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Abstract. We discuss new constructions of Hadamard and conference matrices using relative difference
sets. We present the first example of a relative (n, 2, n − 1, n−2

2 )-difference set where n − 1 is not a prime
power.
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1. Introduction

One of the most interesting problems in combinatorics is the question whether Hadamard
matrices exist for all orders n divisible by 4. A Hadamard matrix H of order n is a
±1-matrix which satisfies HHt = nIn . They exist for

n = 1, n = 2

((
1 −1

−1 1

))
, n = 4







1 −1 −1 −1

−1 1 −1 −1

−1 −1 1 −1

−1 −1 −1 1







and many more values of n. It is not difficult to see that a Hadamard matrix of order n
satisfies n = 1, n = 2 or n is divisible by 4. The smallest case n where it is presently not
known whether a Hadamard matrix exists is n = 428.

Many recursive or clever “ad hoc” constructions of Hadamard matrices are known; we
refer the reader to [3, 5] and [23], for instance. We also refer the reader to [3] for background
from design theory. But we define and explain all terms from scratch, hence it is not necessary
to consult the encyclopaedian books [3] and [4].

It has been conjectured by de Launey and Horadam [7] that the Hadamard matrix con-
jecture can be solved using relative difference sets. More precisely, they conjecture that
for all n ≡ 0 mod 4 there exists a (not necessarily abelian) relative difference set with
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parameters (n, 2, n, n
2 ). It turns out that these relative difference sets are equivalent to co-

cyclic Hadamard matrices. We refer to [9] and [6] for recent results on cocyclic Hadamard
matrices and, more generally, to [14] for cocyclic development of designs.

A more concrete suggestion on how to prove the Hadamard matrix conjecture is contained
in Ito [16]. He suggests that certain relative difference sets in a special class of non-abelian
groups of order 8t should be used to construct Hadamard matrices of order 4t . Flannery
shows [12] that Ito’s relative difference sets are indeed equivalent to cocyclic Hadamard
matrices. At present, no value t is known for which an argument exists that shows the non-
existence of such a relative difference set. Therefore it is conceivable that Ito’s difference set
construction can settle the Hadamard matrix conjecture! We emphasize that Ito’s suggestion
does not imply that the Hadamard design corresponding to the matrix has a difference set
description!

Another class of matrices are the so called conference matrices. A conference matrix of
size n is a (0, ±1)-matrix which satisfies CCt = (n − 1)In . It can be easily seen that the
size n of a conference matrix is 1 or n is even. It is conjectured that they exist whenever
n ≡ 0 mod 4 or if n ≡ 2 mod 4 and n − 1 is the sum of two squares; it is known that
these restrictions on n are necessary. The conjecture that the necessary conditions are also
sufficient is true for n ≤ 62 if n ≡ 2 mod 4 and n ≤ 184 if n ≡ 0 mod 4, see [5].

There is a construction of conference matrices of order n using projections of affine
difference sets, see [19] and Section 5 of this paper. It has been conjectured that this
construction works only if n − 1 is an odd prime power. In this paper we present the first
series of relative difference sets in groups of size 2n (giving conference matrices of size n)
where n − 1 is not a prime power. Similar to the Hadamard matrix case, this construction
may work for more values of n, not only the cases covered by Theorem 5.7. Therefore, our
new construction may help to solve the conference matrix conjecture.

Finally, let us mention some connections between conference and Hadamard matrices of
order n. Obviously, not all conference matrices can give rise to Hadamard matrices since
conference matrices of size n ≡ 2 mod 4 exist. A Hadamard matrix H is called skew if its
entries on the main diagonal are +1 and

C := H − In

is skew symmetric. Obviously, C is a skew-symmetric conference matrix if and only if H
is skew.

It is conjectured that skew Hadamard matrices exist for n = 1, n = 2 and all n divisible
by 4. The conference matrices constructed in Theorem 5.7 are skew symmetric.

This paper is organized as follows: In Section 2, we introduce the notion of difference sets
and group rings. Section 3 deals with the connection between difference sets and Hadamard
matrices. In Section 4, we present a new recursive construction of relative difference sets
in certain non-abelian groups using Golay complementary pairs. This generalizes a con-
struction of Schmidt. Finally (Section 5), a new construction of certain relative difference
sets in groups of order 2n (which yield skew symmetric conference matrices of size n and
thus skew Hadamard matrices) is presented. This gives the first examples of such relative
difference sets where n − 1 is not a prime power.



HADAMARD AND CONFERENCE MATRICES 105

2. Preliminaries

A divisible design D with parameters (n, m, k, λ) is an incidence structure with the fol-
lowing properties:

(D1) The number of points is mn and there is a partition of the points into n point classes
of size m, each.

(D2) Given two points p and q in different point classes, there are precisely λ blocks
containing p and q .

(D3) Points in the same point class are not joined by a block.
(D4) Each block contains exactly k points.

The incidence matrix of a design D is a (0, 1)-matrix where the rows are labelled with
the points and the columns with the blocks. The (p, B)-entry is 1 if p is a point on the block
B, otherwise it is 0.

A divisible design is called class regular if there is an automorphism group H acting
regularly on the points of each point class (acting regularly means that for any two points
p and q there is a unique group element g ∈ H such that pg = q).

A divisible design with m = 2 is class regular if and only if exchanging the points in each
point class induces an automorphism of the design.

For the convenience of the reader we include a short proof of the following well known
result:

Theorem 2.1 The existence of a Hadamard matrix, resp. conference matrix, of size n is
equivalent to the existence of a class regular (n, 2, n, n

2 ), resp. (n, 2, n − 1, n−2
2 ) divisible

design.

Proof (only conference matrix case): Take the conference matrix C and replace an entry
0 by (0 0

0 0), an entry +1 by (1 0
0 1) and −1 by (0 1

1 0). The 2n × 2n matrix constructed in this
way is the incidence matrix of an (n, 2, n − 1, n−2

2 ) divisible design.
Conversely, let τ be the automorphism of order 2 fixing all point classes. We label the

rows of the incidence matrix such that rows corresponding to points in the same point class
are adjacent. The columns are labeled such that blocks B and τ(B) correspond to adjacent
columns. Then the incidence matrix consists of pieces

(
0 0

0 0

)
,

(
1 0

0 1

)
and

(
0 1

1 0

)
.

Replacing these matrices by 0, 1 and −1 yields the desired conference matrix. ✷

In this paper, we consider only divisible designs with parameters

(
n, 2, n,

n

2

)
(1)



106 ARASU, CHEN AND POTT

and (
n, 2, n − 1,

n − 2

2

)
. (2)

The class regular designs which we are going to describe in this paper admit actually a
much larger automorphism group. More precisely, we consider so called relative difference
sets. Let G be a group of order mn containing a normal subgroup H of order m. A k-subset
D ⊆ G is called an (n, m, k, λ)-difference set relative to H if the list

(dd′−1 : d, d ′ ∈ D, d = d ′)

contains each element in G\H exactly λ times and no element in H . Relative difference
sets with |H | = 1 are the well known and well studied difference sets, see [3]. For obvious
reasons, the subgroup H is called the forbidden subgroup. As an example, {0, 1, 3} in Z8 is
a (4, 2, 3, 1)-difference set (additively written) relative to {0, 4}.

We define a design corresponding to D as follows: The points are the group elements, the
blocks are the “translates” Dg := {dg : d ∈ D} of D. It is fairly easy to see that this design is
a divisible (n, m, k, λ) design. The construction also works if H is not a normal subgroup.
However, if H is normal then H acts class regularly on the design. More generally, the
group of mappings

πg : G → G
x �→ xg

acts regularly on the design:

x, y ∈ Dh ⇔ x = dh and y = d ′h for some d, d ′ ∈ D

⇔ xy−1 = dd′−1
and x = dh

⇔ xg, yg ∈ Dhg.

Two points x, y, x = y, are in the same point class if and only if xy−1 cannot be represented
as a quotient dd′−1, d, d ′ ∈ D, hence x ∈ Hy. Therefore, point classes are right cosets of H .
If g ∈ H , then πg[Hy] = Hyg = ygH = yH = Hy provided H is a normal subgroup of G.
If H is not normal then πg does not fix the point classes.

As an example (which is contained in [8]) for this situation, take D = {1, a, a3, b} ⊂ G
where

G = 〈a, b : a4 = b2 = 1, bab−1 = a−1〉

is the dihedral group of order 8. The set D is a (4, 2, 4, 2)-difference set relative to H =
{1, a2b}. The involution πa2b does not fix the point classes since (Ha)a2b = Ha3 = Ha. It
should be noted that the design corresponding to this difference set is class regular, hence it
gives rise to a Hadamard matrix of size 4. But the involution acting regularly on the points
within the point classes is not the involution πa2b.
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We mention this example since Ito [15] claims that H has to be a normal subgroup if
there is an (n, 2, n, n

2 )-difference set relative to H . His claim is correct since he additionally
assumes in his paper that each block Dg intersects each left coset of H in precisely one
point. This assumption (which is always satisfied if H is normal) is not satisfied in our
example above: In this case |Da ∩ aH| = 2.

Many constructions of abelian (relative) difference sets are known, see [19], for instance.
It seems that the non-abelian case has not attracted that much attention. But recently, very
interesting observations have been published regarding non-abelian (n, 2, n, n

2 )-difference
sets. Our focus is on a paper by Ito [16]. He conjectured that for all n divisible by 4, the so
called dicyclic group

〈
a, b : an = b4 = 1, an/2 = b2, b−1ab = a−1

〉
contains a divisible difference set with parameters (n, 2, n, n

2 ). Up to now, no counterex-
ample to Ito’s conjecture is known.

In this paper, we extend a recursive construction of these dicyclic difference sets due
to Schmidt [22] to a more general class of non-abelian groups. Moreover, we present new
direct constructions of skew Hadamard matrices. These constructions yield new non-abelian
difference sets with parameters (2) including the first series where n−1 is not a prime power.

In order to study difference sets it is quite handy to use group rings. In this paper we do
not really use the algebraic structure of group rings and group algebras. We just use the
group ring Z[G] as a tool which simplifies notation.

We identify a subset A of G with the element A = ∑
g∈A g in the group ring Z[G]. If

A = ∑
g∈G agg is an element in Z[G], we define A(t) := ∑

g∈G aggt . Note that this is not
the t-th power of A. Using this notation, a subset D of G is an (n, m, k, λ)-difference set
relative to H (where |G| = mn and |H | = m) if and only if

D · D(−1) = k + λ(G − H). (3)

If G = 〈a : an = 1〉 is a cyclic group of order n then Z[G] ∼= Z[x]/(xn − 1), the ring of
polynomials modulo xn − 1. The canonical isomorphism is simply defined by ψ : ai �→ xi .
If ψ(A) = f (x) then ψ(A(−1)) is just f (x−1). This is an easy observation but it has some
interesting consequences in the recursive construction of Theorem 4.1.

3. Relative difference sets and Hadamard matrices

Let G be a group of order 8t , K < G with |K | = 4t . Moreover, let H = {1, τ } be a normal
subgroup of G contained in K . Let γ be an arbitrary element in G\K . Assume that D is a
(4t, 2, 4t, 2t)-difference set in G relative to H . We write D = D1 + D2γ where D1 = D∩K
and D2 = Dγ −1 ∩ K . The fundamental equation (3) for difference sets shows

(D1 + D2γ ) · (
D(−1)

1 + γ −1 D(−1)
2

) = 4t + 2t (G − H).
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This is equivalent to

D1 D(−1)
1 + D2 D(−1)

2 = 4t + 2t (K − H), (4)

and D1
(
γ −1 D(−1)

2 γ
)
γ −1 + D2

(
γ D(−1)

1 γ −1
)
γ = 2t (G − K ). (5)

The latter equation is quite complicated. Therefore we consider only a rather special type
of group: We assume that K is abelian and

G = gr(K , τ ) := 〈K , γ : γ 2 = τ, γ −1kγ = k−1 for all k ∈ K 〉. (6)

In this case, (5) reduces to

D1 D2γ (1 + τ) = 2t (G − K )

which is the same as

D1 D2 H = 2t K .

However, this follows already from (4): D1 and D2 are subsets of K of order 2t meeting
each coset of H precisely once (otherwise the coefficient of τ on the righthand side of (4)
would be = 0).

We can summarize this in the following Theorem:

Theorem 3.1 Let K be an abelian group of order 4t . Let H = {1, τ } be a subgroup of
K . If K contains two subsets D1 and D2 which satisfy (4) then the group gr(K , τ ) defined
in (6) contains a (4t, 2, 4t, 2t)-difference set D := D1 ∪ D2γ relative to H (which is a
normal subgroup of gr(K , τ )).

Conversely, let G be a group containing an abelian subgroup K of index 2. If G contains
a (4t, 2, 4t, 2t)-difference set D relative to H (H < K ), then the subsets D1 = D ∩ K and
D2 = Dγ −1 ∩ K in K satisfy (4).

A pair of subsets D1 and D2 defined as above is called a pair of complementary
relative difference sets. These have been referred to as relative difference families in [1].
One may also think of these objects as a generalization of abelian (4t, 2, 4t, 2t)-difference
sets.

Theorem 3.1 shows that the existence of a difference set in any group containing an
abelian subgroup K of index 2 gives rise to a pair of complementary relative difference
sets and thus a non-abelian difference set in gr(K , τ ). In [22], this transformation has been
carried out from the group G × Q8 into a semidirect product G(Q8) (definition below) of
G with Q8: Here

Q8 = 〈x, y : x4 = y4 = 1, x2 = y2, y−1xy = x−1〉

is the quaternion group, G is an abelian group of order t , the forbidden subgroup is H = {1}×
〈x2〉 and K = G × 〈x〉 is an abelian group of order 4t . The semidirect product G(Q8) is

G(Q8) := 〈K , y : y2 = x2, y−1ky = k−1 for all k ∈ K 〉 = gr(K , x2).
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It should be mentioned that difference sets in G × Q8 are equivalent to Williamson
matrices with G-invariant matrices A, B, C and D, see [2] and [12]: A Williamson matrix
is a special type of Hadamard matrix of the form




A B C D

−B A −D C

−C D A −B

−D −C B A




where A, B, C and D are ±1-matrices of size t × t . Moreover, a matrix M = (m(x,y)) is
called G-invariant if the rows and columns are labeled by elements from G and m(x,y) =
m(xh,yh) for all x, y, h ∈ G. If G is cyclic these are the well known circulant matrices.

If t is odd the group Zt (Q8) is dicyclic, therefore Williamson matrices with circulant
pieces of odd size can be used to verify Ito’s conjecture for Hadamard matrices of size 4t ,
t odd. In view of Theorem 4.2 below which generalizes Theorem 3.2 in [22] it suffices to
construct relative difference sets in dicyclic groups of order 8t with t odd in order to check
Ito’s conjecture: It is always possible to multiply t by a power of 2. It is worth noting (see
[15, 22]) that dicyclic relative difference sets exist which do not follow from Williamson
matrices: The existence of Williamson matrices with circulant submatrices implies the exis-
tence of dicyclic difference sets. There is no construction (known) to construct Williamson
matrices from dicyclic difference sets.

Using Theorem 3.1, we may rephrase Ito’s conjecture as follows:

Conjecture 1 Let K be a cyclic group of order 4t . Then K contains a pair D1 and D2 of
complementary relative difference sets.

Note that any abelian group of order 4t with a pair of complementary relative difference
sets gives rise to a Hadamard matrix. Therefore we may weaken Ito’s conjecture:

Conjecture 2 For all integers 4t there exists an abelian group K of order 4t containing a
pair of complementary relative difference sets.

We do not know whether this conjecture is easier to prove than the original one; but it
also suffices to settle the long-standing Hadamard matrix conjecture.

4. Constructions of complementary relative difference sets

Solutions for (4) can be constructed from Golay complementary pairs. A Golay comple-
mentary pair of degree 2t − 1 is a pair of polynomials f, g ∈ Z[x] of degree 2t − 1. The
length of the corresponding pair of sequences is 2t . The coefficients of f and g are ±1 and
they satisfy

f (x) f (x−1) + g(x)g(x−1) = 4t in Z[x, x−1].
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Let K = 〈a : a4t = 1〉 be the cyclic group of order 4t . We define 4 subsets of K :

F+ := {ai : 0 ≤ i ≤ 2t − 1, coefficient of xi in f is + 1}
F− := {ai : 0 ≤ i ≤ 2t − 1, coefficient of xi in f is − 1}
G+ := {ai : 0 ≤ i ≤ 2t − 1, coefficient of xi in g is + 1}
G− := {ai : 0 ≤ i ≤ 2t − 1, coefficient of xi in g is − 1}.

Moreover, we put

F := F+ + a2t F−
and G := G+ + a2t G−

in Z[K ]. We claim that

FF(−1) + GG(−1) = 4t + 2t (K − 〈a2t 〉), (7)

therefore F, G is a pair of complementary relative difference sets which gives rise to a
relative (4t, 2, 4t, 2t)-difference sets in gr(K, a2t ). Equation (7) can be easily seen using
characters, see [22]. Since it is not necessary for the purpose of this paper to introduce
characters, we give a more elementary though less elegant argument:

Using the definition of Golay complementary pairs and the isomorphism Z[K ] ∼= Z[x]/
(x4t − 1) we obtain

(F+ − F−)(F+ − F−)(−1) + (G+ − G−)(G+ − G−)(−1) = 4t in Z[K ]

hence

F+F (−1)
+ + F−F (−1)

− + G+G(−1)
+ + G−G(−1)

− = 4t + F+F (−1)
−

+ F−F (−1)
+ + G+G(−1)

− + G−G(−1)
+ =: 4t + A.

This shows

(F+ + a2t F−)(F+ + a2t F−)(−1) + (G+ + a2t G−)(G+ + a2t G−)(−1)

= 4t + A + a2t A.

Moreover,

4t + 2A = (F+ + F−)(F+ + F−)(−1) + (G+ + G−)(G+ + G−)(−1)

= 4t + 2((2t − 1)a + (2t − 2)a2 + · · · + a2t−1

+ a2t+1 + 2a2t+2 + · · · + (2t − 1)a4t−1) (8)
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since

F+ + F− = G+ + G− =
2t−1∑
i=0

ai .

Eq. (8) shows

A + a2t A = 2t (K − 〈a2t 〉)

and the proof of (7) is complete.
The same argument actually proves slightly more which we summarize in the next

Theorem:

Theorem 4.1 Let K be an abelian group of order 4t , let H be a subgroup of K with |H | = 2.
Moreover, let T be a complete set of coset representatives of H in K , i.e., |T | = 2t . If there
are elements

F :=
∑
t∈T

ft t

G :=
∑
t∈T

gt t

in Z[K ] with coefficients ft , gt ∈ {±1} such that

FF(−1) + GG(−1) = 4t in Z[K ]

then there exists a pair of complementary relative difference sets in K .

Golay complementary pairs of degree 2t − 1 exist whenever

t = 2r · 10 s · 26u

and it is often conjectured that pairs of other length cannot exist, see [11].
There is a nice recursive construction of relative difference sets in dicyclic groups using

Golay complementary pairs ([22], Theorem 6). Actually, the construction yields comple-
mentary relative difference sets in cyclic groups. We show that this construction can be
generalized to non-cyclic groups as well.

Theorem 4.2 Let M be an abelian group of order 8tt′. Let K be a subgroup of order 4t
such that M/K is cyclic of order 2t ′. If there is a Golay complementary pair of degree 2t ′−1
and if K contains complementary relative difference sets then M contains complementary
relative difference sets, too.
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Proof: Let F and G denote the pair of complementary relative difference sets in K relative
to H = {1, τ }. Instead of F and G we consider F∗ = 2F − K and G∗ = 2G − K :

F∗F∗(−1) + G∗G∗(−1) = 16t + 8t (K − H) − 8t K = 8t (1 − τ).

Conversely, a pair of elements F∗, G∗ in Z[K ] with coefficients ±1 which satisfies

F∗F∗(−1) + G∗G∗(−1) = 8t (1 − τ) (9)

gives rise to a pair of complementary relative difference sets (replace −1 by 0).
Now let h be an element in M such that hK has order 2t ′ in M/K . If f = ∑

fi x i and
g = ∑

gi xi is the Golay complementary pair, we put F ′ := ∑
fi hi and G ′ := ∑

gi hi in
Z[M]. We define

S∗ := 1

2

[
F∗(F ′ + G ′) + G∗(−1)

(F ′ − G ′)
]
,

T ∗ := 1

2

[
G∗(F ′ + G ′) + F∗(−1)

(−F ′ + G ′)
]

in Z[M]. It is not difficult to see that S∗ and T ∗ both have coefficients ±1. We compute

4
[
S∗S∗(−1) + T ∗T ∗(−1)

] = (
F∗F∗(−1) + (

G∗G∗(−1)
)(

(F ′ + G ′)(F ′ + G ′)(−1)
)

+ (F ′ − G ′)(F ′ − G ′)(−1)
)

= 8t (1 − τ)8m ′

= 4 · (16tt′(1 − τ)).

This shows that S∗ and T ∗ is a pair of complementary relative difference sets in M
(when −1 is replaced by 0). ✷

The bad news about this recursive construction is that it gives Hadamard matrices of
order 8t t ′ using a matrix of size 4t and a Golay pair (which itself gives rise to a Hadamard
matrix of size 4t ′). It would be much nicer to have a construction of Hadamard matrices of
size 4tt′ using matrices of size 4t and 4t ′.

5. Skew relative difference sets and conference matrices

We now come to the investigation of conference matrices and the corresponding difference
sets with parameters (2). The following proposition is obvious and contained in [22]:

Proposition 5.1 Let K be an abelian group of order 4t and H = {1, τ } a subgroup of
order 2. If D is a (2t, 2, 2t − 1, t − 1)-difference set relative to H and if D ∩ H = ∅ (which
we may assume without loss of generality, see [21]) then D1 = D ∪ {1} and D2 = D ∪ {τ }
is a pair of complementary relative difference sets in K .
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This proposition shows that D ∪ {1} and D ∪ {τ } can be used to construct Hadamard
matrices via Theorem 3.1, therefore the two pieces can be used to construct a (4t, 2, 4t, 2t)-
difference set in gr(K , τ ). The question arises whether it is also possible to construct a
(2t, 2, 2t, t)-difference set directly. A candidate for such a difference set is the set D ∪ {1}.
We cannot expect that D ∪ {1} always is a difference set:

(D + 1)(D + 1)(−1) = DD(−1) + D + D(−1) + 1

= 2t + (t − 1)(K − H) + D + D(−1).

This proves

Proposition 5.2 Let D be a (2t, 2, 2t −1, t −1)-difference set in a not necessarily abelian
group K relative to a normal subgroup H and D ∩ H = ∅. Then D ∪ {1} is a (2t, 2, 2t, t)-
difference set in K relative to H if and only if

D + D(−1) = K − H. (10)

Difference sets (not necessarily with the parameters (2)) satisfying (10) are called skew
relative difference sets.

Proposition 5.3 If G contains a skew difference set D relative to H then |H | ≤ 2.

Proof: Since D intersects each coset = H of H in G at most once, we have

|G| − |H |
2

= |D| ≤ |G|
|H | − 1 = |G| − |H |

|H | .

This shows |H | ≤ 2. ✷

When |H | = 1, these are classical skew Hadamard difference sets and have been studied
in [17, 18] and [23]. However, when |H | = 2, these are a new type of relative difference
sets with parameters (2t, 2, 2t − 1, t − 1). If H is normal in G then D ∪ {1} gives rise to
a class regular (2t, 2, 2t, t)-design, hence a Hadamard matrix of size 2t , which shows that
t = 1 or t is even. We call these skew Hadamard relative difference sets.

The following theorem and its corollary are contained in [15]. It seems that this non-
abelian version of Theorem 4.1.1 in [19] is not well known. Therefore we sketch the proof
of Ito.

Theorem 5.4 Let D be a relative (2t, 2, 2t, t)-difference set in G relative to a normal
subgroup H of order 2. If t is even, the Sylow 2-subgroup S of G cannot be cyclic.

Proof: Write |G| = 2k · m where m is odd and k ≥ 3. Assume that the Sylow 2-subgroup
of G is cyclic, and let α be a generator of S. We have H = {α2k−1

, 1}. Let T be a transversal
of the cosets of S in G. Then G = ⋃

β∈T βS. We define

D(β) := βS ∩ D
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and we define γ (i) ∈ H to be the element in N such that βαiγ (i) ∈ D. Note that γ (i) is
well defined since D meets each coset of H precisely once. We have

D(β) = {βαiγ (i) : i = 0, . . . , 2k−1 − 1}.

We claim that |D(β) ∩ Dα| is odd which shows that |D ∩ Dα| is odd, a contradiction to t
being even. Note that

D(β) ∩ Dα = βS ∩ D ∩ Dα = (βS ∩ D) ∩ (βS ∩ Dα) = D(β) ∩ D(β)α

which shows that we have to prove |D(β) ∩ D(β)α| is odd. We assume

γ (0) = γ (2k−1 − 1), (11)

the case of inequality is similar. For i = 0, . . . , 2k−1 − 2, we have

βα jγ ( j)α ∈ D(β) ∩ D(β)α ⇐⇒ γ ( j + 1) = γ ( j)

which occurs for an odd number of j’s, j = 0, . . . 2k−1 − 2 in view of (11). Moreover,

βα2k−1−1γ (2k−1 − 1)α = βα2k
γ (0),

hence

βα2k−1−1γ (2k−1 − 1)α /∈ D(β) ∩ D(β)α. ✷

We note that this theorem is also contained in [13].
The following corollary shows where we have to look for skew relative difference sets.

Corollary 5.5 If a group G contains a skew relative difference set relative to a normal
subgroup H of order 2, then H is the unique subgroup of order 2 in G and the Sylow
2-subgroup of G is a generalized quaternion group.

Proof: Since the relative difference set is skew symmetric, G has no element of order 2
outside H , see (10). Since the Sylow 2-subgroup cannot be cyclic, it has to be a generalized
quaternion group. ✷

In order to use the results of the last section to search for skew relative difference sets, we
have to look for (4t, 2, 4t, 2t)-difference sets in gr(K , τ ) (see (6) for the definition of this
group) where K is abelian with a cyclic Sylow 2-subgroup and τ is the unique involution
in K .

Assume that D is a skew Hadamard relative difference set in gr(K , τ ) where K has a
cyclic Sylow 2-subgroup. We write D = D1 + D2γ where γ is an element in gr(K , τ )
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outside K with γ 2 = τ . Then it can be seen as before that D is a skew relative difference
set in gr(K , τ ) if and only if there are two subsets D1, D2 ⊂ K which satisfy

|D1| = 2t − 1, |D2| = 2t,

D1 + D(−1)
1 = K − 〈τ 〉, (12)

D1 D(−1)
1 + D2 D(−1)

2 = 4t − 1 + (2t − 1)(K − 〈τ 〉).

Moreover, if D1 and D2 satisfy the conditions above, then D1 + D2γ is the skew relative
difference set in gr(K , τ ). We have the following analogue of Theorem 3.1:

Theorem 5.6 Let K be an abelian group of order 4t with cyclic Sylow 2-subgroup. Let
H = {1, τ } be the unique subgroup of K of order 2. If K contains two subsets D1 and
D2 which satisfy the three conditions (12) then the group gr(K , τ ) contains both a skew
Hadamard relative (4t, 2, 4t − 1, 2t − 1)-difference set D := D1 ∪ D2γ relative to H and
a relative (4t, 2, 4t, 2t)-difference set D ∪ {1}.

Conversely, if gr(K , τ ) contains a skew Hadamard relative (4t, 2, 4t − 1, 2t − 1)-
difference set D relative to H = {1, τ }, then the subsets D1 = D ∩ K and D2 = Dγ −1 ∩ K
in K satisfy (12).

We note that the skew Hadamard relative difference sets in Theorem 5.6 immediately
gives rise to a pair of complementary relative difference sets in K and therefore to Hadamard
matrices.

The next theorem shows that we can construct such skew relative difference sets from
arbitrary abelian (4t, 2, 4t − 1, 2t − 1)-difference sets in G where G is an abelian group of
size 8t with cyclic Sylow 2-subgroup. Before we state this theorem some comments on the
existence of relative (n, 2, n − 1, n−2

2 )-difference sets are in order.
The set of elements α = 0 in Fq2 with α + αq = 1 forms a relative (q + 1, q − 1, q, 1)-

difference set R in the multiplicative group F
∗
q2 of Fq2 , i.e. in the cyclic group Zq2−1 of

order q2 − 1. These difference sets are called affine. If q is odd, the forbidden subgroup
H of order q − 1 has a subgroup N of order (q − 1)/2. It is not difficult to see that the
image of R under the projection epimorphism F

∗
q2 → F

∗
q2/N ∼= Z2(q+1) is a cyclic relative

(q + 1, 2, q,
q−1

2 )-difference set, see [20]. These are the only cyclic examples of relative
difference sets with parameters (2) and it is sometimes conjectured that no other examples
exist. The corresponding conference matrices are “negacyclic”. A systematic investigation
of negacyclic conference matrices is [10].

A weaker conjecture says that cyclic relative (n, 2, n − 1, n−2
2 )-difference sets exist only

if n − 1 is an odd prime power. A stronger conjecture states that for any difference set with
parameters (2), n − 1 must be a prime power. It is this conjecture which we disprove in the
next Theorem.

Theorem 5.7 Let G be an abelian group whose Sylow-2 subgroup is cyclic. Let K be the
unique subgroup of G of index 2. If G contains a (4t, 2, 4t − 1, 2t − 1)-relative difference
set, then the group gr(K , τ ) of order 8t and the group gr(G, τ ) of order 16t contain skew
Hadamard relative difference sets.
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Proof: Suppose D is a (4t, 2, 4t − 1, 2t − 1)-relative difference set in G relative to the
unique subgroup H = 〈τ 〉 of order 2 in G. By a multiplier theorem in [21], we may assume
that D satisfies D(4t−1) = τ D (this does not hold for relative (2t, 2, 2t −1, t −1)-difference
sets). Then obviously, D ∩ H = ∅. Let γ be a generator of the Sylow-2 subgroup of G.
Then G = K + γ K . Similarly D = D1 + γ D2, where D1 = D ∩ K and D2 = γ −1 D ∩ K .
Since |K | = 4t and D(4t−1) = τ D, we have D(−1)

1 = τ D1 and D(−1)
2 = τγ 2−4t D2. The

fact that D is a (4t, 2, 4t − 1, 2t − 1)-relative difference set implies that

D1 D(−1)
1 + D2 D(−1)

2 = (4t − 1) + (2t − 1)(K − H).

Also D(−1)
1 = τ D1 implies that D1 + D(−1)

1 = HD1 = K − H . Thus by (12) there is a skew
Hadamard relative difference set in gr(K , τ ).

If we set D′
1 = D1 + γ 1−2t D2 and D′

2 = 1 + D1 + τγ 1−2t D2, then D′
1 and D′

2 are subsets
of G and it is easy to verify that D′(−1)

1 + D′
1 = G − H and D′

1 D′(−1)
1 + D′

2 D′(−1)
2 =

(8t − 1) + (4t − 1)(G − H). So again by (12) there is a skew Hadamard relative difference
set in gr(G, τ ). ✷

Corollary 5.8 Difference sets with parameters (n, 2, n − 1, n−2
2 ) exist whenever n − 1

is a prime power or n
2 − 1 is a prime power ≡ 3 mod 4.

Unfortunately, we do not know a recursive construction for the skew Hadamard relative
difference sets constructed above.

We close this paper with the following question:

Question 5.9 Does every generalized quaternion group contain a skew Hadamard relative
difference set?
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