Blocking Sets and Derivable Partial Spreads

G. LUNARDON
lunardon@matna2.dma.unina.it
O. POLVERINO* polverin@matna2.dma.unina.it
Dip. di Matematica e Applicazioni, Complesso di Monte S. Angelo-Edificio T, Via Cintia, I-80126 Napoli, Italy

Received June 23, 1999; Revised June 30, 2000

Abstract

We prove that a $G F(q)$-linear Rédei blocking set of size $q^{t}+q^{t-1}+\cdots+q+1$ of $P G\left(2, q^{t}\right)$ defines a derivable partial spread of $P G(2 t-1, q)$. Using such a relationship, we are able to prove that there are at least two inequivalent Rédei minimal blocking sets of size $q^{t}+q^{t-1}+\cdots+q+1$ in $P G\left(2, q^{t}\right)$, if $t \geq 4$.

Keywords: spread, translation plane, blocking set

1. Introduction

A blocking set B in a finite projective plane is a set of points intersecting every line. B is called trivial if it contains a line. Throughout this paper, we only consider non-trivial blocking sets. Two blocking sets are said to be equivalent if there is a collineation of the plane which maps one to the other one.

A blocking set is called minimal if no proper subset of it is a blocking set. If q is the order of the plane, and B has size $q+N$, then a line contains at most N points of B; if such a line exists, B is called of Rédei type and the line is said to be a Rédei line.

Minimal blocking sets of a desarguesian plane $P G(2, s), s=p^{n}, p$ prime, of size less than $\frac{3(s+1)}{2}$ are called small. They intersect every line in a number of points congruent to 1 modulo p (see [12]). Let B be a small minimal Rédei blocking set of $P G(2, s)$. Let e be the largest integer such that each secant of B meets B in $n p^{e}+1$ points, $n \in \mathbf{N}$. If $q=p^{e}>2$, then $s=q^{t}$ (i.e., $G F\left(p^{e}\right)$ is a subfield of $G F(s)$), and $|B|=q^{t}+N$ with $q^{t-1}+1 \leq N \leq q^{t-1}+\cdots+q+1$ [1]. In particular, when $N=q^{t-1}+\cdots+q+1, t>2$, then there is exactly one Rédei line and all secants different from the Rédei line contain $q+1$ points of B.

A $(t-1)$-spread \mathcal{S} of $\Sigma=P G(2 t-1, q)$ is a partition of the pointset of Σ in $(t-1)$ dimensional subspaces. Let \mathcal{S} be a $(t-1)$-spread of $\Sigma=P G(2 t-1, q)$. Embed Σ as a hyperplane in $\Sigma^{\prime}=P G(2 t, q)$ and define a point-line geometry $\pi=\pi\left(\Sigma^{\prime}, \Sigma, \mathcal{S}\right)$ in the following way. The points of π are either the elements of \mathcal{S} or the points of $\Sigma^{\prime} \backslash \Sigma$. The lines of π are either Σ or the t-dimensional subspaces of Σ^{\prime} which intersect Σ in an element of \mathcal{S}. The incidence is inherited by Σ^{\prime}. Then, π is a translation plane with respect to the line represented by Σ, whose order is q^{t} (see [5] or [6]). If π is isomorphic to the desarguesian

[^0]plane of order q^{t}, then \mathcal{S} is a desarguesian spread. A subset \mathcal{F} of a $(t-1)$-spread \mathcal{S} of Σ is called derivable partial spread if there exists a partial spread \mathcal{F}^{*} such that $\mathcal{S}^{*}=(\mathcal{S} \backslash \mathcal{F}) \cup \mathcal{F}^{*}$ is a $(t-1)$-spread of Σ, and $\pi\left(\Sigma^{\prime}, \Sigma, \mathcal{S}^{*}\right)$ is called the derived plane. ${ }^{1}$

Let Γ be a t-dimensional subspace of $\Sigma^{\prime}=P G(2 t, q)$, with $\Gamma \not \subset \Sigma$, and let $\Delta=\Gamma \cap \Sigma$. If

$$
\mathcal{D}=\{T \in \mathcal{S} \mid T \cap \Delta \neq \emptyset\}
$$

then $B_{\Gamma}=(\Gamma \backslash \Delta) \cup \mathcal{D}$ is a minimal Rédei blocking set of π, and the translation line Σ is a Rédei line (see [2]). The order of B_{Γ} is $q^{t}+N$, where N is the order of the partial spread \mathcal{D}. In [4], Bruen showed that every derivable partial spread of \mathcal{S} defines a Rédei blocking set of π. If \mathcal{S} is desarguesian, then B_{Γ} belongs to the family of $G F(q)$-linear blocking sets constructed in [7], and every $G F(q)$-linear blocking set of Rédei type can be obtained in such a way ([7]).

Suppose that \mathcal{S} is a desarguesian spread, and let B_{Γ} be a $G F(q)$-linear Rédei blocking set of $\pi\left(\Sigma^{\prime}, \Sigma, \mathcal{S}\right)$. In this paper we prove that, if each element of \mathcal{D} intersects Δ in a point (i.e., $N=q^{t-1}+\cdots+q+1$ and B_{Γ} has order $q^{t}+q^{t-1}+\cdots+q+1$), then \mathcal{D} is a derivable partial spread. Finally, we construct a new example of $G F(q)$-linear Rédei blocking set of $P G\left(2, q^{t}\right)$ of size $q^{t}+q^{t-1}+\cdots+q+1$.

We would like to thank one of the referees for pointing out to us a mistake in a previous version of this paper.

2. Derivable partial spreads

Let $P G\left(1, q^{t}\right)=P G\left(V, G F\left(q^{t}\right)\right)$, where V is a 2-dimensional vector space over $G F\left(q^{t}\right)$. Regarding V as a $2 t$-dimensional vector space over $G F(q)$, each point x of $P G\left(1, q^{t}\right)$ defines a $(t-1)$-dimensional subspace $P(x)$ of $\Sigma=P G(2 t-1, q)=P G(V, G F(q))$ and $\mathcal{S}=\left\{P(x) \mid x\right.$ is a point of $\left.P G\left(1, q^{t}\right)\right\}$ is a spread of Σ. If $P G\left(2, q^{t}\right)=P G\left(\bar{V}, G F\left(q^{t}\right)\right)$, where $\bar{V}=V \oplus\langle e\rangle$ is a 3-dimensional vector space over $G F\left(q^{t}\right)$, the map α defined by $\alpha: x \mapsto P(x)$ for all points x of $P G\left(1, q^{t}\right)$ and $\alpha:\langle v+e\rangle_{G F\left(q^{t}\right)} \mapsto\langle v+e\rangle_{G F(q)}$ for all points $\langle v+e\rangle_{G F\left(q^{t}\right)}$ of $P G\left(2, q^{t}\right)$ not in $P G\left(1, q^{t}\right)$, is an isomorphism from $P G\left(2, q^{t}\right)$ to $\pi\left(\Sigma^{\prime}, \Sigma, \mathcal{S}\right)$, where $\Sigma^{\prime}=P G\left(V^{\prime}, G F(q)\right)$ and $V^{\prime}=V \oplus\langle e\rangle_{G F(q)}$. Then \mathcal{S} is a desarguesian spread of Σ.

For each λ in $G F\left(q^{t}\right)^{*}$, let τ_{λ} be the linear collineation of Σ defined by the linear map $v \mapsto \lambda v$. Then $\tau_{\lambda}=\tau_{\mu}$ if and only if $\lambda \mu^{-1} \in G F(q)$. Hence, $G=\left\{\tau_{\lambda} \mid \lambda \in G F\left(q^{t}\right)^{*}\right\}$ is a collineation group of Σ of order $q^{t-1}+\cdots+q+1$ which fixes all the elements of \mathcal{S} and acts sharply-transitively on the points of each $P(x)$.

Suppose that B_{Γ} is a $G F(q)$-linear Rédei blocking set of $P G\left(2, q^{t}\right)$ of maximum size and let $\Delta=\Sigma \cap \Gamma$. Then Δ is a $(t-1)$-subspace of Σ such that $P(x) \cap \Delta$ is either empty or a point. Put

$$
\begin{aligned}
\mathcal{D} & =\{P(x) \in \mathcal{S} \mid P(x) \cap \Delta \neq \emptyset\}, \\
\mathcal{D}^{*} & =\left\{\Delta^{g} \mid g \in G\right\}
\end{aligned}
$$

Theorem $1 \quad \mathcal{S}^{*}=(\mathcal{S} \backslash \mathcal{D}) \cup \mathcal{D}^{*}$ is a spread of Σ.
Proof: As G fixes all the elements of \mathcal{S}, the subspace Δ^{g} intersects all the elements of \mathcal{D} exactly at a point.

Let $P(x)$ be an element of \mathcal{D}, and let $z=P(x) \cap \Delta$. If y is a point of $P(x)$, then there is exactly one element g in G such that $y=z^{g}$. This implies that y belongs to Δ^{g}, and we have proved that

$$
\bigcup_{P(x) \in \mathcal{D}} P(x)=\bigcup_{g \in G} \Delta^{g}
$$

To prove that \mathcal{S}^{*} is a spread it is enough to prove that \mathcal{D}^{*} is a partial spread. Suppose that y belongs to $\Delta^{g} \cap \Delta$. Then $y=z^{g}$ for some point z in Δ. As g fixes all the elements of \mathcal{S}, we have $z \in P(x)$ if and only if $y \in P(x)$. Therefore $z=y$, because $\Delta \cap P(x)$ is a point. This implies $g=1$ because G is sharply transitive on the points of $P(x)$. Hence Δ^{h} and Δ^{g} are disjoint if and only if $h \neq g$.

Let $\Lambda^{*}=P G\left(t-1, q^{t}\right)$ and let $\Lambda=P G(t-1, q)$ be a canonical subgeometry of Λ^{*}. Denote by Ω a $(t-3)$-dimensional subspace of Λ^{*} disjoint from all the lines of Λ. If $l=P G\left(1, q^{t}\right)$ is a line of Λ^{*} disjoint from Ω, then $D=\{\langle x, \Omega\rangle \cap l \mid x \in \Lambda\}$ is a set of $q^{t-1}+\cdots+q+1$ points of l. Moreover, if $l=P G\left(1, q^{t}\right)=P G\left(V, G F\left(q^{t}\right)\right)$, where V is a 2-dimensional vector space over $G F\left(q^{t}\right)$, then there is a subgroup W of the additive group of V such that W is a t-dimensional $G F(q)$-vector space and $D=\{\langle w\rangle \mid w \in W \backslash\{0\}\}$. Hence, $\mathcal{D}=\{P(x) \mid x \in D\}$ is a derivable partial spread of $P G(2 t-1, q)=P G(V, G F(q))$ and $\mathcal{D}^{*}=\left\{W^{\tau} \mid \tau \in G\right\}$ (see [8]).

By [9], all derivable partial spreads defined by a Rédei blocking set of $P G\left(2, q^{t}\right)$ of size $q^{t}+q^{t-1}+\cdots+q+1$ can be constructed in this way.

If ($X_{0}, X_{1}, \ldots, X_{t-1}$) are homogenous projective coordinates of Λ^{*}, then we can suppose $\Lambda=\left\{\left(a, a^{q}, \ldots, a^{q^{t-1}}\right) \mid a \in G F\left(q^{t}\right)^{*}\right\}$. The $(t-3)$-dimensional subspace Ω with equations $X_{0}=X_{1}=0$ is disjoint from all lines of Λ, and the line l with equations $X_{2}=$ $X_{3}=\cdots=X_{t-1}=0$ is disjoint from Λ. Hence $D=\left\{\left(a, a^{q}, 0, \ldots, 0\right) \mid a \in G F\left(q^{t}\right)^{*}\right\}$. Denote by ξ a primitive element of $G F\left(q^{t}\right)$ and let μ be the collineation of Λ^{*} defined by

$$
\mu:\left(X_{0}, X_{1}, \ldots, X_{t-1}\right) \mapsto\left(\xi X_{0}, \xi^{q} X_{1}, \ldots, \xi^{q^{t-1}} X_{t-1}\right)
$$

Then μ has order $q^{t-1}+\cdots+q+1$ and fixes Λ, Ω and the line l. Moreover, the group H generated by μ acts sharply transitively on Λ. Also, H fixes D and the two points $(1,0,0, \ldots, 0)$ and $(0,1,0, \ldots, 0)$ of l. We note that $\tau_{\lambda} \mu=\mu \tau_{\lambda}$. Hence the group $G H$ is abelian. Let $V^{\prime}=V \oplus\langle e\rangle_{G F(q)}$, where $l=P G\left(V, G F\left(q^{t}\right)\right)$, and let $\Sigma^{\prime}=P G\left(V^{\prime}, G F(q)\right)$. If $\tau_{\lambda} \mu^{i} \in G H$, then $\tau_{\lambda} \mu^{i}$ induces a collineation of Σ^{\prime} which maps the point $\langle(x, y)+\alpha e\rangle$ to the point $\left\langle\left(\lambda \xi^{i} x, \lambda \xi^{i q} y\right)+\alpha e\right\rangle$.

As $G H$ maps elements of \mathcal{D} to elements of \mathcal{D} and elements of \mathcal{D}^{*} to elements of \mathcal{D}^{*}, the derived plane $\pi\left(\Sigma^{\prime}, \Sigma, \mathcal{S}^{*}\right)$ has an abelian collineation group fixing the two lines $\langle P(1,0), e\rangle$ and $\langle P(0,1), e\rangle$. If $\langle P(1, x), e\rangle$, with $(1, x)$ not in D, the group G is the stabilizer of $P(1, x)$ in $G H$. Therefore, G defines a collineation group acting sharply transitively on the points
of the line $\langle P((1, x)), e\rangle$ different from $\langle e\rangle$. If $X \in \mathcal{D}^{*}$, the stabilizer of X in $G H$ coincides with H because G acts, by construction, sharply transitively on \mathcal{D}^{*}. Hence, H defines a collineation group of the plane acting sharply transitively on the points of $\langle X, e\rangle$ different from $\langle e\rangle$. By [6, Corollary 12.2] the plane $\pi\left(\Sigma^{\prime}, \Sigma, \mathcal{S}^{*}\right)$ is an André plane.

3. Some examples

Let $P G\left(2, q^{t}\right)=P G\left(V, G F\left(q^{t}\right)\right)$. If e_{0}, e_{1}, e_{2} is a fixed basis of V, denote by $\left(x_{0}, x_{1}, x_{2}\right)$ the homogeneous projective coordinates of the point $\left\langle x_{0} e_{0}+x_{1} e_{1}+x_{2} e_{2}\right\rangle$ of $P G\left(2, q^{t}\right)$. Let $f: G F\left(q^{t}\right) \longrightarrow G F\left(q^{t}\right)$ be a $G F(q)$-linear map. The set

$$
B=\left\{(x, f(x), a): x \in G F\left(q^{t}\right), a \in G F(q)\right\}
$$

is a $G F(q)$-linear Rédei blocking set of $P G\left(2, q^{t}\right)$ and the line $x_{2}=0$ is a Rédei line. Conversely, every small minimal Rédei blocking set of $P G\left(2, q^{t}\right)$ (with certain exception in characteristic two or three) can be obtained in such a way (see [1]). If

$$
\mathcal{B}=\left\{\left(x, x^{q}, a\right) \mid x \in G F\left(q^{t}\right), a \in G F(q)\right\},
$$

then \mathcal{B} is a Rédei blocking set of size $q^{t}+q^{t-1}+\cdots+q+1$ and, hence, the line $x_{2}=0$ is a Rédei line (see [3]). This is the only known Rédei blocking set of size $q^{t}+\cdots+q+1$ and it is exactly the example constructed at the end of Section 2, where we have proved that the derived plane obtained from \mathcal{B} is an André plane. See also [10] for a direct proof.

Let λ be a fixed element of $G F\left(q^{t}\right)$ different from 0 , and denote by N the norm function of $G F\left(q^{t}\right)$ over $G F(q)$, i.e., $N(x)=x^{q^{t-1}+\cdots+q+1}$, for $x \in G F\left(q^{t}\right)$. Define

$$
B_{\lambda}=\left\{\left(x, \lambda x^{q}+x^{q^{t-1}}, a\right) \mid x \in G F\left(q^{t}\right), a \in G F(q)\right\}
$$

Since $x \longrightarrow \lambda x^{q}+x^{q^{t-1}}$ is a $G F(q)$-linear map, B_{λ} is $G F(q)$-linear Rédei blocking set of $P G\left(2, q^{t}\right)$.

Theorem 2 If $N(\lambda) \neq 1$, then B_{λ} is a blocking set of size $q^{t}+q^{t-1}+\cdots+q+1$.
Proof: By way of contradiction, suppose that $\left|B_{\lambda}\right|<q^{t}+q^{t-1}+\cdots+q+1$. Then there exist $x, y \in G F\left(q^{t}\right), a, b \in G F(q)$, and $\gamma \in G F\left(q^{t}\right) \backslash G F(q)$ such that

$$
\begin{equation*}
\left(x, \lambda x^{q}+x^{q^{t-1}}, a\right)=\gamma\left(y, \lambda y^{q}+y^{q^{t-1}}, b\right) \tag{1}
\end{equation*}
$$

which implies $a=\gamma b$. As $\gamma \notin G F(q)$, we have $a=b=0$. From (1), it follows

$$
\begin{cases}x & =\gamma y \\ \lambda x^{q}+x^{q^{t-1}} & =\gamma\left(\lambda y^{q}+y^{q^{t-1}}\right)\end{cases}
$$

which gives

$$
\lambda=\frac{y^{q^{t-1}}}{y^{q}} \cdot \frac{\gamma-\gamma^{q^{t-1}}}{\left(\gamma-\gamma^{q^{t-1}}\right)^{q}}=\frac{y^{q^{t-1}-q}}{\left(\gamma-\gamma^{q^{t-1}}\right)^{q-1}} .
$$

So, we obtain

$$
N(\lambda)=N\left(y^{q^{t-1}-q}\right) \cdot N\left(\frac{1}{\left(\gamma-\gamma^{q^{t-1}}\right)^{q-1}}\right)=1
$$

Therefore, if $N(\lambda) \neq 1$, we have $\left|B_{\lambda}\right|=q^{t}+q^{t-1}+\cdots+q+1$.
Theorem 3 If $N(\lambda) \neq 1, q>3$ and $t \geq 4$, then B_{λ} and \mathcal{B} are not isomorphic.
Proof: Suppose there exists a linear collineation ω of $P G\left(2, q^{t}\right)$ which maps B_{λ} to \mathcal{B}. Denote by $A=\left(a_{i j}\right)$, with $a_{i j} \in G F\left(q^{t}\right)$ and $i, j=1,2,3$, the matrix associated with ω with respect to the basis e_{0}, e_{1}, e_{2}. As ω maps the Rédei line of B_{λ} to the Rédei line of \mathcal{B}, ω fixes the line $x_{2}=0$. Hence, $a_{13}=a_{23}=0$, and $\operatorname{det}(A)=a_{33}\left(a_{11} a_{22}-a_{21} a_{12}\right)$. Also, the points $\left(x, \lambda x^{q}+x^{q^{t-1}}, 0\right)$ of B_{λ} are mapped to the points $\left(y, y^{q}, 0\right)$ of \mathcal{B}, i.e.,

$$
\left(x, \lambda x^{q}+x^{q^{t-1}}\right)\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)=\rho_{x}\left(y, y^{q}\right),
$$

with $\rho_{x} \in G F\left(q^{t}\right)^{*}$. This implies

$$
\begin{align*}
& x a_{11}+\lambda a_{21} x^{q}+a_{21} x^{q^{t-1}}=\rho_{x} y \tag{2}\\
& x a_{12}+\lambda a_{22} x^{q}+a_{22} x^{q^{t-1}}=\rho_{x} y^{q} \tag{3}
\end{align*}
$$

From Eqs. (2) and (3), we have

$$
y^{q-1}=\frac{x a_{12}+\lambda a_{22} x^{q}+a_{22} x^{q^{t-1}}}{x a_{11}+\lambda a_{21} x^{q}+a_{21} x^{q-1}}
$$

which gives

$$
N\left(x a_{11}+\lambda a_{21} x^{q}+a_{21} x^{q^{t-1}}\right)=N\left(x a_{12}+\lambda a_{22} x^{q}+a_{22} x^{q^{t-1}}\right),
$$

i.e.

$$
\prod_{i=0}^{t-1}\left(x^{q^{i}} a_{11}^{q^{i}}+\lambda^{q^{i}} a_{21}^{q^{i}} x^{q^{i+1}}+a_{21}^{q^{i}} x^{q^{t-1+i}}\right)=\prod_{i=0}^{t-1}\left(x^{q^{i}} a_{12}^{q^{i}}+\lambda^{q^{i}} a_{22}^{q^{i}} x^{q^{i+1}}+a_{22}^{q^{i}} x^{q^{t-1+i}}\right),
$$

for all $x \in G F\left(q^{t}\right)$. As $x^{q^{t}}=x$, from the above equality we obtain two polynomials of degree at most $3 q^{t-1}+q^{t-2}+\cdots+q^{3}+q^{2}$. If $q>3$, their degree is less than q^{t}, and hence they
have the same coefficients. Comparing the coefficients of the terms of maximum degree $3 q^{t-1}+q^{t-2}+\cdots+q^{3}+q^{2}$, for $t \geq 4$, we get

$$
a_{21} \lambda^{q} a_{21}^{q} \lambda^{q^{2}} a_{21}^{q^{2}} \cdots \lambda^{q^{t-2}} a_{21}^{q^{t-2}} a_{11}^{q^{t-1}}=a_{22} \lambda^{q} a_{22}^{q} \lambda^{q^{2}} a_{22}^{q^{2}} \cdots \lambda^{q^{t-2}} a_{22}^{q^{t-2}} a_{12}^{q^{t-1}}
$$

which implies

$$
\begin{equation*}
a_{21}^{q^{t-2}+\cdots+q+1} a_{11}^{q_{1}^{t-1}}=a_{22}^{q^{t-2}+\cdots+q+1} a_{12}^{q^{t-1}} \tag{4}
\end{equation*}
$$

On the other hand, comparing the coefficients of the terms of degree $3 q^{t-1}+q^{t-2}+\cdots+$ $q^{3}+q$, for $t \geq 4$, we have

$$
a_{21} a_{11}^{q} \lambda^{q^{2}} a_{21}^{q^{2}} \cdots \lambda^{q^{t-2}} a_{21}^{q^{t-2}} a_{11}^{q^{t-1}}=a_{22} a_{12}^{q} \lambda^{q^{2}} a_{22}^{q^{2}} \cdots \lambda^{q^{t-2}} a_{22}^{q^{t-2}} a_{12}^{q^{t-1}},
$$

which implies

$$
\begin{equation*}
a_{21}^{q^{t-2}+\cdots+q^{2}+1} a_{11}^{q^{t-1}+q}=a_{22}^{q^{t-2}+\cdots+q^{2}+1} a_{12}^{q^{t-1}+q} . \tag{5}
\end{equation*}
$$

If $a_{21} a_{11} \neq 0$, dividing both sides of Eq. (4) by (5), we get

$$
\frac{a_{21}^{q}}{a_{11}^{q}}=\frac{a_{22}^{q}}{a_{12}^{q}} \Longrightarrow a_{21} a_{12}=a_{22} a_{11}
$$

i.e., $\operatorname{det}(A)=0$, a contradiction.

Now, suppose $a_{21} a_{11}=0$. From (5), it follows $a_{22} a_{12}=0$. As $\operatorname{det}(A) \neq 0$, the following cases may occur:
(a) $a_{12}=0$ and $a_{21}=0$
(b) $a_{22}=0$ and $a_{11}=0$.

In case (a), we have

$$
N\left(x a_{11}\right)=N\left(\lambda a_{22} x^{q}+a_{22} x^{q^{t-1}}\right)
$$

that is

$$
N\left(a_{11}\right) x^{q^{t-1}+\cdots+q+1}=N\left(a_{22}\right)\left(\lambda x^{q}+x^{q^{t-1}}\right)\left(\lambda^{q} x^{q^{2}}+x\right) \cdots\left(\lambda^{q^{t-1}} x+x^{q^{t-2}}\right)
$$

for all $x \in G F\left(q^{t}\right)$. Comparing the coefficents of the terms of degree $2 q^{t-1}+q^{t-2}+\cdots+$ $q^{3}+q^{2}$, we get $a_{22}=0$, which is impossible. The same way we can exclude case (b).

Finally, suppose there exists a collineation θ of $P G\left(2, q^{t}\right)$ which maps B_{λ} to \mathcal{B}. Let $A=\left(a_{i j}\right)$, with $a_{i j} \in G F\left(q^{t}\right)$ and $i, j=1,2,3$, and σ denote respectively the matrix
and the automorphism of $G F\left(q^{t}\right)$ associated with θ. The line $x_{2}=0$ is fixed by θ, hence $a_{13}=a_{23}=0$ and $\operatorname{det}(A)=a_{33}\left(a_{11} a_{22}-a_{21} a_{12}\right)$. Moreover,

$$
\left(\sigma(x), \sigma\left(\lambda x^{q}+x^{q^{t-1}}\right)\right)\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)=\rho_{x}\left(y, y^{q}\right)
$$

with $\rho_{x} \in G F\left(q^{t}\right)^{*}$. This implies

$$
\begin{align*}
& a_{11} \sigma(x)+a_{21} \sigma\left(\lambda x^{q}+x^{q^{t-1}}\right)=\rho_{x} y \tag{6}\\
& a_{12} \sigma(x)+a_{22} \sigma\left(\lambda x^{q}+a_{22} x^{q^{t-1}}\right)=\rho_{x} y^{q} . \tag{7}
\end{align*}
$$

From Eqs. (6) and (7), we get

$$
y^{q-1}=\frac{a_{12} \sigma(x)+a_{22} \sigma\left(\lambda x^{q}+x^{q^{t-1}}\right)}{a_{11} \sigma(x)+a_{21} \sigma\left(\lambda x^{q}+x^{q^{t-1}}\right)},
$$

hence

$$
N\left(a_{11} \sigma(x)+a_{21} \sigma\left(\lambda x^{q}+x^{q^{t-1}}\right)\right)=N\left(a_{12} \sigma(x)+a_{22} \sigma\left(\lambda x^{q}+x^{q^{t-1}}\right)\right)
$$

If

$$
\sigma\left(a_{11}^{\prime}\right)=a_{11}, \sigma\left(a_{21}^{\prime}\right)=a_{21}, \sigma\left(a_{12}^{\prime}\right)=a_{12}, \text { and } \sigma\left(a_{22}^{\prime}\right)=a_{22}
$$

we can write

$$
\sigma\left(N\left(a_{11}^{\prime} x+\lambda a_{21}^{\prime} x^{q}+a_{21}^{\prime} x^{q^{t-1}}\right)\right)=\sigma\left(N\left(a_{12}^{\prime} x+\lambda a_{22}^{\prime} x^{q}+a_{22}^{\prime} x^{q^{t-1}}\right)\right),
$$

that is

$$
N\left(x a_{11}^{\prime}+\lambda a_{21}^{\prime} x^{q}+a_{21}^{\prime} x^{q^{t-1}}\right)=N\left(x a_{12}^{\prime}+\lambda a_{22}^{\prime} x^{q}+a_{22}^{\prime} x^{q^{t-1}}\right),
$$

for all $x \in G F\left(q^{t}\right)$. As before $a_{11}^{\prime} a_{22}^{\prime}-a_{12}^{\prime} a_{21}^{\prime}=0$, which gives $\operatorname{det}(A)=a_{33}\left(a_{11} a_{22}-\right.$ $\left.a_{12} a_{21}\right)=0$, a contradiction. Then B_{λ} is not isomorphic to \mathcal{B}.

Note

1. The incidence structure whose points are the points of $\Sigma^{\prime} \backslash \Sigma$, and whose lines are the t-dimensional subspaces of Σ^{\prime} containing an element of \mathcal{F} is said a derivable translation net (see [11]).

References

1. S. Ball, A. Blokhuis, A.E. Brouwer, L. Storme, and T. Szönyi, "On the number of slopes of the graph of a function defined on a finite field," J. Comb. Theory (A), 86 (1999), 187-196.
2. A.E. Brouwer and H.A. Wilbrink, "Blocking sets in translation planes," J. Geom. 19 (1982), 200.
3. A. Bruen, "Blocking sets in finite projective planes," Siam J. Appl. Math. 21 (3) (1971), 380-392.
4. A. Bruen, "Partial spreads and replaceable nets," Can. J. Math. XX (3) (1971), 381-391.
5. P. Dembowski, Finite Geometries, Springer-Verlag, Berlin, 1968.
6. H. Lüneburg, Translation Planes, Springer-Verlag, Berlin, 1980.
7. G. Lunardon, "Normal spreads," Geom. Dedicata 75 (1999), 245-261.
8. G. Lunardon, "Linear k-blocking sets," Combinatorica, to appear.
9. G. Lunardon, P. Polito, and O. Polverino, "A geometric characterisation of linear k-blocking sets," J. Geom., to appear.
10. P. Polito and O. Polverino, "Blocking sets in André planes," Geom. Dedicata 75 (1999), 199-207.
11. T.G. Ostrom, "Replaceable nets, net collineations, and net extensions," Can. J. Math. 18 (1966), 666-672.
12. T. Szönyi, "Blocking sets in desarguesian affine and projective planes," Finite Fields Appl. 3 (1997), 187-202.

[^0]: Research performed within the activity of GNSAGA of INDAM with the support of the Italian Ministry for University, Research and Technology.

