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Abstract. We obtain a few structural theorems for circulant weighing matrices whose weight is the square of a
prime number. Our results provide new schemes to search for these objects. We also establish the existence status
of several previously open cases of circulant weighing matrices. More specifically we show their nonexistence for
the parameter pairs (n, k) (here n is the order of the matrix and k its weight) = (147, 49), (125, 25), (200, 25),
(55, 25), (95, 25), (133, 49), (195, 25), (11w, 121) for w < 62.
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1. Introduction

A weighing matrix W = W (n, k) of order n with weight k is a square matrix of order n with
entries from {−1, 0, +1} such that

W W t = k In

where In is the n × n identity matrix and W t is the transpose of W .
A circulant weighing matrix, denoted by CW (n, k), is a weighing matrix W (n, k) in

which each row (except the first one) is obtained from its preceding row by a right cyclic
shift. We refer the reader to Geramita and Seberry [8] for more on weighing matrices and
related topics and to Arasu and Dillon [2] for circulant weighing matrices and a more general
configuration called perfect ternary array. The paper by Arasu and Dillon had quoted results
from the old version of this paper, but unfortunately we had found a mistake in the proof
of some results, [2, Theorems 4.6 and 4.7]. The corrected version of the results are stated
in this paper as Theorem 3.8 and Proposition 3.9.

We label the columns of W by a cyclic group G of order n, generated by g (say). Define

P = {gi | W1,i = 1, i = 0, 1, . . . , n − 1}
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and

N = {gi | W1,i − 1, i = 0, 1, . . . , n − 1}.

Clearly |P|+|N | = k. It is well known that k must be a square (see Mullin [9] for instance),
say k = s2 for some integer s.

The following is easy to show (see Mullin [9], for instance).

Proposition 1.1 With notations above, for a CW(n, s2),

{|P|, |N |} =
{

s2 + s

2
,

s2 − s

2

}

The following composition theorem is well known (see Arasu and Seberry [6], for
instance).

Theorem 1.2 Suppose that there exist CW(n1, k) and CW(n2, l) with gcd(n1, n2) = 1.
Then there exists

(i) a CW (mn1, k), for all positive integers m, and
(ii) a CW (n1n2, kl).

The orders n for circulant weighing matrices have been determined completely for weights
4 and 9.

Theorem 1.3 (Eades and Hain [7]) A CW (n, 4) exists if and only if 2 | n or 7 | n.

Theorem 1.4 (Strassler [11] and Arasu et al. [5]) A CW (n, 9) exists if and only if 13 | n
or 24 | n.

Recently, Arasu [1] has proved a reduction theorem for circulant weighing matrices
based on the “self-conjugacy” assumption. In this paper we prove some reduction theorems
for CW(n, p2r ) and CW(n, p2) without the ”self-conjugacy” assumption. Also we prove a
few structural theorems for CW(n, p2) where p is a prime. Our results provide some new
strategies to construct new circulant weighing matrices. As consequences of our theorems
we establish the nonexistence of several previously open CW(n, k) for a number of parameter
pairs (n, k).

2. Algebraic preliminaries

For a multiplicatively written group G we let Z[G] denote the group ring of G over Z. We will
consider only abelian (in fact, only cyclic) groups. A character χ of G is a homomorphism
from G to the multiplicative group of complex numbers. We extend this linearly to Z[G]
obtaining a ring homomorphism from Z[G] to C.
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For S ⊂ G we also let S denote the element
∑

g∈S g of Z[G]. For A = ∑
g∈G agg ∈ Z[G]

and t ∈ Z, we define A(t) = ∑
g∈G aggt . Also, for a subgroup H of G, we say that A ∈ Z[H ]

if the support of A is contained in H .
If W = W (n, k) is a circulant weighing matrix and P and N are as in Section 1, then it

is easy to see that in Z[G],

(P − N )(P − N )(−1) = k.

We close this section by quoting a few results from Arasu and Ma ([3] and [4]). In the
following, we use ζv to denote the complex vth root of unity e2π

√−1/v .

Proposition 2.1 Let G = 〈α〉 × H be an abelian group of exponentv = uw where o(α) = u,

exp(H) = w and (u, w) = 1. Suppose A ∈ Z[G] and σ ∈ Gal (Q(ζv)/Q) such that

(i) χ(A)χ(A) = n for all character χ of G such that χ(α) = ζu, where n is an integer
relatively prime to w; and

(ii) σ fixes every prime ideal divisor of nZ[ζv].

If σ(ζv) = ζ t
v then

A(t) = ±β A +
r∑

i=1

〈αu/pi 〉Xi

where β ∈ G, X1, X2, . . . , Xr ∈ Z[G] and p1, p2, . . . , pr are all prime divisors of u.

Proposition 2.2 Let G = 〈α〉 × H be an abelian group of exponent v = psw where p
is an odd prime, (p(p − 1), w) = 1, o(α) = ps and exp(H) = w. Suppose A ∈ Z[G]
satisfies χ(A)χ(A) = p2r for all characters χ of G which are nonprincipal on 〈α ps−1〉.
Then A = αc X0 + 〈α ps−1〉X1 where X1 ∈ Z[G], X0 ∈ Z[H ] and X0 X (−1)

0 = p2r .

Proposition 2.3 Let G = 〈α〉 × H be an abelian group of exponent v = psw where p
is an odd prime, o(α) = ps, exp(H) = w, s ≥ 2 and p � w. Let t be an integer such that
t ≡ 1 + ps−1 mod ps and t ≡ 1 mod w. If A ∈ Z[G] satisfies

(i) χ(A)χ(A) = n for all characters χ of G which are nonprincipal on P = 〈α ps−1〉, where
n is relatively prime to w; and

(ii) σ : ζv �→ ζ t
v fixes every prime ideal divisor of nZ [ζv],

then

A = αc(X0 + PX1)

where X0 ∈ Z[〈α p〉 × H ] and the support of X1 is contained in G\(〈α p〉 × H), and hence

(α−c A)(t) = α−c A.
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3. Main results

Theorem 3.1 Let G = 〈α〉 × H where o(α) = ps, exp(H) = w, (p(p − 1), w) = 1 and
p is a prime greater than 3. If A ∈ Z[G] satisfies AA(−1) = p2r and the coefficients of A
are 0, ±1, then there exists an integer b such that αb A ∈ Z[H ].

Proof: By Proposition 2.2, there exists an integer b such that αb A = X0 + 〈α ps−1〉X1

where X0 ∈ Z[H ] and X1 ∈ Z[G]. Since A has 0, ±1 coefficients, we can rewrite αb A as

αb A = B + (〈
α ps−1 〉 − 1

)
C + (〈

α ps−1 〉 − 2
)
D + 〈

α ps−1 〉
E

where the elements of the supports of B, C , D, E are in different cosets of 〈α ps−1〉. The
coefficient of α ps−1

in AA(−1) is equal to

(p − 2) |support (C)| + (p − 4) |support (D)| + p |support (E)|

which can never be zero unless C = D = E = 0. ✷

Application of Theorem 3.1 CW(n, k) does not exist for the pairs (n, k) = (55, 25), (95,
25), (133, 49), (195, 25).

Lemma 3.2 Let G = 〈α〉 × H be an abelian group of exponent v = psw where p is
an odd prime, o(α) = ps, exp(H) = w and (p, w) = 1. Suppose A ∈ Z[G] such that
χ(A)χ(A) = p2r for all characters χ of G such that χ(α) = ζps . Let t be a primitive root
modulo ps and t ≡ 1 mod w. Then there exists an integer b such that

(αb A)(t) = βαb A + 〈
α ps−1 〉

X

where β ∈ H, and o(β) | (p − 1, w) and X ∈ Z[G].

Proof: Let ρ : Z[G] → Z[ζps ][H ] be a ring homomorphism such that ρ(α) = ζps and
ρ(h) = h for all h ∈ H . Let σ ∈ Gal (Q(ζpsw)/Q) such that σ(ζpsw) = ζ t

psw. Note that σ

fixes every prime ideal divisor of pZ[ζpsw] (see [10, Result 1.2.7]). By Proposition 2.1 we
have

ρ(A)σ = ±βζ a
ps ρ(A) (1)

for some β ∈ H . Since ρ(A) = ρ(A)σ
ps−1(p−1) = β ps−1(p−1)ρ(A), we have o(β) | (p−1, w).

Let χ0 be the principal character of H . Then χ0(ρ(A)) = εζ c
ps p where ε = ±1. Applying

χ0 to (1), we obtain ζ tc
p = ±ζ a+c

p . Thus (1) can be rewritten as

[
ζ b

ps ρ(A)
]σ = βζ b

ps ρ(A)

where b = −c. This implies that (αb A)(t) = βαb A + 〈α ps−1〉 X for some X ∈ Z[G]. ✷
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Lemma 3.3 Let G = 〈α〉 × H where o(α) = p, exp(H) = w, (p, w) = 1 and p is an
odd prime. Let t be a primitive root modulo p and t ≡ 1 mod w. Suppose A ∈ Z[G] such
that A(t) = β A for some β ∈ H. Let m = o(β), {h1, h2, . . . , hv} be a complete set of coset
representatives of 〈β〉 in H and Q j = {αt i

β j−i | i = 0, 1, . . . , p−2} for j = 0, 1, . . . , m−1.
Then

A = 〈β〉
v∑

k=1

akhk +
m−1∑
j=0

v∑
k=1

bjk Q j hk

where ak and bjk are integers.

Proof: In A, the coefficient of β j hk is the same as β j+1hk ; and the coefficient of αt i
β j hk

is the same as αt i−1
β j+1hk for all i, j, k. ✷

Lemma 3.4 Let G = 〈α〉 × H where o(α) = p, exp(H) = w, (p, w) = 1 and p is an
odd prime. Then there does not exist any element A ∈ Z[G] such that AA(−1) = p2 − p〈α〉
and the coefficients of A are 0, ±1.

Proof: Assume there exits A ∈ Z[G] such that AA(−1) = p2 − p〈α〉 and the coefficients
of A are 0, ±1. Let t be a primitive root modulo p and t ≡ 1 mod w. By Lemma 3.2, there
exists an integer b such that

(αb A)(t) = αbβ A + 〈α〉X (2)

for some β ∈ H and X ∈ Z[G] where m = o(β) is a divisor of p − 1. Since χ(A) = 0 for
all characters χ of G which are principal on 〈α〉, we have 〈α〉A = 0. By multiplying both
sides of (2) by 〈α〉, we have 〈α〉X = 0 and hence (αb A)(t) = αbβ A.

Let {h1, h2, . . . , hv} be a complete set of coset representatives of 〈β〉 in H and Q j =
{αt i

β j−i | i = 0, 1, . . . , p − 2} for j = 0, 1, . . . , m − 1. By Lemma 3.3,

αb A = 〈β〉
v∑

k=1

akhk +
m−1∑
j=0

v∑
k=1

b jk Q j hk (3)

where ak , b jk = 0, ±1. Since 〈α〉Q j = [(p − 1)/m]〈α〉〈β〉, by multiplying both sides of
(3) by 〈α〉, we get

p − 1

m

m−1∑
j=0

b jk = −ak

for all k. So either m = p − 1 or ak = 0 for all k. Note that 〈β〉Q j = 〈β〉(〈α〉 − 1). If
ak = 0 for all k, then

〈β〉αb A = m〈β〉
v∑

k=1

akhk + 〈β〉(〈α〉 − 1)

v∑
k=1

m−1∑
j=0

b jkhk = 0

which violates the assumption AA(−1) = p2 − p〈α〉. So we have m = p − 1.
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Let x1 be the number of +1 coefficients in A and x2 be the number of −1 coefficients in A.
By AA(−1) = p2 − p〈α〉, we have x1 + x2 = p2 − p and by 〈α〉A = 0, we have x1 − x2 = 0.
Hence x1 = x2 = p(p − 1)/2. By (3), since o(β) = m = p − 1 and |Q j | = p − 1, x1 and
x2 must be divisible by p − 1 which is impossible. ✷

Lemma 3.5 Let G = 〈α〉 × H where o(α) = p, exp(H) = w, (p, w) = 1 and p is an
odd prime. Let t be a primitive root modulo p such that t ≡ 1 mod w. If A ∈ Z[G] satisfies
AA(−1) = p2, then there exist an integer b such that

(αb A)(t) = βαb A + ε(1 − β)〈α〉g

where ε = ±1, g, β ∈ H and o(β) | (p − 1, w).

Proof: By Lemma 3.2,

(αb A)(t) = βαb A + 〈α〉X (4)

for some X ∈ Z[G]. Let τ : G → G/〈α〉 be the natural epimorphism. Then τ(A(t)) = τ(A)

and hence by (4),

(1 − β̄)τ (A) = pτ(X)

where β̄ = τ(β). Since τ(A)τ (A)(−1) = p2, we have τ(X)τ (X)(−1) = 2 − β̄ − β̄−1. If
β = 1, then τ(X) = 0 and hence 〈α〉X = 0. Assume β �= 1, then the coefficient of the
identity element of τ(X)τ (X)(−1) is 2 which implies the support of τ(X) has exactly two
elements. Hence it is not hard to see that τ(X) = ε(1 − β̄)g′, where ε = ±1, for some
g′ ∈ G/〈α〉. Thus 〈α〉X = ε(1 − β)〈α〉g where τ(g) = g′. ✷

Lemma 3.6 Use the notation in Lemma 3.5. In addition, assume the coefficients of A are
0, ±1. Let m = o(β) and let y0 be the coefficient of the identity element in τ(εg−1αb A)

where τ : G → G/〈α〉 is the natural epimorphism. Then

(i) p(m−2)

m ≤ y0 < p; and
(ii) if m > 2, then y0 ≡ 1 mod m and m2 ≤ 2(p − 1).

Proof: Let A′ = εg−1αb A and {h1 = 1, h2, . . . , hv} be a complete set of coset represen-
tatives of 〈β〉 in H . From Lemma 3.5, (A′ − 〈α〉)(t) = β(A′ − 〈α〉). So by Lemma 3.3,

A′ − 〈α〉 = 〈β〉
v∑

k=1

akhk +
m−1∑
j=0

v∑
k=1

b jk Q j hk (5)

where ak , b jk = 0, ±1 (by comparing the coefficients of βhk and αt j−1
βhk in both sides of

(5)). Let x1 be the number of +1 coefficients in A′ and x2 be the number of −1 coefficients
in A′. By Proposition 1.1, {x1, x2} = {(p2 − p)/2, (p2 + p)/2}. On the other hand, by
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comparing the coefficients of h1 and αt j
h1 in both sides of (5), we find that the coefficients

of αi , 0 ≤ i < p−1, in A′ can only be 0 or 1. Thus y0 is equal to the number of i, 0 ≤ i < p−1,
such that the coefficient of αi in A′ is 1. By (5), x1 − y0 ≡ 0 mod m and x2 + p − y0 ≡ 0
mod m. Since p ≡ 1 mod m, if m > 2, then x1 = (p2 + p)/2, x2 = (p2 − p)/2 and y0 ≡ 1
mod m.

Let β̄ = τ(β), h̄k = τ(hk). Since τ(Q j ) = [(p − 1)/m]〈β̄〉,

τ(A′) = p + 〈β̄〉
v∑

k=1

yk h̄k

where yk = ak + ∑m
j=0 b jk . Since τ(A′)τ (A′)(−1) = p2, we have

m
v∑

k=1

y2
k = −2py1.

So we must have my2
1 ≤ −2py1 which implies −2p/m ≤ y1 ≤ 0. Suppose y1 = 0. Then

yk = 0 for all k. Hence τ(A′) = p and it means 〈α〉A′ = p〈α〉. But this implies (A′ − 〈α〉)
(A′ − 〈α〉)(−1) = p2 − p〈α〉 which is impossible by Lemma 3.4. So (i) follows because
y0 = p + y1.

If m > 2, then by −2p/m ≤ y1 < 0 and y1 = y0 − p ≡ 0 mod m, we have m2 ≤ 2p.
Since p ≡ 1 mod, m, m2 �= 2p, 2p − 1. ✷

Lemma 3.7 Let G = 〈α〉 × H where o(α) = ps, exp(H) = w, (p, w) = 1 and p is
a prime greater than 3. Let t be a primitive root modulo ps such that t ≡ 1 mod w. If
A ∈ Z[G] satisfies A(t) = A, AA(−1) = n, for some integer n, and the coefficients of A
are chosen from {0, ±1, . . . ,±1(p − 3)/2}, then A ∈ Z[H ].

Proof: The condition A(t) = A implies A = X0 + 〈α〉X1 for some X0 ∈ Z[H ] and X1 ∈
Z[G]. The Lemma follows by a similar argument used in the proof of Theorem 3.1. ✷

Theorem 3.8 Let G = 〈α〉 × H where o(α) = p, exp(H) = w, (p, w) = 1 and p is a
prime greater than 7. If A ∈ Z[G] satisfies AA(−1) = p2 and the coefficients of A are 0,

±1, then either there exists an integer b such that αb A ∈ Z[H ] or

εh A =
[

1 + (1 − β)

p−1
2 −1∑
i=0

αt2i

]
+ (1 + β)E + (1 − β)

p−2∑
i=0

(−1)iαt i
F (6)

where ε = ±1, h ∈ G, β ∈ H, o(β) = 2, E, F ∈ Z[H ] and t is a primitive root modulo p.

Proof: Let t be a primitive root modulo p such that t ≡ 1 mod w. By Lemma 3.5, there
exists an integer b such that

(αb A)(t) = βαb A + ε(1 − β)〈α〉g
where β, g ∈ H, o(β) | (p − 1, w) and ε = ±1. If β = 1, then by Lemma 3.7, αb A ∈ Z[H ].
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Assume β �= 1. Let m = o(β) and let {h1 = 1, h2, . . . , hv} be a complete set of coset
representatives of 〈β〉 in H . By Lemma 3.3, there exists an integer b such that

εg−1αb A − 〈α〉 = 〈β〉
u∑

k=1

akhk +
m−1∑
j=0

v∑
k=1

b jk Q j hk

where ak, b jk = 0, ±1. Let κ : G → G/〈β〉 be the natural epimorphism and B = κ(εg−1αb A).
Note that B(t) = B and

B = 〈α〉 + m
u∑

k=1

akh̄k + +(〈ᾱ〉 − 1)

v∑
k=1

(
m−1∑
j=0

b jk

)
h̄k

where ᾱ = κ(α) and h̄k = κ(hk). Since p > 7, by Lemma 3.6,

m <
p − 1

2
. (7)

By Lemma 3.7, B ∈ Z[H/〈β〉]. So we have
∑m−1

j=0 b j1 = −1 and
∑m−1

j=0 b jk = 0 for all
k ≥ 2.

Suppose m = 2. Then

〈α〉 +
m−1∑
j=0

b j1 Q j = 〈α〉 − Q1 + b01(Q0 − Q1)

=
[

1 + (1 − β)

p−1
2 −1∑
i=0

αt2i

]
+ b01(1 − β)

p−2∑
i=0

(−1)iαt i

and

m−1∑
j=0

b jk Q j = b0k(Q0 − Q1) = b0k(1 − β)

p−2∑
i=0

(−1)iαt i

for k ≥ 2. So (6) follows with E = ∑v
i=1 akhk and F = ∑v

i=1 b0khk .
Assume m > 2. We can write B as B = 1 + mC where C = ∑v

k=1 akh̄k .
Since BB(−1) = p2, we have

mCC (−1) + (C + C (−1)) = p2 − 1

m

and C + C (−1) ≡ (p2 − 1)/m mod m. Note that the coefficients of C + C (−1) can only be
0, ±1, ±2. Thus either

C + C (−1) = 0 and CC(−1) = (p2 − 1)/m2
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or

C + C (−1) = ±2 and CC(−1) = (p2 ∓ 2m − 1)/m2.

Let χ0 be the principal character of H/〈β〉. Then either

χ0(C) = 0 and χ0(C)2 = (p2 − 1)/m2

or

χ0(C) = ±1 and χ0(C)2 = (p2 ∓ 2m − 1)/m2.

The first case is impossible. The only possible solution for the second case is m = p ∓ 1
which violates (7). ✷

The following proposition is immediate from Theorem 3.8.

Proposition 3.9 A in Eq. (6) satisfies AA(−1) = p2 if and only if

(a) (1 + 2κ(E))(1 + 2κ(E)(−1)) = p2 where κ : H → H/〈β〉 is the natural epimorphism;
and

(b) (1 + 2χ(F)) (1 + 2χ(F)) = p for all characters χ of H which are non-principal on
〈β〉.

Proof: The proposition follows by computing the values of χ ′(A) for all characters χ ′ of
G and the fact that

χ ′


 p−1

2 −1∑
i=0

αt2i


 =

{
(−1 ± √

p∗)/2 if χ ′ is nonprincipal on 〈α〉
(p − 1)/2 if χ ′ is principal on 〈α〉

and

χ ′
(

p−2∑
i=0

(−1)iαt i

)
=

{
±√

p∗ if χ ′ is nonprincipal on 〈α〉
0 if χ ′ is principal on 〈α〉

where

p∗ = (−1)(p−1)/2 p. ✷

Note the coefficients of κ(E) and F are 0, ±1 and the elements of the support of F are
in different cosets of 〈β〉. Also, the coefficient of the identity element in 1 + 2κ(E) is ±1.

Corollary 3.10 Let G, H, α and A be as in Theorem 3.8. If w is odd or w is strictly
divisible by 2 or w ≤ (p2 + 1)/2, then there exists an integer b such that αb A ∈ Z[H ].
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Proof: The case w is odd follows by Theorem 3.8. If w ≤ (p2+1)/2, then (1+2κ(E)) (1+
2κ(E)(−1)) = p2 is impossible because the coefficient of the identity element in the left-
hand-side is at most 1 + 4[(w/2) − 1]. If w = 2m for some odd number m, then (1 +
2χ(F))(1 + 2χ(F)) cannot be p if χ is a character of order 2. ✷

Application of Corollary 3.10 CW(n, k) does not exist for the pairs (n, k) = (11w, 121)

for all w < 62.

Theorem 3.11 Let G = 〈α〉×H where o(α) = ps, p is an odd prime, exp(H) = w, s > 1
and p, w are relatively prime. If A ∈ Z[G] satisfies AA(−1) = p2 and the coefficients of A
are 0, ±1, then there exists an integer b such that αb A is in Z[〈α ps−1〉 × H ].

Proof: Let P = 〈α ps−1〉. Applying Proposition 2.3 repeatedly, there exists an integer b
such that

αb A = B + PC

where B in Z[P × H ] and the support of C is contained in G\(P × H). Let τ : G → G/P
be the natural epimorphism. Then

τ(αb A) = τ(B) + pτ(C).

Since the coefficients of τ(αb A) τ (αb A)(−1) = p2, either τ(C) = 0 or τ(B) = 0 and
τ(C) = ±g for some g in G/P .

If τ(C) = 0, then PC = 0 and hence αb A = B is in Z[P × H ].
For the second case, PB = 0 and αb A = B ± Ph where h ∈ G\(P × H). Hence

B B(−1) = p2 − pP but this is impossible by Lemma 3.4. ✷

Application of Theorem 3.11 CW(n, k) does not exist for the pairs (n, k) = (147, 49),

(125, 25), (200, 25). Note that the existence of CW(200, 25) impies that of CW (40, 25),
which has been shown not to exist by Arasu and Linthicum (unpublished computer search).
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