1 is a summand of Xn−1,1. The
result for k = 1 follows.

To deduce the general case, first note that it follows immediately from the definition that
Xn,n = 1. Then, for k = 2, . . . , n, it is sufficient to show that Xn,k = τn−1 Xn−1,k−1τ

−1
n−1.

Suppose σ is a summand of Xn−1,k−1, and let π = τn−1στ−1
n−1. So, setting j = σ−1(k − 1),

α = pn−1,k−1σ pn−1, j is a ( j − 1, n − j − 1)-shuffle. Then π−1(k) = j + 1. Consider
β = pn,kπpn, j+1. One can check that β = xαy where x = (1 2 . . . k − 1)(k k + 1 . . . n),
and y = ( j j − 1 . . . 2 1)(n n − 1 . . . j + 1). Then a straightforward argument shows that
β is a ( j, n − j − 1)-shuffle if and only if α is a ( j − 1, n − j − 1)-shuffle. Hence σ is a
summand of Xn−1,k−1 if and only if τn−1στ−1

n−1 is a summand of Xn,k . ✷

Now we turn to consideration of Hom(Vn, Z[−1]). Let fn ∈ Hom(Vn, Z[−1]) be the
dual of cn with respect to the basis of 1.5.

Proposition 2.5 For k = 1, . . . , n

pn,k fn = θn,k fn .

Proof: For π ∈ �n−1, we have

(pn,k fn)(πcn) = ε(pn,k) fn(pn,kπcn)

= ε(pn,k) fn
(
σ pn,π−1(k)cn

)
where σ = pn,kπpn,π−1(k) ∈ �n−1

= ε(pn,k)(−1)(n−π−1(k))ε
(

pn,π−1(k)

)
fn

(
σρn,π−1(k)cn

)
= ε

(
pn,k pn,π−1(k)

)
(−1)(n−π−1(k)) fn

(
σ s̄π−1(k)−1,n−π−1(k)cn

)
by 1.3

=
{

(−1)(n−π−1(k))ε(π), if σ is a (π−1(k) − 1, n − π−1(k))-shuffle;
0, otherwise.

The result now follows from 2.4. ✷

Theorem 2.6 There is an isomorphism of Z�n-modules

Lien
∼= Hom(Vn, Z[−1]).

Proof: Define � : Lien → Hom(Vn, Z[−1]) by �(π An) = π fn . By 2.1 and 1.5, this takes
the basis {π An | π ∈ �n−1} of Lien to the basis {π fn | π ∈ �n−1} of Hom(Vn, Z[−1]). By
2.3 and 2.5, � respects the Z�n-module structures. Thus � is a well-defined Z�n-module
isomorphism. ✷

Let the dual of a module M be denoted M∗. Combining 2.6 with 1.8 allows us to recover
the following result.
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Corollary 2.7 There is a �n+1 action on Lie∗
n and hence on Lien. Denoting these Z�n+1-

modules by (Lie∗
n)

′ and Lie′
n, we have short exact sequences of Z�n+1-modules

0 → Lie∗
n+1 → Ind�n+1

�n
Lie∗

n → (Lie∗
n)

′ → 0,

0 ← Lien+1 ← Ind�n+1
�n

Lien ← Lie′
n ← 0.

We remark that 2.6 and the results of the first section give an explicit combinatorial
description of the �n+1 action on Lien .

References

1. E. Babson, A. Björner, S. Linusson, J. Shareshian, and V. Welker, “Complexes of not i-connected graphs,”
extended abstract, in Proceedings of the 9th Formal Power Series and Algebraic Combinatorics Conference,
Vienna, July 1997.

2. H. Barcelo, “On the action of the symmetric group on the free Lie algebra and the partition lattice,” J. Combin.
Theory (A) 55 (1990), 93–129.

3. A.M. Garsia, “Combinatorics of the free Lie algebra and the symmetric group,” in Analysis, research papers
published in honour of J. Moser’s 60th birthday, P.H. Rabinowitz and E. Zehnder (Eds.), Academic Press, San
Diego, 1990.

4. E. Getzler and M.M. Kapranov, “Cyclic operads and cyclic homology,” in Conference Proceedings and
Lecture Notes in Geometry and Topology, Vol. VI, S.-T. Yau (Ed.), International Press, Cambridge, MA,
1995, pp. 167–201.

5. P. Hanlon, “Otter’s method and the homology of homeomorphically irreducible k-trees,” J. Combin. Theory
(A) 74(2) (1996), 301–320.

6. O. Mathieu, “Hidden �n+1-actions,” Commun. Math. Phys. 176 (1996), 467–474.
7. A. Robinson and S. Whitehouse, “The tree representation of �n+1,” J. Pure Appl. Algebra 111 (1996),

245–253.
8. A. Robinson and S. Whitehouse, “Operads and �-homology of commutative rings,” Math. Proc. Combin.

Phil. Soc. Preprint, Université Paris 13, 1998.
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