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Abstract. We prove that a GF(q)-linear Rédei blocking set of size qt + qt−1 + · · · + q + 1 of PG(2, qt ) defines
a derivable partial spread of PG(2t − 1, q). Using such a relationship, we are able to prove that there are at least
two inequivalent Rédei minimal blocking sets of size qt + qt−1 + · · · + q + 1 in PG(2, qt ), if t ≥ 4.
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1. Introduction

A blocking set B in a finite projective plane is a set of points intersecting every line. B
is called trivial if it contains a line. Throughout this paper, we only consider non-trivial
blocking sets. Two blocking sets are said to be equivalent if there is a collineation of the
plane which maps one to the other one.

A blocking set is called minimal if no proper subset of it is a blocking set. If q is the order
of the plane, and B has size q + N , then a line contains at most N points of B; if such a
line exists, B is called of Rédei type and the line is said to be a Rédei line.

Minimal blocking sets of a desarguesian plane PG(2, s), s = pn , p prime, of size less
than 3(s+1)

2 are called small. They intersect every line in a number of points congruent to
1 modulo p (see [12]). Let B be a small minimal Rédei blocking set of PG(2, s). Let e
be the largest integer such that each secant of B meets B in npe + 1 points, n ∈ N. If
q = pe > 2, then s = qt (i.e., GF(pe) is a subfield of GF(s)), and |B| = qt + N with
qt−1 +1 ≤ N ≤ qt−1 +· · ·+q +1 [1]. In particular, when N = qt−1 +· · ·+q +1, t > 2,

then there is exactly one Rédei line and all secants different from the Rédei line contain
q + 1 points of B.

A (t − 1)-spread S of � = PG(2t − 1, q) is a partition of the pointset of � in (t − 1)-
dimensional subspaces. Let S be a (t − 1)-spread of � = PG(2t − 1, q). Embed � as a
hyperplane in �′ = PG(2t, q) and define a point-line geometry π = π(�′, �,S) in the
following way. The points of π are either the elements of S or the points of �′ \�. The lines
of π are either � or the t-dimensional subspaces of �′ which intersect � in an element of
S. The incidence is inherited by �′. Then, π is a translation plane with respect to the line
represented by �, whose order is qt (see [5] or [6]). If π is isomorphic to the desarguesian
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plane of order qt , then S is a desarguesian spread. A subset F of a (t − 1)-spread S of � is
called derivable partial spread if there exists a partial spreadF∗ such thatS∗ = (S\F)∪F∗

is a (t − 1)-spread of �, and π(�′, �,S∗) is called the derived plane.1

Let 	 be a t-dimensional subspace of �′ = PG(2t, q), with 	 �⊂ �, and let 
 = 	 ∩ �.

If

D = {T ∈ S | T ∩ 
 �= ∅}

then B	 = (	\
) ∪D is a minimal Rédei blocking set of π , and the translation line � is a
Rédei line (see [2]). The order of B	 is qt + N , where N is the order of the partial spread
D. In [4], Bruen showed that every derivable partial spread of S defines a Rédei blocking
set of π . If S is desarguesian, then B	 belongs to the family of GF(q)-linear blocking sets
constructed in [7], and every GF(q)-linear blocking set of Rédei type can be obtained in
such a way ([7]).

Suppose that S is a desarguesian spread, and let B	 be a GF(q)-linear Rédei blocking
set of π(�′, �,S). In this paper we prove that, if each element of D intersects 
 in a point
(i.e., N = qt−1 +· · ·+q +1 and B	 has order qt +qt−1 +· · ·+q +1), then D is a derivable
partial spread. Finally, we construct a new example of GF(q)-linear Rédei blocking set of
PG(2, qt ) of size qt + qt−1 + · · · + q + 1.

We would like to thank one of the referees for pointing out to us a mistake in a previous
version of this paper.

2. Derivable partial spreads

Let PG(1, qt ) = PG(V, GF(qt )), where V is a 2-dimensional vector space over GF(qt ).
Regarding V as a 2t-dimensional vector space over GF(q), each point x of PG(1, qt )

defines a (t − 1)-dimensional subspace P(x) of � = PG(2t − 1, q) = PG(V, GF(q)) and
S = {P(x) | x is a point of PG(1, qt )} is a spread of �. If PG(2, qt ) = PG(V̄ , GF(qt )),
where V̄ = V ⊕ 〈e〉 is a 3-dimensional vector space over GF(qt ), the map α defined by
α : x �→ P(x) for all points x of PG(1, qt ) and α : 〈v + e〉GF(qt ) �→ 〈v + e〉GF(q) for all
points 〈v + e〉GF(qt ) of PG(2, qt ) not in PG(1, qt ), is an isomorphism from PG(2, qt ) to
π(�′, �,S), where �′ = PG(V ′, GF(q)) and V ′ = V ⊕〈e〉GF(q). Then S is a desarguesian
spread of �.

For each λ in GF(qt )∗, let τλ be the linear collineation of � defined by the linear map
v �→ λv. Then τλ = τµ if and only if λµ−1 ∈ GF(q). Hence, G = {τλ | λ ∈ GF(qt )∗} is a
collineation group of � of order qt−1 + · · · + q + 1 which fixes all the elements of S and
acts sharply-transitively on the points of each P(x).

Suppose that B	 is a GF(q)-linear Rédei blocking set of PG(2, qt ) of maximum size and
let 
 = � ∩ 	. Then 
 is a (t − 1)-subspace of � such that P(x) ∩ 
 is either empty or a
point. Put

D = {P(x) ∈ S | P(x) ∩ 
 �= ∅},
D∗ = {
g | g ∈ G}.
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Theorem 1 S∗ = (S \ D) ∪ D∗ is a spread of �.

Proof: As G fixes all the elements of S, the subspace 
g intersects all the elements of D
exactly at a point.

Let P(x) be an element of D, and let z = P(x) ∩ 
. If y is a point of P(x), then there
is exactly one element g in G such that y = zg. This implies that y belongs to 
g , and we
have proved that⋃

P(x)∈D
P(x) =

⋃
g∈G


g.

To prove that S∗ is a spread it is enough to prove that D∗ is a partial spread. Suppose that
y belongs to 
g ∩ 
. Then y = zg for some point z in 
. As g fixes all the elements of S,
we have z ∈ P(x) if and only if y ∈ P(x). Therefore z = y, because 
 ∩ P(x) is a point.
This implies g = 1 because G is sharply transitive on the points of P(x). Hence 
h and

g are disjoint if and only if h �= g. ✷

Let �∗ = PG(t − 1, qt ) and let � = PG(t − 1, q) be a canonical subgeometry of �∗.
Denote by � a (t − 3)-dimensional subspace of �∗ disjoint from all the lines of �. If
l = PG(1, qt ) is a line of �∗ disjoint from �, then D = {〈x, �〉 ∩ l | x ∈ �} is a set of
qt−1 + · · ·+ q + 1 points of l. Moreover, if l = PG(1, qt ) = PG(V, GF(qt )), where V is a
2-dimensional vector space over GF(qt ), then there is a subgroup W of the additive group of
V such that W is a t-dimensional GF(q)-vector space and D = {〈w〉 | w ∈ W \{0}}. Hence,
D = {P(x) | x ∈ D} is a derivable partial spread of PG(2t − 1, q) = PG(V, GF(q)) and
D∗ = {W τ | τ ∈ G} (see [8]).

By [9], all derivable partial spreads defined by a Rédei blocking set of PG(2, qt ) of size
qt + qt−1 + · · · + q + 1 can be constructed in this way.

If (X0, X1, . . . , Xt−1) are homogenous projective coordinates of �∗, then we can sup-
pose � = {(a, aq , . . . , aqt−1

) | a ∈ GF(qt )∗}. The (t − 3)-dimensional subspace � with
equations X0 = X1 = 0 is disjoint from all lines of �, and the line l with equations X2 =
X3 = · · · = Xt−1 = 0 is disjoint from �. Hence D = {(a, aq , 0, . . . , 0) | a ∈ GF(qt )∗}.
Denote by ξ a primitive element of GF(qt ) and let µ be the collineation of �∗ defined by

µ : (X0, X1, . . . , Xt−1) �→ (
ξ X0, ξ

q X1, . . . , ξ
qt−1

Xt−1
)
.

Then µ has order qt−1 + · · · + q + 1 and fixes �, � and the line l. Moreover, the group
H generated by µ acts sharply transitively on �. Also, H fixes D and the two points
(1, 0, 0, . . . , 0) and (0, 1, 0, . . . , 0) of l. We note that τλµ = µτλ. Hence the group GH is
abelian. Let V ′ = V ⊕ 〈e〉GF(q), where l = PG(V, GF(qt )), and let �′ = PG(V ′, GF(q)).
If τλµ

i ∈ GH, then τλµ
i induces a collineation of �′ which maps the point 〈(x, y) + αe〉

to the point 〈(λξ i x, λξ iq y) + αe〉.
As GH maps elements ofD to elements ofD and elements ofD∗ to elements ofD∗, the de-

rived plane π(�′, �,S∗) has an abelian collineation group fixing the two lines 〈P(1, 0), e〉
and 〈P(0, 1), e〉. If 〈P(1, x), e〉, with (1, x) not in D, the group G is the stabilizer of P(1, x)

in GH. Therefore, G defines a collineation group acting sharply transitively on the points
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of the line 〈P((1, x)), e〉 different from 〈e〉. If X ∈ D∗, the stabilizer of X in GH coincides
with H because G acts, by construction, sharply transitively on D∗. Hence, H defines a
collineation group of the plane acting sharply transitively on the points of 〈X, e〉 different
from 〈e〉. By [6, Corollary 12.2] the plane π(�′, �,S∗) is an André plane.

3. Some examples

Let PG(2, qt ) = PG(V, GF(qt )). If e0, e1, e2 is a fixed basis of V, denote by (x0, x1, x2)

the homogeneous projective coordinates of the point 〈x0e0 + x1e1 + x2e2〉 of PG(2, qt ). Let
f : GF(qt ) −→ GF(qt ) be a GF(q)-linear map. The set

B = {(x, f (x), a) : x ∈ GF(qt ), a ∈ GF(q)}

is a GF(q)-linear Rédei blocking set of PG(2, qt ) and the line x2 = 0 is a Rédei line.
Conversely, every small minimal Rédei blocking set of PG(2, qt ) (with certain exception
in characteristic two or three) can be obtained in such a way (see [1]). If

B = {(x, xq , a) | x ∈ GF(qt ), a ∈ GF(q)},

then B is a Rédei blocking set of size qt + qt−1 + · · · + q + 1 and, hence, the line x2 = 0 is
a Rédei line (see [3]). This is the only known Rédei blocking set of size qt + · · · + q + 1
and it is exactly the example constructed at the end of Section 2, where we have proved that
the derived plane obtained from B is an André plane. See also [10] for a direct proof.

Let λ be a fixed element of GF(qt ) different from 0, and denote by N the norm function
of GF(qt ) over GF(q), i.e., N (x) = xqt−1+···+q+1, for x ∈ GF(qt ). Define

Bλ = {(
x, λxq + xqt−1

, a
) | x ∈ GF(qt ), a ∈ GF(q)

}
.

Since x −→ λxq + xqt−1
is a GF(q)-linear map, Bλ is GF(q)-linear Rédei blocking set of

PG(2, qt ).

Theorem 2 If N (λ) �= 1, then Bλ is a blocking set of size qt + qt−1 + · · · + q + 1.

Proof: By way of contradiction, suppose that |Bλ| < qt + qt−1 + · · ·+ q + 1. Then there
exist x, y ∈ GF(qt ), a, b ∈ GF(q), and γ ∈ GF(qt )\GF(q) such that

(
x, λxq + xqt−1

, a
) = γ

(
y, λyq + yqt−1

, b
)
, (1)

which implies a = γ b. As γ �∈ GF(q), we have a = b = 0. From (1), it follows

{
x = γ y

λxq + xqt−1 = γ
(
λyq + yqt−1)

,
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which gives

λ = yqt−1

yq
· γ − γ qt−1(

γ − γ qt−1
)q = yqt−1−q(

γ − γ qt−1
)q−1 .

So, we obtain

N (λ) = N
(
yqt−1−q

) · N

(
1

(γ − γ qt−1
)q−1

)
= 1.

Therefore, if N (λ) �= 1, we have |Bλ| = qt + qt−1 + · · · + q + 1. ✷

Theorem 3 If N (λ) �= 1, q > 3 and t ≥ 4, then Bλ and B are not isomorphic.

Proof: Suppose there exists a linear collineation ω of PG(2, qt ) which maps Bλ to B.

Denote by A = (ai j ), with ai j ∈ GF(qt ) and i, j = 1, 2, 3, the matrix associated with ω

with respect to the basis e0, e1, e2. As ω maps the Rédei line of Bλ to the Rédei line of B,
ω fixes the line x2 = 0. Hence, a13 = a23 = 0, and det(A) = a33(a11a22 − a21a12). Also,
the points (x, λxq + xqt−1

, 0) of Bλ are mapped to the points (y, yq , 0) of B, i.e.,

(
x, λxq + xqt−1) (

a11 a12

a21 a22

)
= ρx (y, yq),

with ρx ∈ GF(qt )∗. This implies

xa11 + λa21xq + a21xqt−1 = ρx y (2)

xa12 + λa22xq + a22xqt−1 = ρx yq . (3)

From Eqs. (2) and (3), we have

yq−1 = xa12 + λa22xq + a22xqt−1

xa11 + λa21xq + a21xqt−1 ,

which gives

N
(
xa11 + λa21xq + a21xqt−1) = N

(
xa12 + λa22xq + a22xqt−1)

,

i.e.

t−1∏
i=0

(
xqi

aqi

11 + λqi
aqi

21xqi+1 + aqi

21xqt−1+i
)

=
t−1∏
i=0

(
xqi

aqi

12 + λqi
aqi

22xqi+1 + aqi

22xqt−1+i
)
,

for all x ∈ GF(qt ). As xqt = x , from the above equality we obtain two polynomials of degree
at most 3qt−1 + qt−2 + · · · + q3 + q2. If q > 3, their degree is less than qt , and hence they
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have the same coefficients. Comparing the coefficients of the terms of maximum degree
3qt−1 + qt−2 + · · · + q3 + q2, for t ≥ 4, we get

a21λ
qaq

21λ
q2

aq2

21 · · · λqt−2
aqt−2

21 aqt−1

11 = a22λ
qaq

22λ
q2

aq2

22 · · · λqt−2
aqt−2

22 aqt−1

12 ,

which implies

aqt−2+···+q+1
21 aqt−1

11 = aqt−2+···+q+1
22 aqt−1

12 . (4)

On the other hand, comparing the coefficients of the terms of degree 3qt−1 + qt−2 + · · · +
q3 + q , for t ≥ 4, we have

a21aq
11λ

q2
aq2

21 · · · λqt−2
aqt−2

21 aqt−1

11 = a22aq
12λ

q2
aq2

22 · · · λqt−2
aqt−2

22 aqt−1

12 ,

which implies

aqt−2+···+q2+1
21 aqt−1+q

11 = aqt−2+···+q2+1
22 aqt−1+q

12 . (5)

If a21a11 �= 0, dividing both sides of Eq. (4) by (5), we get

aq
21

aq
11

= aq
22

aq
12

�⇒ a21a12 = a22a11,

i.e., det(A) = 0, a contradiction.
Now, suppose a21a11 = 0. From (5), it follows a22a12 = 0. As det(A) �= 0, the following

cases may occur:

(a) a12 = 0 and a21 = 0
(b) a22 = 0 and a11 = 0.

In case (a), we have

N (xa11) = N
(
λa22xq + a22xqt−1)

,

that is

N (a11)xqt−1+···+q+1 = N (a22)
(
λxq + xqt−1)(

λq xq2 + x
) · · · (λqt−1

x + xqt−2)
for all x ∈ GF(qt ). Comparing the coefficents of the terms of degree 2qt−1 + qt−2 + · · · +
q3 + q2, we get a22 = 0, which is impossible. The same way we can exclude case (b).

Finally, suppose there exists a collineation θ of PG(2, qt ) which maps Bλ to B. Let
A = (ai j ), with ai j ∈ GF(qt ) and i, j = 1, 2, 3, and σ denote respectively the matrix
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and the automorphism of GF(qt ) associated with θ . The line x2 = 0 is fixed by θ , hence
a13 = a23 = 0 and det(A) = a33(a11a22 − a21a12). Moreover,

(
σ(x), σ

(
λxq + xqt−1)) (

a11 a12

a21 a22

)
= ρx (y, yq),

with ρx ∈ GF(qt )∗. This implies

a11σ(x) + a21σ
(
λxq + xqt−1) = ρx y (6)

a12σ(x) + a22σ
(
λxq + a22xqt−1) = ρx yq . (7)

From Eqs. (6) and (7), we get

yq−1 = a12σ(x) + a22σ
(
λxq + xqt−1)

a11σ(x) + a21σ
(
λxq + xqt−1

) ,

hence

N
(
a11σ(x) + a21σ

(
λxq + xqt−1)) = N

(
a12σ(x) + a22σ

(
λxq + xqt−1))

.

If

σ(a′
11) = a11, σ (a′

21) = a21, σ (a′
12) = a12, and σ(a′

22) = a22,

we can write

σ
(
N

(
a′

11x + λa′
21xq + a′

21xqt−1)) = σ
(
N

(
a′

12x + λa′
22xq + a′

22xqt−1))
,

that is

N
(
xa′

11 + λa′
21xq + a′

21xqt−1) = N
(
xa′

12 + λa′
22xq + a′

22xqt−1)
,

for all x ∈ GF(qt ). As before a′
11a′

22 − a′
12a′

21 = 0, which gives det(A) = a33(a11a22 −
a12a21) = 0, a contradiction. Then Bλ is not isomorphic to B. ✷

Note

1. The incidence structure whose points are the points of �′ \�, and whose lines are the t-dimensional subspaces
of �′ containing an element of F is said a derivable translation net (see [11]).
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