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Abstract. Our aim in this note is to present a transitive graph that we conjecture is not quasi-isometric to any
Cayley graph. No such graph is currently known. Our graph arises both as an abstract limit in a suitable space of
graphs and in a concrete way as a subset of a product of trees.
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1. Introduction

Woess [7] asked the following beautiful and natural question: does every transitive graph
‘look like’ a Cayley graph? More precisely, is every connected locally finite vertex-transitive
graph quasi-isometric to some Cayley graph?

Let us recall that graphs G and H are said to be quasi-isometric if there exist
Lipschitz mappings θ : V (G) → V (H) and φ : V (H) → V (G) such that θ ◦φ and φ ◦θ are
bounded. Equivalently, G and H are quasi-isometric if there exists a quasi-isometry from
G to H , a function θ : V (G) → V (H) for which there are constants C, D ≥ 1 such that

d(θx, θy) ≤ Cd(x, y) for all x, y ∈ G,

d(θx, θy) ≥ 1

C
d(x, y) for all x, y ∈ G with d(x, y) ≥ D,

d(θG, y) ≤ D for all y ∈ H,

where as usual d denotes the graph distance (in G or H ) and d(A, y) = min{d(x, y) : x ∈ A}.
Thus quasi-isometry is the natural notion of ‘looks the same as, from far away.’ Many

properties of a graph are preserved under quasi-isometry—for example, the space of ends
is preserved. As another example, if G and H are transitive graphs that are quasi-isometric
then they have the same type of growth: polynomial or sub-exponential or exponential.
See [2] for background on quasi-isometry.

Let us also recall that a Cayley graph is a graph arising in the following way. Let G be
a group, with a finite generating set S closed under inversion (i.e. a ∈ S implies a−1 ∈ S).
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Then the (left) Cayley graph of G with respect to S has vertex-set G, with x joined to
y if for some a ∈ S we have x = ay. Note that G acts freely (i.e. with no non-identity
element having a fixed point) and transitively on this graph. In fact, Cayley graphs are
characterised by this property: if G is any locally finite connected graph whose auto-
morphism group Aut G has a subgroup that acts transitively and freely on G then G
is easily seen to be isomorphic to a Cayley graph of that subgroup. See [3] for more
background on Cayley graphs. Let us also mention here that, up to quasi-isometry, the
Cayley graph of a (finitely-generated) group does not depend on which generating set one
chooses.

Several transitive graphs are known that are not (isomorphic to) Cayley graphs
(see [4, 5]), but each of these is quasi-isometric to a Cayley graph. Indeed, the answer
to Woess’ question is known to be in the affirmative for several classes of graphs, including
those of polynomial growth [6].

Our aim in this note is to present a graph that we believe is a counterexample to Woess’
question. We construct a sequence of graphs that seem to look less and less like Cayley
graphs. It turns out that this sequence has a limit when viewed in a certain natural space of
graphs. We give this construction in Section 2.

Fortunately, this limit graph can also be expressed ‘concretely,’ as a certain subset of a
product of two trees. We do this in Section 3. We hope that this should make the conjecture
that this graph is not quasi-isometric to a Cayley graph more susceptible to proof.

2. A limit of non-Cayley graphs

Our starting point is the following example of Thomassen and Watkins [5] of a non-Cayley
graph. Let H be the graph obtained from a T5 (the infinite 5-regular tree) by replacing each
vertex by a K2,3 (the complete bipartite graph with vertex classes of size 2 and 3) in the
following way. Replace each vertex of T5 by a disjoint copy of K2,3, and then, for each
edge uv of the T5, identify a vertex of the K2,3 corresponding to u with a vertex of the K2,3

corresponding to v, in such a way that no point in any K2,3 is identified more than once,
and a vertex in a class of size 2 is always identified with a vertex in a class of size 3 and
vice versa (see figure 1). Then H is certainly transitive (of degree 5); why is it not a Cayley
graph?

Suppose there is a subgroup S of Aut H that acts freely and transitively on H , and let
K be one of the K2,3s making up H—say K has vertex classes {x1, x2} and {y1, y2, y3}.
Any automorphism that sends an element of {y1, y2, y3} back into {y1, y2, y3} must fix K—
indeed, it must map the set {x1, x2} to itself, as {x1, x2} is the only pair of two vertices that
has 3 common neighbours and has a common neighbour in the set {y1, y2, y3}. Hence the
θ ∈ S sending y1 to y2 must swap x1 and x2, as must the θ ′ ∈ S sending y1 to y3. But then
θ ′θ−1 sends y2 to y3 and fixes x1, a contradiction.

Of course, H is still quasi-isometric to T5 (which is the Cayley graph of the free group
with 5 generators, each of order 2): we just have to map each K2,3 back to the vertex of
T5 from which it was expanded. Thus the K2,3s are too local to affect quasi-isometry: we
would like to introduce something like ‘larger K2,3s’ to have the same effect more globally.
The following idea shows that these can indeed be obtained.
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Figure 1. Constructing the non-Cayley graph H from T5.

Roughly speaking, the reason why H is not Cayley is that the insertion of K2,3s has
introduced an ‘orientation’ which all automorphisms must preserve (but cannot all preserve
without a fixed point). Indeed, each K2,3 has a natural orientation of its edges from the 2-set
to the 3-set, and put together they make H into a regular directed graph of in-degree 2 and
out-degree 3. Our key observation now is that we can reverse this process of obtaining an
orientation from K2,3s to one of obtaining K2,3s from an orientation. Indeed, if we start
from a suitable orientation D0 of T5, namely, the regular orientation of in-degree 2 and
out-degree 3, then our directed version of H (with all its useful ‘Cayley-inhibiting’ K2,3s)
is obtained from D0 by one simple operation, which moreover can be iterated canonically
to yield ‘larger and larger K2,3s’ (see figures 2 and 5): the operation of taking a directed
line graph.

Let us do this in more detail. Given a directed graph D, the line graph of D is the directed
graph D′ whose vertices are the arcs uv of D, and in which such a vertex uv ∈ V (D′) sends

Figure 2. The portion of G2 corresponding to the central K2,3 in figure 1.
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an arc (of D′) to another vertex v′w′ ∈ V (D′) if and only if v = v′. Note that if D is regular
with in-degree a and out-degree b then so is D′. The operation of taking a line graph can
thus be iterated on regular directed graphs without increasing their degrees—a fact that will
be vital to our whole approach.

A moment’s thought shows that our directed version of H is indeed the line graph of D0. So
for i = 1, 2, . . . let Di be the (directed) line graph of Di−1, and let Gi denote the undirected
graph underlying Di . (Thus, G1 = H .) Since every Di is regular with in-degree 2 and
out-degree 3, all the Gi are 5-regular; it is therefore not unreasonable to expect that they
converge to a graph ‘at infinity’ in some natural sense, and that this limit graph might not
be quasi-isometric to a Cayley graph.

In order to define this limit graph precisely, let us pause to explain the (very simple) space
of graphs we are working with. For a fixed positive integer r (which for us will always be 5),
let Q = Qr denote the set of (isomorphism classes of) all connected r -regular transitive
graphs. We introduce a metric on Q by setting d(G, H) = 1/(n + 1) if n is the maximum
positive integer such that there exists an isomorphism from the ball BG(0, n) to BH (0, n)

sending 0 to 0. (Here 0 is any particular point of G or H , and BG(0, n) denotes the set of
all points at graph distance at most n from 0.) This is a natural metric to use on Q; see for
example [1]. The following easy compactness argument shows that it is indeed a metric.

Proposition 1 Let G, H ∈ Q with d(G, H) = 0. Then G and H are isomorphic.

Proof: For each n, we have an isomorphism θn : BG(0, n) → BH (0, n) sending 0 to 0.
Now, there are only finitely many choices for an isomorphism from BG(0, 1) to BH (0, 1), so
among the restrictions θ1 | BG(0, 1), θ2 | BG(0, 1), . . . there are infinitely many that agree:
say

θi1 | BG(0, 1) = θi2 | BG(0, 1) = · · · = θ̄1.

Then, among the restrictions θi1 | BG(0, 2), θi2 | BG(0, 2), . . . there must be infinitely many
that agree: say

θ j1 | BG(0, 2) = θ j2 | BG(0, 2) = · · · = θ̄2.

Continuing in this way, we obtain a sequence of isomorphisms θ̄n: BG(0, n) → BH (0, n)

with the property that for all m ≤ n we have θn | BG(0, m) = θ̄m . It follows that the union⋃
n≥1 θn is a (well-defined) isomorphism from G to H . ✷

A very similar argument shows that Q is compact:

Proposition 2 Every sequence in Q has a convergent subsequence.

Proof (sketch): Let G1, G2, . . . be any sequence of graphs in Q, each with a chosen
point 0. Infinitely many of the Gi must have isomorphic 1-balls BGi (0, 1): say BGi1

(0, 1),

BGi2
(0, 1), . . . are all isomorphic (with 0 mapping to 0). Among Gi1 , Gi2 , . . . we can find
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infinitely many graphs whose 2-balls are isomorphic (extending the isomorphisms of their
1-balls), and so on.

Continuing in this way, and choosing suitable partially nested isomorphisms to some
fixed reference set X of vertices, we build up a nested sequence of finite graphs whose
union G is a graph on X . Then G is connected and r -regular. To show that G is transitive,
it is enough to show that for every choice of x, y ∈ X and every n there is an isomorphism
BG(x, n) → BG(y, n) mapping x to y; then the method of the proof of Proposition 1 yields
an automorphism of G that takes x to y. But this is immediate: BG(x, n) and BG(y, n) are
both contained in some ball BG(0, m); this ball coincides with the ball BGi (0, m) in each
of the graphs Gi of our mth subsequence; and Gi (being transitive) has an automorphism
that takes x to y, and therefore also BG(x, n) to BG(y, n). Thus, G ∈ Q.

Finally, it is clear that any diagonal subsequence of the subsequences of G1, G2, . . . that
we have chosen converges to G, as required. ✷

We remark in passing that, although it does not seem to help us, it is interesting to note
that the set of Cayley graphs is a closed subset of Q: this may be proved by arguments
similar to those in the proof of Proposition 2.

Let G be any limit point of the sequence G1, G2, . . .. (A little thought shows that this
sequence is actually convergent and thus has a unique limit; we shall prove this formally
in the next section.) Is G still quasi-isometric to T5? No, it is not: it will not be difficult to
prove (see the next section) that G has only one end, and so cannot be quasi-isometric to T5.

Of course, it is very hard to think about an abstract limit graph. Luckily, there is a far
more down-to-earth description of G, which we give now.

3. An explicit construction

Our starting point here is that the (directed) line graph D1 of D0 is precisely the set of all
directed paths in D0 of length 1, with path uv joined to path wx if v = w. Similarly D2,
the line graph of the line graph of D0, can be thought of as the set of all directed paths in
D0 of length 2, with uvw joined to xyz if v = x and w = y. And so on:

Proposition 3 The directed graph Dn is isomorphic to the graph whose vertices are the
directed paths of length n in D0, with an arc from x1x2 . . . xn+1 to y1 y2 . . . yn+1 if yi = xi+1

for all 1 ≤ i ≤ n.

Proof: Induction on n. ✷

Let us see what, when n is large, a ‘small’ neighbourhood (of radius much less than n)
of a vertex v ∈ Gn looks like. Let P be the path in D0 corresponding to v. Suppose that we
wish to move from v to one of its five neighbours v′ in Gn: how do we obtain the path P ′

corresponding to v′ from the path P? If the edge e = vv′ is directed from v to v′ in Dn , then
P ′ is obtained from P by moving the last vertex of P to one of its three out-neighbours in
D0, while all the other vertices of P simply move to their successors along P . Similarly, if
e is directed from v′ to v, we obtain P ′ from P by moving the first vertex of P to one of
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Figure 3. A path x · · · y ⊂ D corresponding to a vertex v ∈ Dn , and the paths x ′ · · · yi ⊂ D corresponding to
the 3 out-neighbours of v in Dn .

its two in-neighbours in D0, while all the other vertices of P are forced: they just move to
their predecessors on P . See figure 3.

So what does the open n/2-neighbourhood N of a point v ∈ Gn look like? If (the path
of) v has start vertex x and end vertex y, then the set of the start vertices of the points of
N is disjoint from the set of their end vertices: indeed, these sets are contained in the open
balls of radius n/2 about x and y respectively. So we may view the start and end vertices
as behaving ‘independently’: as long as we stay in the ball of radius n/2 about v, the start
vertices trace out part of a tree of in-degree 2 and out-degree 1, while the end vertices trace
out part of a tree of in-degree 1 and out-degree 3.

This motivates the following explicit definition of a graph G∗, which will turn out to be
the unique limit of our sequence G1, G2, . . . . Let E be a 3-regular tree, oriented to have
in-degree 2 and out-degree 1, and let F be the oriented 4-regular tree of in-degree 1 and
out-degree 3. Fix a point 0 ∈ E and a point 0 ∈ F . Let the rank r(x) of a point x ∈ E be
the signed distance from 0 to x (so if the unique undirected path from 0 to x in E has s
forward edges and t backward edges then r(x) = s − t), and define r(y) in the same way
for y ∈ F . Now define the directed graph D∗ as follows. The vertex set of D∗ is the set
{(x, y) ∈ E × F : r(x) = r(y)}, and D∗ has an arc from (x, y) to (x ′, y′) whenever xx ′ ∈ E
and yy′ ∈ F (figure 4). Finally, let G∗ be the undirected version of D∗.

Let us verify that G∗ is indeed the unique limit of the sequence G1, G2, . . . :

Proposition 4 The sequence (Gn) converges to G∗.

Proof: The directed graphs Dn and D∗ have isomorphic n/2-neighbourhoods, and so
d(Gn, G∗) ≤ 2

n+2 . ✷

We remark that it is now possible to define precisely what we mean by ‘large K2,3s’ in
the graph G∗. Given a vertex (x, y) of G∗, we have r(x) = r(y) by definition of G∗ and
call this number the rank of (x, y), denoted again by r(x, y). Given an integer k > 0, we
call each of the (isomorphic) components of the subgraph of G∗ spanned by the vertices
of rank between 0 and k a K2,3 of order k. It is not difficult (if a little tedious) to write
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Figure 4. All directions are from left to right.

down a formal partition of the vertex set of such a K2,3 of order k into five classes, together
with an adjacency rule between these classes based on adjacencies in G∗, so that the
resulting graph is indeed a K2,3. Instead, we offer a picture of a K2,3 of order 4, shown in
figure 5.

Perhaps the most tangible evidence that we have for our conjecture that G∗ is not quasi-
isometric to a Cayley graph is that it is certainly not quasi-isometric to the obvious candidate
of such a Cayley graph, the graph T5:

Proposition 5 G∗ has only one end.

Proof: We show that the deletion of any finite set S of vertices from G∗ leaves only one
infinite component. Let r be the smallest and s the largest rank of a vertex in S, and let S′

be the set of all vertices that can be reached from S by a path whose vertices all have rank
between r and s. Clearly S′ is finite, so it suffices to show that G∗ − S′ is connected.

Let vertices (x1, y1), (x2, y2) ∈ G∗ − S′ be given, and let us show that we can move
a token vertex (x, y) from (x1, y1) to (x2, y2) in G∗ without hitting S′. We may assume
that s < r(x1, y1) ≤ r(x2, y2): the proof for r(x1, y1) ≤ r(x2, y2) < r is analogous, and
any vertex of rank between r and s can be joined to a vertex of rank > s by any path of
increasing rank (which avoids S′ by definition of S′).

Starting with (x, y) = (x1, y1), we first move (x, y) towards the right in figure 4 (formally:
with increasing rank, and thus avoiding S′) until x lies on a left (i.e. backward oriented) ray
R in E that avoids S′

E , the set of first components of the vertices in S′. We now move (x, y)

to the left, keeping x on R, until y lies to the left of y2 in F . We then move (x, y) right
again until y = y2; since x stays on R during this move, this keeps us outside S′ until we
are back at points of rank > s. We now move on towards the right until x lies to the right
of x2 in E , and back again until (x, y) = (x2, y2). ✷



24 DIESTEL AND LEADER

F
ig

ur
e

5.
A

K
2,

3
of

or
de

r
4

in
G

∗ ,
an

d
a

(b
ol

d)
K

2,
3

of
or

de
r

2.



LIMIT OF NON-CAYLEY GRAPHS 25

How might one show that G∗ is not quasi-isometric to a Cayley graph? The first hope, of
course, would be to imitate our proof of why H is not a Cayley graph, using a sufficiently
large K2,3 instead of the actual K2,3s in H . However, we have been unable to make this
approach work and are not sure that it can work: although it is straightforward to translate
the canonical group action on a hypothetical Cayley graph quasi-isometric to G∗ to similar
‘quasi-automorphisms’ of G∗, the fuzziness introduced seems to blur the difference between
the sizes of the two vertex classes even of large K2,3s (which are 2n and 3n , respectively),
a difference central to the ‘non-Cayley’ proof for H .

As a more global approach we might try to show that every quasi-automorphism of G∗

preserves the natural orientation of all sufficiently large K2,3s, mapping their left sets (their
vertices of minimal rank) to the left of the images of their right sets (their vertices of maximal
rank). Then any Cayley graph quasi-isometric to G∗ would have two ‘directions’ invariant
under all its automorphisms (not just under its own group action), and in which it grows at
different speeds: 2n ‘to the left’ and 3n ‘to the right’. Can this happen in a Cayley graph?
(Recall that the overall growth speed of a graph is not preserved under quasi-isometries: for
example, the trees T3 and T4 are quasi-isometric.)

Acknowledgment

We are grateful to Wolfgang Woess for many interesting conversations.

References

1. L. Babai, “Vertex-transitive graphs and vertex-transitive maps,” J. Graph Theory 15 (1991), 587–627.
2. M. Gromov, “Asymptotic invariants of infinite groups,” in Geometric Group Theory, Vol. 2, G.A. Niblo and

M.A. Roller (Eds.), Cambridge University Press, Cambridge, 1993.
3. W. Magnus, A. Karrass, and D. Solitar, Combinatorial Group Theory, Dover, New York, 1976.
4. P.M. Soardi and W. Woess, “Amenability, unimodularity, and the spectral radius of random walks on infinite

graphs,” Math. Z. 205 (1990), 471–486.
5. C. Thomassen and M.E. Watkins, “Infinite vertex-transitive, edge-transitive, non-1-transitive graphs,” Proc.

Amer. Math. Soc. 105 (1989), 258–261.
6. V.I. Trofimov, “Graphs with polynomial growth,” Math. USSR-Sb. 51 (1985), 405–417.
7. W. Woess, “Topological groups and infinite graphs,” Discrete Math. 94 (1991), 1–12.


