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Abstract. We interpret geometrically a variant of the Robinson-Schensted correspondence which links Brauer
diagrams with updown tableaux, in the spirit of Steinberg’s result [32] on the original Robinson-Schensted corre-
spondence. Our result uses the variety of all (N , ω, V) where V is a complete flag in C2n, ω is a nondegenerate
alternating bilinear form on C2n, and N is a nilpotent element of the Lie algebra of the simultaneous stabilizer of
both ω and V, instead of Steinberg’s variety of (N , V, V′) where V and V′ are two complete flags in Cn and N is
a nilpotent element of the Lie algebra of the simultaneous stabilizer of both V and V′.
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1. Introduction

We will interpret the “updown analogue” of the Robinson-Schensted correspondence
(initially given by R. Stanley (see [33, Lemma 8.3 and the footnote on p. 60]), then
more generally by S. Sundaram ([33, Lemma 8.7] and [34]), and also later modified by T.
Roby ([22])) in the spirit of R. Steinberg’s result [32] for the original Robinson-Schensted
correspondence, namely by way of parametrizing the irreducible components of an alge-
braic variety in two ways. Although many variants of the Robinson-Schensted correspon-
dence have been devised by now, the only other analysis in this direction seems to have
been given by M. van Leeuwen [38] for his orthogonal and symplectic group versions.
(However, see Note 1 at the end.) In this section, we will briefly summarize the history of
the Robinson-Schensted correspondence and Steinberg’s interpretation, then introduce the
objects involved in the updown version, describing how the following sections are organized.
Let us express our gratitude to J. Matsuzawa, B. Srinivasan, S. Fomin, T. Kobayashi, T.
Oshima, K. Koike, Y. Tanaka, M. Yamaguchi, R. Stanley, D. Vogan, C. Krattenthaler, M.
van Leeuwen, J. Stembridge, T. Roby, R. Proctor, J. Stroomer, G. Benkart, N. Nakayama, M.
Saks, S. Sundaram, and G. Tesler for valuable comments and discussions which brought us
inspirations, encouragements and information. Finally we thank the referee for suggesting
many improvements on the preliminary manuscript.
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1.1. The original Robinson-Schensted correspondence

A partition λ is a nonincreasing sequence (λ1, λ2, . . . , λl) of positive integers, and l, also
denoted by l(λ), is called its length. Write |λ| for

∑l
i=1 λi . If λ is a partition and if |λ| = n,

then λ is called a partition of n, and we write λ � n. The Young diagram of λ is the subset
of N × N consisting of all (i, j) satisfying j � λi (called its cells), often denoted by λ itself
and visualized as in figure 1. The set of all partitions form a lattice, called Young’s lattice,
by containment of their Young diagrams. We write λ ⊂ µ for this partial order. In any poset
(	, ≺), we write x ≺̇ y if x � y and there is no z ∈ 	 such that x � z � y. In Young’s lattice,
λ ⊂̇ µ is equivalent to λ ⊂ µ and |µ| = |λ| + 1. A standard tableau of shape λ � n is a
labeling of the cells of λ by integers from 1 through n in such a way that the labels increase
along its rows from left to right, and along its columns from top to bottom. The label of
the cell (i, j) is denoted by T (i, j). The set of all standard tableaux of shape λ will be
denoted by STab(λ). The standard tableaux T of shape λ are in 1-1 correspondence with
the saturated chains of partitions ❡� = λ(0) ⊂̇ λ(1) ⊂̇ λ(2) ⊂̇ · · · ⊂̇ λ(n) = λ from ❡� to λ,
where λ(i) is determined from T as the set of cells having labels � i in T (see figure 2).

We denote the symmetric group of degree n by Sn . The Robinson-Schensted correspon-
dence, which associates with each w ∈ Sn a pair (P(w), Q(w)) of standard tableaux, both of
some shape λ � n which depends on w, was introduced initially by G. de B. Robinson [21]
in an attempt to give a proof of the Littlewood-Richardson rule in the representation theory

Figure 1. Young diagram of (4, 2, 2, 1).

Figure 2. An example of a standard tableau of shape (2, 2, 1).
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of the symmetric group, and later by C. Schensted [28] to analyze the longest increasing
subsequences in permutations. Its interesting combinatorial structure has then been exten-
sively studied by A. Lascoux and M.-P. Schützenberger, D. Knuth, C. Greene, S. Fomin, and
many others. A connection with left cells and right cells of the symmetric group was given
by D. Kazhdan and G. Lusztig, and a connection with the representations of a quantized
general linear Lie algebra was given by E. Date, M. Jimbo, and T. Miwa, which was among
what inspired a more general theory of crystal basis by M. Kashiwara.

1.2. Steinberg’s interpretation

Let Z denote the algebraic variety consisting of all triples (N , V, V′), where N is a nilpotent
n by n matrix and V and V′ are complete flags in Cn , such that the 1-parameter group
{exp t N | t ∈ C} fixes both V and V′. Here a complete flag V in an n-dimensional vector
space V is by definition a maximal chain in the lattice L(V ) of all linear subspaces of
V , ordered by containment, namely a sequence (Vi )

n
i=0 of subspaces of V such that 0 =

V0 ⊂̇ V1 ⊂̇ V2 ⊂̇ · · · ⊂̇ Vn = V , where W ⊂̇ W ′ means that W � W ′ and there is no
subspace W ′′ satisfying W � W ′′ � W ′ (which is equivalent to saying that W ⊂ W ′ and
dim W ′ = dim W + 1). Saying that {exp t N | t ∈ C} fixes V = (Vi ) is equivalent to saying
that N lies in the Lie algebra of the stabilizer of V in G, or that N maps each component
Vi of V into Vi itself. We also express this by calling V an N -stable flag.

Let Irr Z denote the set of irreducible components of Z . He gave two ways to parametrize
Irr Z : one by the permutations of n letters, and the other by the pairs of n-cell standard
tableaux (T, T ′) such that the shapes of T and T ′ are the same. This establishes a 1-
1 correspondence between Sn and

∐
λ�n STab(λ) × STab(λ), and he showed that this

coincides with the Robinson-Schensted correspondence. The way he parametrized Irr Z is
by giving a partition of Z into irreducible locally closed subvarieties of the same dimension.
Then the closures of these subvarieties constitute Irr Z by the following general argument.

Namely, in general, if Z is an algebraic variety over C, and if Z = ∐
α∈A Zα is a partition

of Z into a finite number of irreducible locally closed subvarieties of the same dimension
m, then Z = ⋃

α∈A Zα is the decomposition of Z into its irreducible components. One
sees this by noting the following two facts. First, each Zα is irreducible since each Zα

is irreducible. Secondly, for any α ∈ A, the union
⋃

β ∈ A
β �=α

Zβ of the closures of the other
pieces cannot contain the whole Zα (and hence Z ), since Zβ ∩ Zα ⊂ Zβ − Zβ has dimen-
sion strictly smaller than m for each β (�= α), and an irreducible variety cannot be covered
by a finite number of subvarieties of strictly lower dimensions.

Now let us return to Steinberg’s variety Z . The first partition of Z is given by looking
at the relative positions of the two complete flags. Namely, let πX×X denote the projec-
tion Z � (N , V, V′) �→ (V, V′) ∈ X × X , where X denotes the set of all complete flags
in Cn . The group G = GL(n, C) has a natural (transitive) action on X , and hence acts
diagonally on X × X . The Bruhat decomposition of G shows that X × X is partitioned
into the G-orbits Ow, w ∈ Sn (since Sn is the Weyl group of G), which are irreducible
locally closed subvarieties. Then the Zw = π−1

X×X (Ow), w ∈ Sn , are locally closed sub-
varieties into which Z is partitioned, and each piece Zw is actually irreducible because
it is a vector bundle over Ow. Their dimensions turn out to be all equal because the
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differences in dimension of the Ow are exactly complemented by the dimensions of the
fibers.

The second partition of Z is given by looking at the Jordan types of N restricted to the
subspaces constituting V and V′. Earlier, N. Spaltenstein [29] had studied the variety XN of
N -stable complete flags. An N -stable flag V = (Vi )

n
i=0 determines a sequence of partitions

(λ(i))n
i=0, where λ(i) is the Jordan type of N |Vi , namely the partition comprising the sizes

of the blocks of its Jordan canonical form. It is a saturated chain from ❡� to λ in Young’s
lattice, to which one can associate a standard tableau T of shape λ by the rule described in
Section 1.1. Let us call T the (N -) type (tableau) of V, and let X N ,T denote the collection
of all N -stable flags of type T . Spaltenstein showed that, for fixed N of Jordan type λ, the
X N ,T , T ∈ STab(λ), are irreducible locally closed subvarieties of the same dimension into
which X N is partitioned, so that their closures give the irreducible components of X N . Now,
for each pair (T, T ′) of standard tableaux of the same shape, let ZT,T ′ be the collection of
(N , V, V′) ∈ Z such that V and V′ have N -types T and T ′ respectively. It is a locally closed
subvariety of Z , and is irreducible since there is a surjective map G × X N0,T × X N0,T ′ →
ZT,T ′ , (g, V, V′) �→ (Ad(g)N0, g · V, g · V′), where N0 is a fixed nilpotent element of
Jordan type λ. Moreover, its dimension turns out to be independent of T and T ′. So the
partition of Z into the ZT,T ′ , (T, T ′) ∈ ∐

λ�n STab(λ)× STab(λ), has the desired property.
Steinberg gave a down-to-earth argument to show that the bijection determined by these

parametrizations coincides with the Robinson-Schensted correspondence. Here we follow a
result by M. Saks ([26, Theorems 3.1 and 3.2]) for posets, or a result obtained independently
by E. Gansner ([9, Theorem 2.1]) and Saks ([27, Theorem 5.16]) for acyclic digraphs. We use
the latter formulation, but we only state it for posets (which amount to “transitive” acyclic
digraphs). If (	, ≺) is a finite poset, we follow the terminology in [9] and call a matrix
A = (apq) with entries in C and with rows and columns indexed by 	 a generic matrix of
	 if (1) apq = 0 unless p � q , and (2) the apq , p � q, are algebraically independent over Q.
(Saks uses different terminology; see [26] and [27].) Their result says that the Jordan type
λ = (λ1, λ2, . . . , λl) of such a matrix A coincides with the Greene-Kleitman invariant of
	, namely λ1 equals the maximum number of elements of 	 contained in a chain, λ1 + λ2

equals the maximum number of elements of 	 contained in a union of two chains, and
so on. Now let w ∈ Sn , and let 	(w) = ({1, 2, . . . , n}, ≺w) be the poset in which p ≺w q
means p � q and w−1(p) � w−1(q). For each i , let 	i (w) (resp. 	i (w)) denote the subset
{1, 2, . . . , i} (resp. {w(1), w(2), . . . , w(i)}) with the induced poset structure. (Note that
these are order ideals in 	(w).) Let (e1, e2, . . . , en) denote the standard basis of Cn , and
for each w ∈ Sn let Vw = (V w

i ) ∈ X be defined by V w
i = ∑i

i ′ = 1 Cew(i ′). Then (Ve, Vw) is
a representative of Ow, where e denotes the identity element of Sn . The nilpotent matrices
stabilizing both Ve and Vw form a vector space with basis {E pq | p �w q}, where E pq denotes
the (p, q)th matrix unit, namely the matrix with 1 in the (p, q)th position and 0 in all other
positions. The generic matrices of 	(w) constitute a Zariski dense subset of this vector
space (it is easy to see that such a subset of an affine space is Zariski dense by induction on
the dimension). By the above result of Gansner and Saks, the Jordan type of A coincides
with the Greene-Kleitman invariant of 	(w). This in turn coincides with the common shape
of P(w) and Q(w) by a result of Greene [11]. Moreover, A |V e

i
(resp. A |V w

i
) is represented

by the submatrix of A with row and column indices in 	i (w) (resp. 	i (w)), which is again
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a generic matrix of 	i (w) (resp. 	i (w)). Applying Greene’s result for the subword of w

consisting of the letters � i (resp. the initial i letters of the word w), one sees that its Jordan
type coincides with the i th term of the chain of partitions corresponding to P(w) (resp.
Q(w)). This means that a dense subset of Zw lies in Z P(w),Q(w), hence Zw = Z P(w),Q(w) by
the arguments above.

1.3. The outline of our result

With preceding subsections as background, let us draw the outline of our case, namely the
case regarding the correspondence between Brauer diagrams and updown tableaux. After
providing some preliminaries, we quote the key results from later sections. They retain the
same numbers (such as Theorem 6.2) as appear later in their proper places. Some of the
statements are slightly rephrased, but the equivalence will be easily recognized.

Let n continue to denote a positive integer, and let D2n denote the set of Brauer diagrams
on {1, 2, . . . , 2n}, by which we mean graphs with vertex set {1, 2, . . . , 2n} and degree

sequence (

2n︷ ︸︸ ︷
1, 1, . . . , 1). R. Brauer [4] used them in the representation theory of orthogonal

groups, in the two-line notation as in figure 3(a), to represent the basis elements of what
is now called the Brauer algebra. We continue to denote the symmetric group of degree n
by Sn . It can be regarded as a subset of D2n consisting of the permutation diagrams like
figure 3(b). We write Brauer diagrams in one line as in figure 3(c).

The information carried by such a diagram is a set partition of {1, 2, . . . , 2n} into n
blocks of size 2. It also represents a coset in S2n/W (Bn), where W (Bn) is the Weyl group
of type Bn (also called the hyperoctahedral group or the group of signed permutations)
embedded into S2n as the centralizer of the element w0 = ( 1 2 ··· 2n

2n 2n−1 ··· 1 ). One sees this
by letting S2n act on D2n from the left by permuting the vertices. This action is transitive,
and W (Bn) is the stabilizer of the element d0 ∈D2n corresponding to the set partition
{{1, 2n}, {2, 2n − 1}, . . . , {n, n + 1}}.

For any i, 1 � i � 2n, put i ′ = w0(i).
For each d ∈D2n , we define an element wd of S2n , which will be a representative of

a coset in W (Bn)\S2n (rather than S2n/W (Bn) due to technical reasons) corresponding

Figure 3. An example of a Brauer diagram on 10 points.
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Figure 4. An example of wd and id .

to d . See figure 4. Let 1, 2, . . . , 2n be the original labeling of the vertices of d, which we
call the “position labeling”. We define another labeling of the vertices, which we call the
“d-labeling”, as follows: (1) label the n “left-end vertices” of the edges in d by 1, 2, . . . , n
from left to right; (2) for each i , 1 � i � n, let i ′ label the “right-end vertex” linked with
the “left-end vertex” having the d-label i ; and (3) define wd using the two-line notation,
by putting the position labels in the upper row, and putting the d-labels in the lower row.
Its inverse is easier to write down: if a1 < a2 < · · · < an are the position labels of the “left-
end vertices” of d , and if bi is the position label of the “right-end vertex” linked with the
left-end vertex at position ai , then w−1

d = ( 1 2 ··· n n+1 ··· 2n−1 2n
a1 a2 ··· an bn ··· b2 b1

). The element w−1
d

sends d0 to d by the action described above, so that w−1
d lies in the coset in S2n/W (Bn)

corresponding to d . Hence the set of wd , obtained from all d ∈D2n , constitutes a complete
set of representatives of the cosets in W (Bn)\S2n . We denote this set by D2n . It consists
of all w ∈ S2n that satisfy w−1(1) < w−1(2) < · · · < w−1(n) and w−1(i) < w−1(i ′) for all
1 � i � n.

People sometimes identify d ∈D2n with the fixed-point-free involution (a1 b1)(a2 b2) · · ·
(an bn) ∈ S2n , where the ai and the b j are determined from d as above (also see figure 4).
We denote this involution by id . Note that id is related to wd by id = w−1

d w0wd , and that the
collection of id constitutes the conjugacy class of w0, namely the class of the products of n
disjoint transpositions.

By an updown tableau of degree 2n we mean a sequence M = (µ(0), µ(1), µ(2), . . . , µ(2n))

of partitions satisfying (1) µ(0) = µ(2n) = ❡�, and (2) µ(i−1) ⊂̇ µ(i) or µ(i−1) ⊃̇ µ(i) for each
1 � i � 2n. Let M2n denote the set of all such sequences. The word updown tableau or
oscillating tableau has been used by several authors, including in the original appear-
ance in [2], with more generality. However, in this paper we only use the elements of
M2n , and the term updown tableau will only refer to an element of M2n . Our updown
tableaux generalize pairs of standard tableaux of the same shape, since if µ(i−1) ⊂̇ µ(i)

holds for all 1 � i � n (and accordingly µ(i−1) ⊃̇ µ(i) for all n + 1 � i � 2n), then the whole
sequence can be regarded as an encoding of two standard tableaux, one corresponding
to the saturated chain ❡� = µ(0) ⊂̇ µ(1) ⊂̇ · · · ⊂̇ µ(n), and the other corresponding to ❡� =
µ(2n) ⊂̇ µ(2n−1) ⊂̇ · · · ⊂̇ µ(n), both of shape µ(n).

The following variant of the Robinson-Schensted correspondence linking Brauer dia-
grams and updown tableaux was introduced by Stanley, Sundaram, and Roby (see the
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beginning of Section 1). Let d be a Brauer diagram in D2n , and let wd ∈ Dn ⊂ S2n be
the representative of the corresponding coset in W (Bn)\S2n defined above. Starting with
T (2n) = ❡�, apply the following instruction for k = 2n, 2n − 1, . . . , 1 successively in this
order, to obtain a sequence of tableaux T (2n−1), T (2n−1), . . . , T (0): If wd(k) is a primed
number i ′, then let T (k−1) be the tableau obtained by row-inserting i to T (k) (see [26], for
example, to see the meaning of row-insertion). If wd(k) is an unprimed number i , then
let T (k−1) be the tableau obtained by removing i from T (k) (where, as it is easy to see, it
occupies a corner). Then the output of the correspondence is the updown tableau of degree
2n obtained by listing the shapes of the tableaux T (i), 0 � i � 2n. They showed that this
defines a bijection from D2n to M2n .

It generalizes the original Robinson-Schensted correspondence, in the sense that the
permutation diagram representing w is mapped to the updown tableau encoding the pair
(P(w), Q(w)) in the sense described at the end of the previous paragraph.

The above description is what one would see by viewing the whole process of Roby’s
modified version through a mirror (a special mirror that maps each tableau without change
of orientation) put vertically either outside the right margin or the left margin of the
entire Brauer diagram. Due to a reflection symmetry of this bijection, viewing through
a mirror does not change the result (for example, see [22]). It is also essentially the
same as writing Sundaram’s version specialized to the empty ending shape (the inverse
map of it, since she takes M2n →D2n as the forward direction) with all shapes trans-
posed, namely using row insertion while she uses column insertion. This is essentially
the same description as the one used by M.-P. Delest, S. Dulucq, and L. Favreau in [5]
and [7], where they also show its reflection symmetry. An apparent difference is that,
at a right-end vertex, they insert the position label of the corresponding left-end vertex.
This incurs the same movement of letters and the same sequence of shapes as our de-
scription, since the insertion process is governed by the relative magnitudes of the letters
only.

Our purpose is to find an interpretation of this bijection in the spirit of Steinberg’s result,
namely by way of two different parameterizations of the irreducible components of some
algebraic variety. To do so, we first need to find some objects classified by D2n instead
of Sn . What we came upon was a list of combinatorial parametrizations of the orbits of
certain Lie groups acting on flag manifolds by T. Matsuki and T. Oshima [17]. One case
of their results amounts to the classification of what one could call the “relative positions”
of non-degenerate alternating bilinear forms and complete flags in C2n .

What we mean by this is as follows. Let V = C2n instead of Cn , and let

X = {complete flags in V (which is now C2n)}, and

Y = {nondegenerate alternating bilinear forms on V }.

Let G denote the group GL(2n, C). Then G naturally acts on X and Y , and each of these
actions is transitive. However, as we see below, the diagonal action of G on Y × X is not
transitive unless n = 1, and we say that the pairs (ω, V) and (ω′, V′) ∈ Y × X have the same
relative position if they lie in the same G-orbit, namely if there is an element g ∈ GL(2n, C)

such that ω′ = g∗ω and V′ = g · V.
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To state the classification, let us introduce some more notation. Let (e1, e2, . . . , e2n)

be the standard basis of V = C2n . We fix a “standard” symplectic form ω0 ∈ Y , which is

represented by the matrix J = ( O J1−J1 O ) with J1 =
( 1

1...
1

)
. In other words, ω0 is defined

by ω0(ei , e j ) = ω0(ei ′ , e j ′) = 0 and ω0(ei , e j ′) = −ω0(e j ′ , ei ) = δi j for all 1 � i , j � n. Also,
for each w ∈ S2n , let Vw ∈ X be defined as in Section 1.2, the only difference being the
dimension of the whole space. We will say that a sequence of vectors v = (v1, v2, . . . , v2n)

is a basis of the flag V = (Vi )
2n
i=0 or spans the flag V if v1, v2, . . . , vi spans Vi for all i .

We also write V = Fl(v). In this terminology, Vw is the flag spanned by the sequence
(ew(1), ew(2), . . . , ew(2n)).

With this notation, the classification of the relative positions of the elements of Y × X
can be stated as follows.

Proposition 2.2 The G-orbits in Y × X are in 1-1 correspondence with D2n. More pre-
cisely, if (ω, V) ∈ Y × X , then there exists a unique Brauer diagram d ∈D2n such that
(ω, V) lies in the same G-orbit as (ω0, Vwd ).

Note that (ω, V) lies in the same G-orbit as (ω0, Vwd ) if and only if there is a basis
(v1, v2, . . . , v2n) of the flag V such that

ω(vi , v j ) =


0 (if i, j are not linked in d),

1 (if i, j are linked in d and i < j),

−1 (if i, j are linked in d and i > j).

Although this result is not our original, we will give an elementary proof of this fact in
Section 2.

Motivated by this classification, we introduce the following algebraic variety, which will
substitute Steinberg’s variety in the updown case:

Z = { (N , ω, V) ∈N × Y × X | the group {exp t N | t ∈ C} fixes ω and V},

where

N = {N ∈ M2n(C) | N is nilpotent}.

The condition in the definition of Z is equivalent to saying that V is N -stable (as defined in
Section 1.2) and that ω(Nv, v′) + ω(v, Nv′) = 0 for all v, v′ ∈ V .

We parametrize the irreducible components of Z in two ways.
For each Brauer diagram d ∈D2n , put

Zd = {(N , ω, V) ∈ Z | (ω, V) ∈Od} where Od = G · (ω0, Vwd ) ⊂ Y × X.

Then by Proposition 2.2, Z is partitioned into the subsets Zd , d ∈D2n . We show that
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Proposition 2.5 For each d ∈D2n , Zd is an irreducible (Zariski) locally closed subvariety
of Z of dimension 4n2 − n regardless of d. {Zd | d ∈D2n} is the set of all irreducible com-
ponents of Z.

The second statement follows from the first by a general argument reviewed in the
third paragraph of Section 1.2. Proposition 2.5 gives a parametrization of the irreducible
components of Z by the Brauer diagrams.

On the other hand, we associate an updown tableau to each element of Z . Let (N , ω, V)

∈ Z , and put V = (Vi )
2n
i=0. Restricted to Vi for each i , the form ω determines an alternating

form ω|Vi which may be degenerate. The radical of this form on Vi is also N -stable. Let
µ(i) denote the Jordan type of N restricted to this radical. Then we have

Proposition 3.1 The sequence (µ(i))2n
i=0 produced from (N , ω, V) ∈ Z as above is always

an updown tableau of degree 2n.

Thus the variety Z is also partitioned into the subsets Z M , M = (µ(i))2n
i=0 ∈M2n , where

Z M = {
(N , ω, V) ∈ Z | N acts on the radical of ω |Vi with Jordan type µ(i)(∀i)

}
.

Moreover we have

Proposition 3.1 + Proposition 5.1 + Corollary 5.10 For each updown tableau M of
degree 2n, Z M is an irreducible, nonsigular (Zariski) locally closed subvariety of Z of
dimension 4n2 − n. The subvarieties Z M , M ∈M2n , give all irreducible components of Z.

The proof of the irreducibility and smoothness of Z M requires some detailed analysis,
which will be carried out throughout Sections 4 and 5. The second statement follows from
the first as in Proposition 2.5.

Thus the set of irreducible components of Z has two parametrizations, one by the set
D2n of Brauer diagrams on 2n points, and the other by the set M2n of updown tableaux of
degree 2n. Hence the relation Zd = Z M defines a bijection between the two parametrizing
sets D2n

∼→M2n . Moreover, we have

Theorem 6.2 The bijection from D2n to M2n defined by the relation Zd = Z M coincides
with the combinatorial bijection by Stanley, Sundaram and Roby.

Namely our geometric construction gives an interpretation of the “updown analogue” of
the Robinson-Schensted correspondence. We show this by constructing a series of posets
from d , and then applying the result of Gansner and Saks reviewed in Section 1.2 to these
posets (see Proposition 6.1).

2. Relative positions of symplectic forms and complete flags

In this section, we discuss the G-orbit decomposition of Y × X , and thereby obtain a
parametrization of the irreducible components of Z by the Brauer diagrams.
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First we introduce some more notation. In general, if a group G acts on a set X and if
x is an element of X , then Gx will denote the stabilizer of x in G, namely the subgroup
{g ∈ G | g · x = x}. Also, if G is a complex Lie group, then Lie G will denote the Lie algebra
of G. The Lie algebra of GL(2n, C) is gl(2n, C) consisting of all (2n) × (2n) matrices with
entries in C and equipped with the usual bracket operation of matrices. If G is a complex
Lie subgroup of GL(2n, C), then Lie G is the Lie subalgebra of gl(2n, C) consisting of
matrices A such that the one-parameter subgroup {exp t A | t ∈ C} of GL(2n, C) is contained
in G. The complex Lie groups appearing in this article are also linear algebraic groups
over C, and the notion of Lie algebras of linear algebraic groups leads to the same Lie
algebras.

Let us return to the situation where G denotes GL(2n, C) and X denotes the set of all
complete flags in C2n . For each w ∈ S2n , let Vw be the flag defined in Section 1.3 before the
quotation of Proposition 2.2. The stabilizer of the “standard” flag Ve in G, where e is the
identity element of S2n , is the subgroup B consisting of the upper triangular matrices in G.
Since G acts on X transitively, X can be identified with G/B as a G-space. For each w ∈ S2n ,
let ẇ denote the permutation matrix representing w, namely

∑2n
j=1 Ew( j), j , where Ei j is

the (i, j)th matrix unit as in Section 1.2. Then we have Vw = ẇ · Ve and GVw = ẇBẇ−1. If
g ∈ G has column vectors v1, v2, . . . , v2n (we write g = (v1 | v2 | · · · | v2n)), then we have
Fl(v) = g · Ve (see Section 1.3, before the quotation of Proposition 2.2) where v denotes
the basis (v1, v2, . . . , v2n) of V . Namely if we regard Fl as a map from G to X , then it
coincides with the natural projection G → G/B under the above identification. Next let H
be the stabilizer of the “standard” symplectic form ω0, introduced in Section 1.3 before
the quotation of Proposition 2.2, in G. Then H is the symplectic group Sp(2n, C) (or,
according to an alternate convention, H is conjugate to Sp(2n, C) in G). We have Y ∼= G/H
as a G-space. Both X and Y are complex manifolds (resp. algebraic varieties over C), and
the actions of G on X and Y are holomorphic (resp. algebraic). Finally, the G-orbits on
Y × X naturally correspond with the H -orbits on X , the B-orbits on Y , and the double
cosets in H \G/B.

We begin our argument by recalling the following characterization of the relative positions
of two complete flags. For w ∈ S2n and 0 � i , j � 2n, put di j (w) = #(	i (w) ∩ 	 j (w)) (see
Section 1.2). Note that these numbers determine w. Now let V = (Vi ) and V′ = (V ′

j ) be
two complete flags in C2n . Then (V, V′) ∈Ow (in the sense of Section 1.2) if and only if
dim(Vi ∩ V ′

j ) = di j (w) for all 0 � i , j � 2n. From this one can also show that each Ow is
Zariski locally closed in X × X .

Now if (ω, V) ∈ Y × X and V = (Vi )
2n
i=0, then write Rad(ω | Vi ) for the radical of ω | Vi ,

namely Rad(ω | Vi ) = Vi ∩ V ⊥
i (where ⊥ is taken with respect to ω). Let us call the sequence

(Rad(ω | Vi ))
2n
i=0 the ω-radical sequence of V, and denote it by R(ω, V). If W = (Wi )

2n
i=0 is

a sequence of subspaces of V , then let us call W an updown flag of V if W0 = W2n = 0, and
if either Wi−1 ⊂̇ Wi or Wi−1 ⊃̇ Wi holds for each i .

The following lemma is fundamental in the analysis that follows.

Lemma 2.1 Let (ω, V) ∈ Y × X, V = (Vi )
2n
i=0, and put Wi = Vi ∩ V ⊥

i = Rad(ω | Vi ) for
each i (where ⊥ is taken with respect to ω). Then for each i, either Wi−1 ⊂̇ Wi or Wi−1 ⊃̇ Wi

holds. In other words, the ω-radical sequence R(ω, V) of V is an updown flag of V .
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Proof: We have W0 = 0 since V0 = 0, and W2n is also 0 since ω is nondegenerate.
Now fix i . First suppose that Vi contains more vectors orthogonal to Vi−1 than Vi−1

does, and let v be any such vector. Then we have ω(v, Vi ) = ω(v, Vi−1 ⊕ Cv) = 0. Hence
a vector u + cv of Vi (u ∈ Vi−1, c ∈ C) lies in V ⊥

i if and only if u ∈ V ⊥
i = (Vi−1 ⊕ Cv)⊥,

which is equivalent to u ∈ V ⊥
i−1, since any u ∈ Vi−1 is orthogonal to v. Hence we have

Wi = Wi−1 ⊕ Cv ⊃̇ Wi−1.
Otherwise Vi ∩ V ⊥

i−1 coincides with Vi−1 ∩ V ⊥
i−1 = Wi−1. Now Wi ⊂ Vi ∩ V ⊥

i−1 = Wi−1,
and the codimension is either 0 or 1. On the other hand, (i − 1) − dim Wi−1 and i − dim Wi

are both even, so that dim Wi−1 − dim Wi must be odd. Hence we have Wi ⊂̇ Wi−1. ✷

Now we turn to the classification of the relative positions of nondegenerate alternating
bilinear forms on V and complete flags in V . Although this result is not our original (see
Remark after the statement), we include an elementary proof for convenience.

Proposition 2.2 The G-orbits in Y × X are in 1-1 correspondence with D2n. A complete
set of representatives is given by {(ω0, Vwd ) | d ∈D2n}.

In other words, we have a double coset decomposition

G =
∐

d∈D2n

Hẇd B.

Remark If we put G ′ = SL(2n, C) and B ′ = G ′ ∩ B, then G ′ is a complex simple Lie
group containing H , and we have X ∼= G/B = G ′ B/B ∼= G ′/B ′ as G ′-spaces. Hence the H -
orbits on G/B are the same as the H -orbits on G ′/B ′. Moreover, B ′ is a Borel subgroup of G ′,
and H is the group of the fixed points of the involutive automorphism σ : g �→ J−1(t g−1)J
of G ′ (or G). Matsuki [16, Theorem 1, Corollary 1, and Theorems 2 and 3] gave a general
solution to this kind of problem in the context of real Lie groups, namely the problem
of parametrizing the H -orbits on G ′/P where G ′ is a real semisimple Lie group, P is a
minimal parabolic subgroup of G ′, and H is a subgroup of G ′ satisfying (Gσ )o ⊂ H ⊂ Gσ

for some involutive automorphism σ of G (where (Gσ )o is the identity component of
Gσ ). (There is also a work by W. Rossmann [23], but Matsuki [16] gave a more complete
result.) Since a complex simple Lie group is also a real simple Lie group, and a minimal
parabolic subgroup of such a Lie group is a Borel subgroup, our problem is a special case
of this general problem. Matsuki and Oshima [17, Theorem 4.1] gave the result of applying
Matsuki’s general solution to the cases where G ′ is a classical complex simple Lie group
and σ is holomorphic (in order to apply such results to their problem in representation
theory). Our case is their type AII. This kind of orbit decomposition was also studied in the
context of algebraic groups in general by T. Springer and R. Richardson, starting with [30].
See [20] for more references.

The proof we include below is an elementary application of linear algebra. This proof also
verifies that the classification for this case is valid over any field of characteristic different
from 2, whether it is algebraically closed or not.

Put Od = G · (ω0, Vwd ) ⊂ Y × X for every d ∈D2n . If (ω, V) ∈ Y × X , then define V⊥ =
(V ⊥

2n− j )
2n
j=0 ∈ X , where ⊥ is taken with respect to ω. Our elementary proof depends on

showing the following fact:
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Lemma 2.3 Let (ω, V) ∈ Y × X and d ∈D2n. Then (ω, V) ∈Od (⊂ Y × X) if and only if
(V, V⊥) ∈Oidw0 (⊂ X × X) in the sense of Section 1.2, where ⊥ is taken with respect to ω.

Proof: For the implication of the latter condition by the former, it is enough to show
this for (ω0, Vwd ). Write V = (Vi )

2n
i=0 for Vwd . Then V ⊥

2n− j , where ⊥ is taken with respect
to ω0, is spanned by the ewd (k) such that id(k) > 2n − j . Therefore dim(Vi ∩ V ⊥

2n− j ) =
#{k ∈ {1, 2, . . . , 2n} | k � i and id(k)(= i−1

d (k)) > 2n − j}. Since this equals di j (idw0), we
have (V, V⊥) ∈Oidw0 .

In order to show the other implication, let (ω, V) ∈ Y × X be such that (V, V⊥) ∈Oidw0 .
We show that (ω, V) and (ω0, Vwd ) lie in the same G-orbit. Since G acts transitively
on Y , we may assume that ω = ω0. Write V = g · Ve, g ∈ G. Our goal is to show that
ẇd ∈ HgB. We inductively claim that HgB contains an element g(i) whose first i columns
coincide with those of ẇd . This claim trivially holds for i = 0 with the choice g(0) = g. Now
suppose i > 0. Write {wd(1), wd(2), . . . , wd(i − 1)} = I ∪J ′ where I, J ⊂ {1, 2, . . . , n} (J ′

is short for { j ′ | j ∈ J }). Recall the characterization of the elements of D2n , which implies
I = {1, 2, . . . , r} for some r and J ⊂ I . Put i∗ = id(i). By (V, V⊥) ∈Oidw0 , we have

dim
(
Vi ∩ V ⊥

p

) =
{

dim
(
Vi−1 ∩ V ⊥

p

) + 1 if p < i∗, and

dim
(
Vi−1 ∩ V ⊥

p

)
if p � i∗.

(1)

Case 1 (i is a left-end vertex in d , or equivalently i < i∗) Using (1) for p = i − 1, we know
that there is a vector v1 ∈ Vi\Vi−1 which is orthogonal to Vi−1. This means that we can move
from g(i−1) to

g1 = (
ewd (1) | ewd (2) | · · · | ewd (i−1) | v1 | · · · )

by a right multiplication by B. The orthogonality of v1 with Vi−1 means that v1 has no coef-
ficients in the ek, k ∈ I ′ ∪ J . Since I\J ⊂ {wd(1), wd(2), . . . , wd(i − 1)}, we can eliminate
the coefficients in the ek, k ∈ I \ J , by a further right multiplication by B, yielding

g2 = (
ewd (1) | ewd (2) | · · · | ewd (i−1) | v2 | · · · )

where v2 has coefficients in the central 2(n − r) positions only. A left multiplication by a
matrix of the form 1r ⊕h⊕1r , h ∈ Sp(2n − 2r), can leave the first i − 1 columns unchanged
and bring v2 to er+1. Our claim for i is attained by choosing this result as g(i).

Case 2 (i is a right-end vertex in d, or equivalently i∗ < i) Write wd(i∗) = j , then we
have wd(i) = j ′ and j ∈ I \ J . (1) applied for p = i∗ − 1 shows the existence of a vector
v1 ∈ Vi \Vi−1 which is orthogonal to Vi∗ − 1. We can move from g(i−1) to

g1 = (
ewd (1) | ewd (2) | · · · | ewd (i−1) | v1 | · · · )

by a right multiplication by B. Since v1 ∈ V ⊥
i∗−1, in particular v1 has no coefficients in

e1′ , e2′ , . . . , e( j−1)′ . On the other hand, (1) applied for p = i∗ implies v1 /∈ V ⊥
i∗ , so v1 has

a nontrivial coefficient in e j ′ . We may adjust v1 by a scalar multiplication (which is also a
right multiplication by B) so that its coefficient in e j ′ equals 1.
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Next we can produce g2 = (ewd (1) | ewd (2) | · · · | ewd (i−1) | v2 | · · ·) in the same double
coset, where v2 has coefficients only in e1, e2, . . . , en and e j ′ , as follows. Let A be the
n × n upper unitriangular matrix (e1 | · · · | v<

1 | · · · | en) where v<
1 denotes the lower

half of v1. Then t ′
A ⊕ A−1 ∈ H where t ′

A = J1
tAJ1, and its left multiplication onto g1

has the following effect on its first i columns. To the lower half, it adds row j ′ into rows
( j + 1)′, ( j + 2)′, . . . , n′ (with some coefficients) in such a way that eliminates entries in
these rows in column i . Since the only entry in row j ′ in the first i columns of g1 is in
column i , the other i − 1 columns are not affected by this multiplication. To the upper half,
it adds rows n, n − 1, . . . , j + 1 into row j with some coefficients. Since the upper half
of the first i − 1 columns of g1 are e1, e2, . . . , er , interspersed with some zero vectors, the
effect on this part can be undone by a further right multiplication by B. Thus we obtain g2.

Next we can produce g3 = (ewd (1) | ewd (2) | · · · | ewd (i−1) | v3 | · · ·) in the same double
coset, where v3 has coefficients only in e1, e2, . . . , er and e j ′ as follows. Let P be the
n × n matrix (0 | · · · | − v�

2 | · · · | 0) where v�
2 is the upper half of v2 whose topmost

r components are replaced by 0, and −v�
2 is placed in column n + 1 − j of P . Then

(1n P+ t ′P
O 1n

) = (1n
t ′P

O 1n
)(1n P

O 1n
) ∈ H where t ′

P = J1
tP J1, and its left multiplication onto g2 does

the following to its first i columns. It adds row j ′ into rows n, n − 1, . . . , r + 1 with some
coefficients in such a way that repels the entries in these rows in column i . As before, this
only affects column i . It also adds rows n′, (n − 1)′, . . . , (r + 1)′ into row j with some
coefficients, but this has no effect in the first i columns, since these n − r rows are all clear
in these columns. Thus we obtain g3.

Finally we can clear the rows 1 through r in column i by a right multiplication by B,
thus attaining our claim for i . ✷

Proof of Proposition 2.2: First note that the orbits Od are different from one another.
This is because (ω, V) ∈Od if and only if (V, V⊥) ∈Oidwo (where ⊥ is taken with respect
to ω) by Lemma 2.3, and the orbits Oidwo are all different because the elements idw0 ∈ S2n

are all different.
In order to prove that Y × X = ∪d∈D2n Od , let (ω, V) be an arbitrary element of Y × X ,

and let w ∈ S2n be such that (V, V⊥) ∈Ow ⊂ X × X . We show that w = idw0 for some
d ∈D2n . We have di j (ww0) = i − di,2n− j (w) = i − dim(Vi ∩ V ⊥

j ). By the usual dimension
calculation, we find that di j (ww0) = d ji (ww0) for all i and j , namely that ww0 is an in-
volution. If ww0 fixes j , then we must have d j−1,2n− j+1(w) = d j,2n− j (w), in other words
dim Rad(ω | Vj−1) = dim Rad(ω | Vj ), which is impossible by Lemma 2.1. Therefore ww0

must be of the form id , d ∈D2n . By Lemma 2.3, this means that (ω, V) ∈Od . Hence Y × X
is covered by the Od , d ∈D2n . ✷

Note that the condition for N in the definition of Z (Section 1.3, after the quotation of
Proposition 2.2) is equivalent to saying that N is a nilpotent element of the Lie algebra
of G(ω,V) = Gω ∩ GV , that is, the Lie algebra of the stabilizer in G of the point (ω, V) in
Y × X . If (ω, V) = g · (ω0, Vwd ) with g ∈ G, then this Lie algebra is conjugate to the Lie
algebra of G(ω0,Vwd ) by Ad(g).

So let us determine the Lie algebra of G(ω0,Vwd ) for each d ∈D2n . This Lie algebra turns
out to be upper triangular as we see below, which makes it easy to set apart its nilpotent
elements.
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Put g= gl(2n, C), and let b be the Lie algebra of B. Then b is a Borel subalgebra of g con-
sisting of all upper triangular matrices in g. Let T ⊂ B be the maximal torus of G consisting
of the diagonal matrices in G. Its Lie algebra t is a Cartan subalgebra of g consisting of all di-
agonal matrices in g. Let εi ∈ t∗, 1 � i � 2n, be defined by diag(h1, h2, . . . , h2n) �→ hi , and
let �+ denote the positive system of �(G, T ) corresponding to B, namely �+ = {εi − ε j |
1 � i < j � 2n}. Now let σ : G → G be the involution g �→ J−1(t g−1)J as above, which
gives Gσ = H . It induces an involution on the Lie algebra g by A �→ J−1(−tA)J , also
denoted by σ . B and T are both σ -stable, and Bσ is a Borel subgroup of H containing a
maximal torus T σ of H . The Lie algebras of Gσ , Bσ , and T σ coincide with the σ -fixed points
gσ , bσ , and tσ in g, b, and t respectively. gσ is (or is conjugate to) the symplectic Lie alge-
bra sp(2n, C), and tσ = {diag(h1, h2, . . . , hn, − hn, . . . ,−h2, −h1) | h1, h2, . . . , hn ∈ C}
is a Cartan subalgebra of gσ . Let π : t∗ → (tσ )∗ be the restriction map. Then π(�+) =
{π(εi − ε j ) | 1 � i < j � n} ∪ {π(2εi ) | 1 � i � n} is a positive system of �(H, T σ ) corre-
sponding to Bσ .

For each d ∈D2n , put �̄(d) = π(�+ ∩ wd(�+) ∩ σ(wd(�+))) = {π(εi − ε j ) | 1 � i < j
� i ′, w−1

d (i) < w−1
d ( j), w−1

d ( j ′) < w−1
d (i ′)}, which is a closed subset of π(�+). Actually

the condition w−1
d (i) < w−1

d ( j) follows from i < j � i ′ by our choice of wd . Also note that
the π(2εi ), 1 � i � n, are always contained in �̄(d). Put ld = #�̄(d).

Lemma 2.4 Let d ∈D2n, and put Bd = G(ω0,Vwd ) = H ∩ ẇd Bẇ−1
d . Then its Lie algebra

bd = gσ∩ Ad(ẇd)b admits a semidirect sum decomposition bd = tσ �ud , where ud is the
sum of the root spaces for �̄(d), namely

bd =

t
σ︷ ︸︸ ︷

n⊕
i=1

C(Eii − Ei ′i ′)

⊕

ud︷ ︸︸ ︷⊕
1�i< j�n

w−1
d ( j ′) < w−1

d (i ′)

C(Ei j − E j ′i ′) ⊕
⊕

1�i< j�n
w−1

d ( j)<w−1
d (i ′)

C(Ei j ′ + E ji ′) ⊕
n⊕

i=1

CEii ′ .

The subalgebra ud is exactly the set of nilpotent elements in bd .

Proof: First we show that the group Bd is upper triangular. It suffices to show that, if
g ∈ G(ω0,Vwd ), then g also fixes Ve. Write Ve = (V e

i )2n
i=0 and Vwd = (V wd

j )2n
j=1. It is sufficient

to show that such g fixes V e
i for 1 � i � n only, since V e

2n−i = (V e
i )⊥ with respect to ω0, and

ω0 is fixed by g. We proceed by induction on i . The claim is trivial if i = 0. Now suppose
i > 0, and let j be such that wd( j) = i , so that ei ∈ V wd

j . Since g fixes Vwd , we have gei ∈ V wd
j .

Since wd ∈ D2n , we have {wd(1), wd(2), . . . , wd( j)} ⊂ {1, 2, . . . , i, 1′, 2′, . . . , (i − 1)′}, so
that gei is a linear combination of e1, e2, . . . , ei and e1′ , e2′ , . . . , e(i−1)′ . By the induction
hypothesis, we have gV e

i−1 = V e
i−1 = ⊕i−1

k=1 Cek , which is contained in gV e
i . Since V e

i , hence
gV e

i , is isotropic with respect to ωo = g∗ω0, the vector gei cannot have nontrivial coefficients
in e1′ through e(i−1)′ . By linear independence gei does have a nontrivial coefficient in ei ,
therefore gV e

i coincides with V e
i .
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It follows that bd is upper triangular, so that it is contained in

b
σ =

n⊕
i=1

C(Eii − Ei ′i ′) ⊕
⊕

1�i< j�n

C(Ei j − E j ′i ′)

⊕
⊕

1�i< j�n

C(Ei j ′ + E ji ′) ⊕
n⊕

i=1

CEii ′ .

To obtain bd , we take the intersection with Ad(ẇd)b = ⊕
1 � i, j � 2n

w
−1
d (i) � w

−1
d ( j)

CEi j . Since the matrix

units involved in the summands of the above expression for b
σ are all disjoint, we can

check the condition term by term. Clearly the first sum survives, and by our choice of wd

the last sum also survives. In the second sum, the element Ei j − E j ′i ′ , 1 � i < j � n, lies in
Ad(ẇd)b if and only if both w−1

d (i) < w−1
d ( j) and w−1

d ( j ′) < w−1
d (i ′) hold (we excluded

the equalities since i �= j). The first condition is automatic due to our choice of wd , and
the second condition persists. The third sum can be analyzed similarly, and we obtain the
expression for bd in the statement. The one-dimensional summands in ud in this expression
are exactly the root spaces for �̄(d). Due to the upper triangularity, an element of bd is
nilpotent if and only if its diaglnal entries are all zero, namely if it lies in ud . ✷

Remark We can actually state a similar structure of the group Bd . Let U be the sub-
group of B consisting of all upper unitriangular matrices. U is also σ -stable. We have
Bσ = T σ � U σ and T σ ⊂ Bd = H ∩ ẇd Bẇ−1

d , so that we have Bd = T σ � Ud if we put
Ud = Bd ∩ U σ . Now Gσ is a simple (hence reductive) algebraic group over C, U σ is the
unipotent radical of a Borel subgroup Bσ of Gσ , and Ud is a Zariski closed subgroup of
U σ since it is the stabilizer of the point Vwd under its algebraic action on X , and is sta-
ble under the conjugation action ty T σ . Hence one can use [12, Proposition 28.1] or [3,
Proposition 14.4] to conclude that Ud is connected, and is directly spanned by the root
subgroups (U σ )β whose corresponding root spaces are contained in ud , namely β ∈ �̄(d).
This means that, if β1, β2, . . . , βld are the elements of �̄(d) in any order and if Eβi is a
fixed root vector for the root βi for each i (which, for example, can be taken to be the basis
element appearing in the ud part of the expression in Lemma 2.4), then any element of Ud

is expressed uniquely as exp(a1 Eβ1) exp(a2 Eβ2) · · · exp(ald Eβld
), a1, a2, . . . , ald ∈ C. The

map Cld � (a1, a2, . . . , ald ) �→ exp(a1 Eβ1) exp(a2 Eβ2) · · · exp(ald Eβld
) ∈ U is moreover an

isomorphism of varieties (see loc. cit.).

Proposition 2.5 For each d ∈D2n, put Zd = {(N , ω, V) ∈ Z | (ω, V) ∈Od}. Then Zd is
an irreducible (Zariski) locally closed subvariety of Z of dimension 4n2 − n regardless of
d. Therefore {Zd | d ∈D2n} is the set of all irreducible components of Z.

Proof: Let d ∈D2n . The map φ : Y × X → X × X, (ω, V) �→ (V, V⊥), where ⊥ is taken
with respect to ω, is a morphism of varieties, and by Lemma 2.3 we have Od = φ−1(Oidw0).
Since Oidw0 is Zariski locally closed in X × X , so is Od in Y × X . Let πY × X : Z → Y × X
be the projection onto the second and third components. Then we have Zd = π−1

Y × X (Od).
Therefore Zd is a locally closed subvariety of Z .
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Now let q : G × ud → Zd be defined by (g, N ) �→ (Ad(g)N , g∗ω0, g · Vwd ). Since the
Lie algebra bd of the stabilizer of (ω0, Vwd ) consists of upper triangular matrices, the set
of nilpotent elements in bd coincides with ud , the set of strictly upper triangular matrices
in bd . It follows that the set of nilpotent elements in Lie(Gg∗ω0 ∩ Gg · Vwd ), g ∈ G, equals
Ad(g)ud , so that q is surjective. Since G and ud are irreducible, so is im q = Zd .

The fiber of q at an arbitrary point (g∗ω0, g · Vwd ) ofOd , g ∈ G, is isomorphic to ud , which
is an ld -dimensional vector space. On the other hand, we have dimOd = dim G − dim Bd =
4n2 − (n + ld). Therefore we have dim Zd = dimOd + dim ud = 4n2 − n, regardless of d.

The rest follows by the argument reviewed in the third paragraph of Section 1.2. ✷

3. Types of radical sequences

Now let us see how we can produce an updown tableau (see Section 1.3) from an element
of Z .

Let W = (Wi )
2n
i=0 be an updown flag of V (see Section 2). Let us call the sequence

ε= (εi )
2n
i=1 defined by εi = dim Wi − dim Wi−1(∈ {±1}) the class of W. Note that

∑i
p=1 εp

� 0 holds for all 1 � i � 2n − 1, and also that
∑2n

p=1 εp = 0. Let E denote the set of all such
±1 sequences of length 2n. An element of E (or the corresponding Wε defined in Section
4) is sometimes called a Dyck path. Also note that the elements of E are in 1-1 corre-
spondence with the partitions ν whose Young diagrams are contained in that of the stair-
case partition (n − 1, n − 2, . . . , 1). To give an explicit correspondence, let ε= (εi )

2n
i=1 ∈ E ,

and let a1 < a2 < · · · < an (resp. b1 > b2 > · · · > bn) be the indices i with εi = +1 (resp.
εi = − 1). Then ν = (ν1, ν2, . . . , νl) (resp. its conjugate ν ′ = (ν ′

1, ν
′
2, . . . , ν

′
l ′)) is given by

νi = an+1−i − (n+1 − i) for all 1 � i � l (resp. ν ′
j = n+ j − bn+1− j for all 1 � j � l ′), where

l (resp. l ′) (�0) is the number of indices i (resp. j) such that ai > i (resp. b j < 2n + 1 − j).
The partition corresponding to ε in this manner will be denoted by νε (see figure 5).

Note that, if d ∈D2n and (ω, V) ∈Od , then the ai (resp. b j ) corresponding to the class of
R(ω, V) in the fashion above are the same as the ai that appeared in Section 2 in relation
with wd (resp. are obtained by rearranging the b j in Section 2 in the decreasing order).

Figure 5. An example of νε .
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We write ε⊂ ε′ if νε ⊂ νε′ . This gives a poset isomorphism

E ∼= [ ❡�, (n − 1, n − 2, . . . , 1)],

where the right-hand side is an interval in Young’s lattice. The smallest element of E is ε0 =
(

n︷ ︸︸ ︷
1, 1, . . . , 1,

n︷ ︸︸ ︷
−1, . . . ,−1, −1), and the largest element of E is εmax = (1, −1, 1, −1, . . . ,

1, −1).
The term class will be used for an updown tableau in an obvious parallel manner.
If (N , ω, V) ∈ Z and V = (Vi )

2n
i=0, then Rad(ω | Vi ) is also N -stable for each i . Now let

N ∈N , and let W = (Wi )
2n
i=0 be an updown flag of V (see Section 2, before Lemma 2.1)

consisting of N -stable subspaces. If µ(i) denotes the Jordan type of N |Wi , then let us call
the sequence (µ(i))2n

i=0 the (N-)type of W, and denote it by typeN W.

Proposition 3.1 If (N , ω, V) ∈ Z , then typeN R(ω, V) is an updown tableau of degree 2n.
For each M ∈M2n (see Section 1.3), the subset of Z defined by Z M = {(N , ω, V) ∈ Z |

typeN R(ω, V) = M} forms a (Zariski) locally closed subvariety of Z.

Proof: Put Wi = Rad(ω | Vi ) for simplicity, and let µ(i) be the Jordan type of N | Wi as
above. By Lemma 2.1, W = (Wi )

2n
i=0 is an updown flag of V . Clearly µ(0) = µ(2n) = ❡�, and

Wi−1 ⊂̇ Wi (resp. Wi−1 ⊃̇ Wi ) impliesµ(i−1) ⊂̇ µ(i) (resp.µ(i−1) ⊃̇ µ(i)) (see [32, Lemma 2.3]
for example). Hence typeN (W) is an updown tableau.

Next note that, if k, k ′, k ′′ are fixed positive integers, then {(W, W ′) ∈ Gk(V ) × Gk ′(V ) |
dim(W ∩ W ′) � k ′′(resp. = k ′′)} forms a Zariski closed (resp. locally closed) subvariety
of Gk(V ) × Gk ′(V ), where Gk(V ) and Gk ′(V ) denote the Grassmannians of k and k ′-
dimensional subspaces of V respectively. Combining this with the map (ω, V) �→ V⊥, where
V⊥ is taken with respect to ω, we see that the collection of (ω, V) (resp. (N , ω, V) ∈ Z )
producing radical sequences of a fixed class ε ∈ E is Zariski locally closed in Y × X (resp.
Z ). Also, for fixed k and a fixed partition µ of k, the collection of (N , W ) ∈N × Gk(V )

such that W is N -stable and has the N -type µ forms a Zariski locally closed subvariety
of N × Gk(V ) (note that the condition specifying the N -type can be written as equalities
on the dimensions of N j W for various j). Again combining with this proves our second
claim. ✷

4. εε-transversal pairs and complete updown flags

It remains to show that each Z M is irreducible, and that their dimensions are all the same.
This will be completed in the next section, and this section provides preparatory results.

We first show that, for (N , ω, V) ∈ Z , the sum of the radicals
∑2n

k=0 Rad(ω | Vk ) is an
N -stable maximal ω-isotropic subspace V (Lemma 4.1). With this in mind, we fix ω0 ∈ Y
and a maximal ω0-isotropic subspace V̆ , and define an algebraic variety Z̆ M consisting of
all pairs (N̆ , W), where N ∈ gl(V̆ ) is nilpotent, and W is an updown flag of V̆ made of
N̆ -stable subspaces summing up to V̆ , and whose N̆ -types consitute the updown tableau
M . In this section, we show that Z̆ M is nonsigular, irreducible, and of dimension n2 − n
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for every M ∈M2n (Proposition 4.5), and also show a lemma (Lemma 4.4) which will be
used twice in the following section in deducing the irreducibility and the dimension of Z M

based on the irreducibility and the dimension of Z̆ M . For results like Lemma 4.4 and its
application in the following section, a natural locale is the variety Z̆ε = ∐

Z̆ M with all M of
a fixed class ε, which can be embedded into Z̆ (Steinberg’s “Z” in the sense of Section 1.2
for the vector space V̆ instead of V ) as an open subvariety, due to Lemma 4.2, Lemma 4.3,
and the remarks after these lemmas. We also discuss this embedding, and a relation between
some labelings of its irreducible components (Corollary 4.6).

For the moment, let us forget N until Proposition 4.5, concentrating on a relationship
between a special kind of updown flags and pairs of complete flags. If V̆ is an n-dimensional
subspace of V , let us abuse the terminology and say that W = (Wi )

2n
i=0 is a complete updown

flag of V̆ if it is an updown flag of V̆ and it satisfies
∑2n

i=0 Wi = V̆ .

Lemma 4.1 Let (ω, V) ∈ Y × X. Then R(ω, V) is a complete updown flag of a maximal
isotropic subspace of V .

Proof: Put Wi = Rad(ω | Vi ) for simplicity. First let us show that
∑2n

k=0 Wk is an n-
dimensional subspace of V . Note that

∑2n
k=0 Wk = ∑n

i=1 Wai . It is enough to show that∑p
i=1 Wai is strictly larger than

∑p−1
i=1 Wai for any 1 � p � n (then it is larger by exactly

one dimension). Fix p, and put j = ap. Then we have W j−1 � W j , and it was shown in the
proof of Lemma 2.1 that, when this occurs, W j is spanned by W j−1 and a vector v outside
of Vj−1. Since the Wai , i � p − 1, are all subspaces of Vj−1, this means that v does not lie
in

∑p−1
i=1 Wai , so that

∑p
i=1 Wai , which contains v, is strictly larger than

∑p−1
i=1 Wai .

Now let V̆ denote the sum of W. In order to show that V̆ is isotropic for ω, it is enough to
show that any v ∈ W j and v′ ∈ W j ′ , 1 � j , j ′ � n, satisfy ω(v, v′) = 0. One can assume j � j ′,
then we have v ∈ W j ⊂ Vj ⊂ Vj ′ , and since v′ is in the radical of Vj ′ one has ω(v, v′) = 0.
Since V̆ is n-dimensional, it is a maximal isotropic subspace of V, and W is a complete
updown flag of V̆ . ✷

If K = (Ki )
n
i=0 and K′ = (K ′

i )
n
i=0 are two complete flags in V̆ , then put K ̂ K′ = (K0,

K1, K2, . . . , Kn = V̆ = K ′
n, . . . , K ′

2, K ′
1, K ′

0). If K and K′ vary, this gives all complete
updown flags in V̆ of class ε0. Mapping (i, j) to Ki ∩ K ′

j , 0 � i, j � n, defines a growth
{0, 1, . . . , n} × {0, 1, . . . , n} →L(V̆ ), which we will call the intersection growth of (K, K′)
and denote by K ∩ K′. Here we follow [8] and [22] in adopting the term growth: if (	, ≺)

and (	′, ≺′) are posets, then a map g : 	 → 	′ is called a growth if x ≺̇ y (see Section 1.1)
implies g(x) ≺̇′ g(y) or g(x) = g(y).

By a cell in 	 (crowned by D ∈ 	) we mean a quadruple (A, B, C, D) of elements of 	

such that A ≺̇ B, A ≺̇ C , B ≺̇ D, C ≺̇ D, and B �= C . Note that this imples A = B ∧C and
D = B ∨ C . If (A, B, C, D) is a cell then so is (A, B, C, D), which we call its conjugate.
A cell (A, B, C, D) will be called rigid (resp. an atom) under a growth g : 	 → 	′ if
(g(A), g(B), g(C), g(D)) is again a cell in 	′ (resp. g(A) = g(B) = g(C) ≺̇ g(D)). The
cells of {0, 1, . . . , n} × {0, 1, . . . , n} are of the form ((i − 1, j − 1), (i − 1, j), (i, j − 1),

(i, j)) or its conjugate.
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Figure 6. An example of Wε , Iε : n = 6, νε = (4, 2).

For ε ∈ E , the ε-walk Wε = {(pi , qi )}2n
i=0 ⊂ {0, 1, . . . , n} × {0, 1, . . . , n} is defined by

(pi , qi ) =


(0, n) if i = 0

(pi−1 + 1, qi−1) if i > 0 and εi = + 1,

(pi−1, qi−1 − 1) if i > 0 and εi = − 1.

Note that we have (p2n, q2n) = (n, 0). Let Iε denote the order ideal of {0, 1, . . . , n} ×
{0, 1, . . . , n} generated by Wε, and Iε the complement of Iε. Observe that Iε, or the cells
crowned by its elements, can be viewed as the Young diagram of νε under suitable orientation
(see figures 5 and 6), and that ε ⊂ ε′ (as defined in Section 3) is equivalent to Iε ⊂ Iε′ or
Iε ∪ Wε ⊂ Iε′ ∪ Wε′ , not to Iε ⊂ Iε′ . A pair (K, K′) of complete flags of V̆ will be said to be
ε-transversal if all cells crowned by the elements of Iε are rigid under the growth K ∩ K′.
(See remark after Lemma 4.2 for a concise set of conditions for ε-transversality.)

Lemma 4.2 The ε-transversal pairs of complete flags of V̆ are in 1-1 correspondence
with the complete updown flags of V̆ of class ε by taking the images of the ε-walk under
the intersection growths of the pairs of complete flags.

Proof: Let ε ∈ E . Note that the cells in Iε ∪ Wε are exactly the cells in {0, 1, . . . , n} ×
{0, 1, . . . , n} crowned by the elements of Iε.

If W is an updown flag of class ε, one can define a growth ḡ : Iε ∪Wε →L(V̆ ) by putting
W on Wε and proceeding cell by cell upwards inductively putting ḡ(D) = ḡ(B) + ḡ(C)

whenever (A, B, C, D) is a cell. The result is independent of the order of the procedure,
since one always has ḡ(i, j) = ∑ai

k=b j −1 Wk for all (i, j) ∈ Iε ∪ Wε (where the ai and the
b j correspond to ε as in Section 3). We claim that W is complete if and only if all cells in
Iε ∪ Wε are rigid under ḡ. Look at the dimensions of the ḡ(i, j). For (i, j) ∈ Wε, one always
has dim ḡ(i, j) = i + j − n by the definition of an updown flag. Then the property of growth
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assures that for all points (i, j) one has dim ḡ(i, j) � i + j − n, and that dim ḡ(n, n) = n
holds if and only if all cells in Iε ∪ Wε are rigid. Therefore the claim holds.

Next suppose one has two growths g, g′ : Iε ∪ Wε →L(V̆ ), and assume that all cells
in Iε ∪ Wε are rigid under g. We claim that, if g|Wε0

= g′|Wε0
(resp. g|Wε

= g′|Wε
) holds,

then one has g = g′. This is clear because one can reach Wε from Wε0 and vice versa by
traversing cells, and the rigidity of the cell (A, B, C, D) determines g(A) from g(B), g(C)

by g(A) = g(B)∩g(C) in going downwards, and g(D) from g(B), g(C) by g(D) = g(B)+
g(C) in going upwards.

Now if (K, K′) is an ε-transversal pair, let W = (Wi )
2n
i=0 denote the sequence of subspaces

attached to the points of Wε under K ∩K′. The rigidity of the cells directly above Wε assures
the correct dimensions of the Wi to make W an updown flag of class ε. The growth ḡ
constructed from W coincides with K ∩ K′ on Wε, so all on Iε ∪ Wε, and hence is rigid.
Therefore W is complete.

The correspondence (K, K′) �→ W is injective since, because of rigidity, the value of
K ∩ K′ on Wε determines K ∩ K′|Iε∪Wε

, and hence K and K′. It is also surjective since, if W
is any complete updown flag of class ε, the ḡ constructed from W determines a pair (K, K′)
of complete flags on Wε0 because of rigidity, and its intersection growth coincides with ḡ
on Iε ∪ Wε so that (K, K′) is ε-transversal, and that (K, K′) corresponds to W. ✷

Remark If ε′ ⊂ ε and W′ is an updown flag of class ε′, then one can define the “intersection
growth of W′”, g : Iε′ →L(V̆ ), by putting W′ on Wε′ and proceeding cell by cell downwards
inductively following the rule g(A) = g(B) ∩ g(C) whenever (A, B, C, D) is a cell (one
always has g(i, j) = ⋂b j+1

k=ai+1−1 Wk). W′ can be called ε-transversal if all cells above Wε and
below Wε′ are rigid under its intersection growth. The above correspondence can also be
understood as a composition of bijections for pairs (ε′, ε′′), ε′ ⊂̇ ε′′ ⊂ ε, between the sets of
ε-transversal complete updown flags of class ε′ and those of class ε′′. Here, if i1 denotes the
index such that ε′ and ε′′ only differ in the i1th and (i1 + 1)st positions, then W′ = (W ′

i )
2n
i=0

of class ε′ corresponds to W′′ of class ε′′ obtained from W′ by replacing the i1th component
W ′

i1
= W ′

i1 − 1 + W ′
i1+1 by W ′

i1 − 1 ∩ W ′
i1+1.

Remark By an argument similar to the condition for completeness in the proof of
Lemma 4.2, one can show that (K, K′) is ε-transversal if and only if Ki + K ′

j = V̆ or
equivalently dim(Ki ∩ K ′

j ) = i + j − n holds for all minimal points (i, j) of Wε other
than (0, n) and (n, 0). Namely, if we put g = K ∩ K′, we have dim g(i, j) = i + j − n for
(i, j) ∈ Wε0 . Then the property of the growth assures that dim g(i, j) � i + j − n for all
(i, j) and that all cells in Iε ∪ Wε are rigid if and only if dim g(i, j) = i + j − n holds for all
minimal points (i, j) of Iε ∪ Wε. Since g(0, n) and g(n, 0) are always 0, one may exclude
these points.

Lemma 4.3 The pair (K, K′) of complete flags of V̆ is ε-transversal if and only if their
relative position w = w(K, K′) satisfies w(n + 1 − i) � n − ν ′

i , where ν stands for νε, for
all i in the range 1 � i � l(ν ′

ε). For each fixed ε, the set of such w forms a coideal of Sn

with respect to the Bruhat order.

Proof: The relative position w(K, K′) is the permutation w ∈ Sn satisfying di j (w) = dim
(Ki ∩ K ′

j ) for all i and j (see Section 2, before Lemma 2.1), so that the intersection
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growth K ∩ K′ has atoms at the cells crowned by (w( j), j), 1 � j � n. Noting that rigid
cells cannot be atoms, the above characterization of ε-transversality in terms of relative
positions is clear. Now suppose w is such a permutation. Then it is known that w′ is larger
than w in the Bruhat order if and only if di j (w

′) � di j (w) for all i , j . Suppose w′ satisfies
this condition. We have di j (w) = i + j − n for (i, j) ∈ Iε ∪ Wε because of the rigidity
of the cells above Wε. However, as we saw in remark (the paragraph before Lemma 4.3),
these are the lowest possible values of dimensions for these points. Therefore w′ also
satisfies di j (w

′) = i + j − n for all (i, j) ∈ Iε ∪ Wε. This means that all cells above Wε

are rigid under the intersection growth of any pair of relative position w′. This proves our
lemma. ✷

Remark This enables us to identify the collection of all complete updown flags of class
ε with a Zariski open subvariety of the variety of all pairs of complete flags. (Note that
the maps involved in the identification of these objects are morphism of algebraic varieties,
since taking the sums and intersections of subspaces are morphisms for subspaces having
the same dimension of intersections). Moreover, this identification is GL(V̆ )-equivariant,
since the sum and intersection maps are GL(V̆ )-equivariant. Therefore the GL(V̆ )-orbits on
the complete updown flags of V̆ of class ε are parametrized by the coideal of Sn described
in Lemma 4.3.

Lemma 4.4 Let ε ∈ E, and let ν = νε be the corresponding partition defined in Section 3.
Let v = (v1, v2, . . . , vn) and w = (w1, w2, . . . , wn) be two bases of V̆ such that the complete
flags Fl(v) and Fl(w) (see the beginning of Section 2) are ε-transversal. Then the |ν| linear
forms v∗

n+1 − i ⊗ w∗
n+1 − j , (i, j) ∈ ν, on V̆ ⊗ V̆ restrict to linearly independent linear forms

on S2(V̆ ), the space of symmetric tensors on V̆ of rank 2.

Proof: For simplicity, let v̀ = (v̀i )
n
i=1 and ẁ = (ẁ j )

n
j=1 denote the bases obtained by re-

verting the numbering of v and w respectively. Let A = (a ji ) be the transition matrix from
the basis v̀ to ẁ, namely

v̀i (=vn+1−i ) =
n∑

j=1

a ji ẁ j

(
=

n∑
j=1

a jiwn+1− j

)
.

One can take the sii = v̀i ⊗ v̀i , 1 � i � n, and the si j = v̀i ⊗ v̀ j + v̀ j ⊗ v̀i , 1 � i < j � n, as
a basis of S2(V̆ ). The forms in question take values on these basis vectors as in Table 1.
(Table 1 only shows the first ν1 + ν2 + ν3 of its columns.) Note that tA is the transition
matrix of the dual bases ẁ∗ to v̀∗.

Claim For each i in the range 1 � i � l = l(ν), the νi column vectors of dimension n+1 − i
appearing in the rows labeled (i, i) through (i, n) and columns labeled (i, 1) through (i, νi )

are linearly independent.

It follows from the ε-transversality of the pair (K, K′) that dim(Kn − i ∩K ′
n − νi

) = n−i−νi ,
in other words the linear independence of v̀∗

1 , . . . , v̀
∗
i , ẁ∗

1, . . . , ẁ
∗
νi

. Representing these (dual)
vectors in the basis v̀∗, one knows the linear independence of the following i + νi column
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Table 1. The values of the si j at the v̀∗
k ⊗ ẁ∗

l .

(k, l)

(1, 1) · · · (1, ν1) (2, 1) · · · (2, ν2) (3, 1) · · · (1, ν3) · · ·

(1, 1) a11 · · · aν11

(1, 2) a12 · · · aν12 a11 · · · aν21

(1, 3) a13 · · · aν13 a11 · · · aν31

.

.

.
.
.
.

. . .
.
.
.

. . .

(1, n) a1n · · · aν1n

(2, 2) a12 · · · aν22

(2, 3) a13 · · · aν23 a12 · · · aν32

(i, j)
.
.
.

. . .
.
.
.

. . .

(2, n) a1n · · · aν2n

(3, 3) a13 · · · aν33

.

.

.
.
.
.

. . .
.
.
.

. . .

(3, n) a1n · · · aν3n

.

.

.
. . .

vectors of dimension n:

1 0 a11 . . . aνi 1

. . .
...

. . .
...

0 1 a1i . . . aνi i

0 · · · 0 a1,i+1 . . . aνi ,i+1

...
...

...
. . .

...

0 · · · 0 a1n . . . aνi n,

from which follows the linear independence of the νi column vectors of dimension n − i
appearing in the bottom-right block. This is enough to show the claim.

This claim is in turn enough to show the linear independence of the |ν| column vectors
of dimension (

n+1
2 ) in the whole matrix. ✷

Let N̆ , X̆ , Ŏw, Z̆ , Z̆w and Z̆T,T ′ denote the objects corresponding to N , X,Ow, Z , Zw,
ZT,T ′ in the sense of Section 1.2 respectively, for the vector space V̆ instead of V . If
N̆ ∈ N̆ , let us say that a sequence W = (Wk) of subspaces of V̆ is N̆ -stable if all Wk are
N̆ -stable. For each ε ∈ E {let X̆ε denote the set of all complete updown flags of class ε,
and put Z̆ε = {(N̆ , W) ∈ N̆ × X̆ε | W is N̆ -stable} and Mε = {M ∈M2n | M is of class ε},
so that M2n = ∐

ε ∈ E2n
Mε. For each M ∈Mε put Z̆ M = {(N̆ , W) ∈ Z̆ε | typeN̆ W = M}.
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Clearly Z̆ε = ∐
M ∈Mε

Z̆ M . Let us show that the Z̆ M are irreducible and nonsingular, and
all of dimension n2 − n (Proposition 4.5). This fact will be used in the next section. As a
byproduct, this shows that the closures of the Z̆ M , M ∈Mε, give all irreducible components
of Z̆ε (see Corollary 4.6, where we also discuss relationship with other labelings of the
irreducible components).

Proposition 4.5 Fix ε ∈ E and M ∈Mε. Then Z̆ M is a nonsingular irreducible locally
closed subvariety of Z̆ε of dimension n2 − n.

Proof: First of all, we note that Z̆ M is a locally closed subvariety of Z̆ε, since the condition
typeN̆ W = M can be given in terms of equalities on the dimensions of N̆ j Wk for various j
and k (where W = (Wk)

2n
k = 0).

Now let (pk, qk), 0 � k � 2n, be as above. We have pk = #{k ′ ∈ {1, 2, . . . , k} | εk ′ = + 1}
and qk = #{k ′ ∈ {k + 1, k + 2, . . . , 2n} | εk ′ = − 1}. Also put dk = pk + qk − n = |µ(k)|. For
any sequence W = (Wk) of subspaces of V̆ , let �W denote the sum of all its constituents:
�W = ∑

k Wk .
For each k, 0 � k � 2n, put M(k) = (µ(k ′))k

k ′ = 0, and let X̆ε(k) be the set of sequences
(Wk ′)k

k ′ = 0 of subspaces of V̆ such that εk ′ = + 1 implies Wk ′ − 1 ⊂̇ Wk ′ and εk ′ = − 1
implies Wk ′ − 1 ⊃̇ Wk ′ for all 1 � k ′ � k, and such that dim �W = pk , and finally let Z̆ M(k)

be the set of all (N̆ , W) such that W ∈ X̆ε(k), N̆ ∈ gl(�W) is nilpotent, W is N̆ -stable
and typeN̆ Wk ′ = µ(k ′) holds for all 0 � k ′ � k. Note that M(2n) = M , X̆ε(2n) = X̆ε, and
Z̆ M(2n) = Z̆ M . For each k, X̆ε(k) and Z̆ M(k) are algebraic varieties over C.

We show that Z̆ M(k) is irreducible and nonsingular by induction on k. This is equivalent
to claiming that it is a connected complex manifold under the ordinary topology. Since
Z̆ M(0) is a single point, let us assume that k > 0. Note that, if W = (Wk ′)k

k ′ = 0 ∈ X̆ε(k), then
we have W′ = (Wk ′)k−1

k ′ = 0 ∈ X̆ε(k − 1), since dim �W = pk implies dim �W′ = pk−1. Hence
we have a natural projection Z̆ M(k) → Z̆ M(k − 1).

We distinguish two cases.

Case 1 (εk = −1) Then Z̆ M(k) can be written as a fibered product in the following manner.
Let Ż denote the collection of all (N̆k − 1, Wk − 1) such that Wk − 1 is a dk − 1-dimensional
subspace of V and N̆k − 1 ∈ gl(Wk − 1) is nilpotent of type µ(k − 1). Also let Z̈ denote the set
of all (N̆k−1, Wk−1, Wk) such that Wk−1 ⊃ Wk are subspaces of V̆ of dimension dk−1 and
dk respectively, and N̆k−1 ∈ gl(Wk−1) is nilpotent such that typeN̆k−1

(Wk−1) = µ(k−1) and
typeN̆k−1

(Wk) = µ(k). Then we have Z̆ M(k) ∼= Z̆ M(k − 1) ×̇
Z

Z̈ .

Now let us show that Z̈ → Ż is an analytic fiber bundle. The group Ğ = GL(V̆ ) acts transi-
tively on Ż , so that if S is the stabilizer of an arbitrarily chosen point Ṗ0 = (N̆ 0

k−1, W 0
k−1) ∈ Ż ,

then we have Ż ∼= Ğ/S, and hence Ż is a connected complex manifold. Then π : Z̈ → Ż
is an analytic fiber bundle, since we can find an analytic neighborhood U of 0 in a sub-
space c of the tangent space of Ğ at the indentity which complements that of S, such that
φ : X �→ (exp X) · Ṗ0 is a bihomomorphic map from U onto a neighborhood U̇ of Ṗ0 in Ż ,
and π is biholomorphically trivialized over U̇ by π−1(U̇ ) � ((exp X) · N̆ 0, (exp X) · W 0

k−1,

Wk) �→ ((exp X) · N̆ 0, (exp X) · W 0
k−1), (N̆ 0, W 0

k−1, (exp X)−1 · Wk)) ∈ U̇ × π−1(Ṗ0), and
we can translate U̇ by the action of Ğ to cover Ż .
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If we write F = π−1(Ṗ0) for simplicity, then Z̆ M(k) is also an analytic fiber bundle over
Z̆ M(k − 1) with fiber F . By induction hypothesis, the base space is a connected complex
manifold. The fiber F is also a connected complex manifold, since it is isomorphic to
the set of hyperplanes of Wk−1 having a prescribed N̆ -type µ(k), which is isomorphic to
Pr−1 − Pr ′−1 where (r, c) is the position of the corner of the Young diagram µ(k−1) which
gets deleted in µ(k) and (r ′, c′) is the “next” corner of µ(k−1) above (r, c). Hence the
whole space Z̆ M(k) is also a connected complex manifold in this case. We also have dim
Z̆ M(k) − dim Z̆ M(k − 1) = dim F = r − 1 in this case.

Case 2 (εk = +1) Let Ż be as in the previous case, and this time let Z̈ be the collection of
all (N̆k, Wk−1, Wk) such that Wk−1 ⊂ Wk are subspaces of dimension dk−1 and dk respec-
tively, and N̆k ∈ gl(Wk) is nilpotent with typeN̆k

(Wk−1) = µ(k−1) and typeN̆k
(Wk) = µ(k).

Then Z̆ M(k) can be identified with a Zariski open subset of Z̆ M(k − 1) ×̇
Z

Z̈ defined by
Wk �⊂ �W′ for ((N̆ ′, W′), (N̆k, Wk−1, Wk)) ∈ Z̆ M(k − 1) ×̇

Z
Z̈ since, under this condition, N̆

is determined by its restriction on �W′ and Wk . Thus, if we know that Z̈ → Ż is an analytic
fiber bundle whose fiber is a connected complex manifold, then, together with the induc-
tion hypothesis, Z̆ M(k − 1) ×̇

Z
Z̈ is a connected complex manifold, and hence is irreducible

and nonsingular. Since Z̆ M(k) is Zariski open in Z̆ M(k − 1) ×̇
Z

Z̈ , it is also irreducible and
nonsigular. (The above argument does not eliminate the possibility that Z̆ M(k) might be
empty. We will give a separate argument in the final three paragraphs of this proof to show
that Z̆ M is nonempty after all).

The proof of the fact that Z̈ → Ż is an analytic fiber bundle goes in the same manner as in
the previous case. What remains is to show that the fiber F of a point Ṗ0 = (N̆ 0

k−1, W 0
k−1) ∈ Ż

is a connected complex manifold. Let F1 be the collection of all dk-dimensional sub-
spaces containing W 0

k−1, which is isomorphic to P(V̆ /W 0
k−1). Let π1 : F → F1 be the nat-

ural projection. Let Wk ∈ F1. Then Wk has a Zariski open neighborhood U1 in F1 such
that the tautological line bundle over F1 has a nowhere vanishing section s̄ on U1. Let
s : U1 → V̆ be a morphism which “lifts” s̄, namely such that W ′

k = W 0
k−1 ⊕ C · s(W ′

k) for
every W ′

k ∈ U1. If (r, c) denotes the position of the corner of the Young diagram of µ(k)

added to µ(k−1), then A ∈ gl(Wk) with A|W 0
k−1

= N̆ 0
k−1 is nilpotent of type µ(k) if and only if

A(s(Wk)) ∈ F2 = (ker(N̆ 0
k−1)

c−1 + imN̆ 0
k−1) − (ker(N̆ 0

k−1)
c−2 + imN̆ 0

k−1) ⊂ W 0
k−1 (if c = 1,

the subtrahend is understood to be empty). Therefore we have an algebraic isomorphism
π−1

1 (U1) ∼= U1 × F2, so that π1 is an algebraic fiber bundle with fiber F2. Since the base
space F1 (∼=Pn−dk−1−1) and the fiber F2(∼=Adk−1−(r−1) − Adk−1−r ′′

, where (r ′′, c′′) is the “up-
permost” corner of µ(k−1) in the rows r and below) are both connected complex manifolds,
so is the total space F . We also see that dim Z̆ M(k) − dim Z̆ M(k − 1) = dim F = dim F1 +
dim F2 = (n − dk−1 − 1) + (dk−1 − (r − 1)) = n − r in this case.

Summing up the dimensions, we have dim Z̆ M = ∑
εk = +1(n − rk)+

∑
εk = −1(rk − 1),

where rk denotes the row number of the cell either added or deleted in obtaining µ(k) from
µ(k−1). Note that the rk cancel in total, since all cells included eventually get removed. Since
we have n summands in each sum, we have dim Z̆ M = n2 − n.

As we remarked before, the above argument does not eliminate the possibility of Z̆ M

being empty. To see that this cannot happen, we first apply Fomin’s theory (see [8]) to the
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convex subset Iε of the poset �n = {0, 1, . . . , n} × {0, 1, . . . , n}. Note that Wε is the upper
boundary of Iε. Let us call a growth into Young’s lattice a growth of partitions, and a growth
g : (	, ≺) → (	′, ≺′) faithful if x ≺̇ y implies g(x) ≺̇′ g(y). Then the updown tableaux of
class ε are exactly the faithful growths of partitions on Wε with the empty shape at both
ends. Therefore [8, Theorem B] applied to Iε provides a bijection between the w ∈ Cε,
where Cε denotes the coideal of Sn described in Lemma 4.3, and the M ∈Mε. Moreover,
[8, Theorem H] shows that one such bijection is given by defining the output M to be
the restriction to Wε of the growth of partitions gw on �n which maps each (p, q) to the
Greene-Kleitman invariant of the poset 	p(w) ∩ 	q(w).

For the moment, let w be any element of Sn , and let N̆ be a generic matrix of the poset
	(w) (see Section 1.2). For each 0 � p � n (resp. 0 � q � n), let V̆ e

p (resp. V̆ w
q ) denote the

span of e1, e2, . . . , ep (resp. ew(1), ew(2), . . . , ew(q)). Then for each p and q, the subspace
V̆ e

p ∩ V̆ w
q is N̆ -stable, and the restriction N̆ |V̆ e

p ∩V̆ w
q

V is represented by the submatrix of N̆
consisting of the rows and columns indexed by 	p(w) ∩ 	q(w). This is a generic matrix
of this poset. By the result of Gansner and Saks (see Section 1.2), the Jordan type of this
matrix coincides with the Greene-Kleitman invariant of this poset, namely gw(p, q).

Now let w ∈ Cε be the permutation sent to M by the above bijection, and put WM =
(V e

pk
∩ V w

qk
)2n

k=0. Then (N̆ , WM) ∈ Z̆ M since gw restricts to M on Wε = {(pk, qk)}2n
k=0. Hence

Z̆ M is not empty. ✷

Note that the restriction of gw (the growth of partitions defined in the final part of the above
proof ) on Wε0 (the upper boundary of �n) is the updown tableau of class ε0 obtained by
“concatenating” the pair of tableaux (T, T ′) (see Section 1.3, after the definition of updown
tableaux) produced from w by the Robinson-Schensted correspondence. Moreover, it is the
essense of the results in [32] that the closures of Z̆w and Z̆T,T ′ give the same irreducible
component of Z̆ if w corresponds to (T, T ′) in this manner. Hence it is natural to expect
that, also in the case of Z̆ε, the bijection Cε →Mε (Cε was defined in the final part of the
above proof), w �→ gw|Wε

, not only gives the equality of numbers, but also represents the
actual correspondence between the two parametrizations of the irreducible components of
Z̆ε.

Let us show that this is the case.
Note that the open embedding ιε : X̆ε → X̆ × X̆ defined by Lemma 4.2 induces an open

embedding ι̃ε : Z̆ε → Z̆ since, if W ∈ X̆ε and ιε(W) = (K, K′), then W is N̆ -stable if and
only if K and K′ are N̆ -stable.

Corollary 4.6 Let ε ∈ E, and identify Z̆ε with its image in Z̆ under the open embedding
ι̃ε defined above. The relative closures of the Z̆w inside Z̆ε, w ∈ Cε, give all irreducible
components of Z̆ε, so do the closures of the Z̆ M in Z̆ε, M ∈Mε. The closures of Z̆w and
Z̆ M in Z̆ε coincide if and only if w corresponds to M by M = gw|Wε

(where gw is the growth
of partitions on �n defined in the final part of the proof of Proposition 4.5).

Proof: First note that Z̆ε = ∐
M ∈Mε

Z̆ M . Combined with the results in Proposition 4.5,
the argument reviewed in Section 1.2 shows that the closures of the Z̆ M , M ∈Mε, give all
irreducible components of Z̆ε. On the other hand, Lemma 4.3 implies that Z̆ε, embedded
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into Z̆ by ι̃ε, coincides with
∐

w∈Cε
Z̆w. It is a part of the results in [32] that each Z̆w

is an irreducible (nonempty, nonsingular) locally closed subvariety of Z̆ of dimension
n2 − n. Hence the (relative) closures of the Z̆w inside Z̆ε, w ∈ Cε, also give all irreducible
components of Z̆ε.

It was shown towards the end of the proof of Proposition 4.5 that, so long as N̆ is a generic
matrix of the poset 	(w), we have (N̆ , WM) ∈ Z̆ M , where M = gw|Wε

. Note that WM is
identified with (V̆e, V̆w) (the counterparts of “Ve” and “Vw” in the sense of Section 1.2 for
the vector space V̆ rather than V ) via ι̃ε. Also, the set of generic matrices of 	(w) is Zariski
dense in the vector space spanned by the matrix units Eij with i �w j , namely the space
of all nilpotent matrices stabilizing both V̆e and V̆w (see Section 1.2). Hence the union of
all GL(V̆ )-translates of (N̆ , V̆e, V̆w), where N̆ runs through all generic matrices of 	(w),
is Zariski dense in Z̆w. Since this subset lies in Z̆ M , the closure of Z̆ M contains Z̆w, and
hence contains the closure of Z̆w (where closures are all taken inside Z̆ε). Since this is an
inclusion relation between irreducible components of Z̆ε, this is actually an equality. Since
the closures of the Z̆w, w ∈ Cε (resp. the Z̆ M , M ∈Mε) are all different, we conclude that
the closures of Z̆w and Z̆ M coincide if and only if w corresponds to M in this manner. ✷

Remark The irreducible components of Z̆ε admit still another parametrization. If w ∈ Cε,

then the closure of Z̆w in Z̆ε, in other words Z̆w ∩ Z̆ε (where denotes the closure in Z̆ ),

can also be written as Z̆T,T ′ ∩ Z̆ε, or the closure of Z̆T,T ′ ∩ Z̆ε in Z̆ε, where (T, T ′) comes
from w by the Robinson-Schensted correspondence. Thus, if Tε denotes the set of pairs of
standard tableaux (T, T ′) that come from the elements of Cε by the Robinson-Schensted
correspondence, then the irreducible components of Z̆ε are also parametrized by Tε. The
transfer from the parametrization by Mε to that by Tε can be attained by applying Fomin’s
theory to the region Iε ∪ Wε, without going back to w. One starts by putting M on its lower
boundary Wε, constructs a growth of partitions on Iε ∪ Wε by Fomin’s local rules, and
obtains the pair (T, T ′) in a concatenated manner (see Section 1.3, the end of the paragraph
containing the definition of updown tableaux) on the upper boundary Wε0 . The growth thus
constructed is actually the restriction of gw for w ∈ Cε hidden behind. However, all cells
above Wε are rigid under such gw, so that the construction of the part above Wε only needs
the rules that deal with rigid cells. Namely, suppose (A, B, C, D) is a cell in Iε ∪ Wε, and
suppose we know g(A) = α, g(B) = β, and g(C) = γ . Then the following subset of Fomin’s
rules determines g(D) = δ:

If β �= γ, then δ = β ∪ γ.

If β = γ, and β − α = γ − α lies in the r th row,

then δ − β = δ − γ lies in the (r + 1)st row.

(2)

Although we do not use it in the sequel, the argument above can be used to show that
any of Z̆w, Z̆T,T ′ , or Z̆ M has a generic N̆ -type of all intersections K p ∩ K ′

q for its elements
(N̆ , K, K′), where K = (K p)

n
p=0 and K′ = (K ′

q)
n
q=0, in the following sense.

Corollary 4.7 Letw ∈ Sn,and put Z̆(gw) = {(N̆ , K, K′) ∈ Z̆ | typeN̆ (K p∩K ′
q) = gw(p, q)

(0 � ∀p, q � n)} where K = (K p)
n
p=0, K′ = (K ′

q)
n
q=0 and gw is the growth of partitions on
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�n defined in the final part of the proof of Proposition 4.5. Also let (T, T ′) be the pair of
standard tableaux coming from w by the Robinson-Schensted correspondence, and λ the
shape of T and T ′. Then the following hold.
(1) Z̆(gw) is a Zariski open dense subset of Z̆w.
(2) Let ε ∈ E be such that w ∈ Cε, and put M = gw|Wε

. Then Z̆(gw) is a Zariski open dense
subset of Z̆ M . In particular, Z̆(gw) is a Zariski open dense subset of Z̆T,T ′ .

(3) Fix N̆ ∈ N̆ of Jordan type λ. Then {(K, K′) ∈ X̆ N̆ × X̆ N̆ | (N̆ , K, K′) ∈ Z̆(gw)} is a
Zariski open dense subset of X̆ N̆ ,T × X̆ N̆ ,T ′ .

Remark G. Tesler formulated a numerical counterpart of (3) (see [36, Conjecture 7.9]).
Actually his conjecture is for a wider class of objects, namely the flags in q-regular semi-
primary lattices, which include the N̆ -stable flags in a vector space over Fq . [36] deals with
more related problems in this context.

Proof: Since |gw(p, q)| = dpq(w) (see Section 2, before Lemma 2.1), we have Z̆(gw)

⊂ Z̆w. In view of the final part of the proof of Proposition 4.5 again, the Zariski dense
subset of Z̆w mentioned in the proof of Corollary 4.6 actually lies inside Z̆(gw). On the
other hand, Z̆(gw) is Zariski locally closed in Z̆w since it is defined by a finite number
of equalities on the dimensions of the subspaces N̆ j (K p ∩ K ′

q). A Zariski locally closed
subset can be dense only if it is Zariski open. Hence Z̆(gw) is Zariski open dense in Z̆w.
This proves (1).

Let ε and M be as in (2). Since M = gw|Wε
, we have Z̆(gw) ⊂ Z̆ M by definition. (1)

implies that Z̆(gw) is Zariski open and dense in the closure of Z̆w in Z̆ε, which equals
the closure of Z̆ M in Z̆ε by Corollary 4.6. Hence Z̆(gw) is Zariski open and dense in Z̆ M .
In particular, any w lies in Cε0 , and Z̆ M for M = gw|Wε0

is none other than Z̆T,T ′ . This
proves (2).

Since the subset described in (3), which we temporarily denote by S, is Zariski locally
closed in X̆ N̆ ,T × X̆ N̆ ,T ′ by the same reason as in (1), it is enough to show that it is Zariski
dense. If not, the dimension of S would be strictly smaller than that of X̆ N̆ ,T × X̆ N̆ ,T ′ .
Then the dimension of Z̆(gw) ∼= Ğ ×ZĞ (N̆ ) S would be strictly smaller than that of Z̆T,T ′ ∼=
Ğ ×ZĞ (N̆ ) (X̆ N̆ ,T × X̆ N̆ ,T ′) (where Ğ = GL(V̆ ) and ZĞ(N̆ ) is the centralizer of N̆ in Ğ),
which would contradict (2). This proves (3). ✷

5. Irreducibility of ZM

Let ε ∈ E2n and M ∈Mε. We continue to use the notations introduced during the arguments
in Section 4, such as Mε and � (as well as N̆ , X̆ε, ιε, Z̆ε, Z̆ M , once we fix a maximal
isotropic subspace V̆ ). The following proposition is our main objective in this section.

Proposition 5.1 Z M is an irreducible, nonsingular locally closed subvariety of Z of
dimension 4n2 − n.

Proof: Here we outline the proof, giving over the details to the lemmas below.
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In order to see the relation between Z̆ M and Z M , it turns out to be natural to consider the
relation between Z̆ε and Zε = ∐

M ∈Mε
Z M , and then restrict to Z M .

First note that G = GL(2n, C) acts transitively on Y . Let us fix ω0 ∈ Y for the rest of the
argument. We will always take ⊥ with respect to ω0, and similarly omit writing ω0 in some
other occasions where formally the form should be mentioned. Let H ∼= Sp(2n, C) denote
the stabilizer of ω0. Now H acts transitively on the set of maximal isotropic subspaces of
V . We also fix a maximal isotropic subspace V̆ . The stabilizer HV̆ of V̆ in H (see (3)) is a
maximal parabolic subgroup of H . Thus, if we put

Ẋ = {V ∈ X | �R(V) = V̆ } ⊃ Ẋε = {V ∈ Ẋ | R(V) is of class ε}

and

Ż = {(N , ω, V) ∈ Z | ω = ω0, V ∈ Ẋ} ⊃ Żε = Ż ∩ Zε ⊃ Ż M = Ż ∩ Z M ,

where R(V) = R(ω0, V), then the map G × Ż → Z , (g, (N , ω0, V)) �→ (Ad(g)N , g∗ω0,

g · V) is surjective, and restricts to surjections G × Żε → Zε and G × Ż M → Z M . We can
write Z ∼= G × HV̆ Ż , Zε

∼= G × HV̆ Żε and Z M
∼= G × HV̆ Ż M . In this case Z , Zε, Z M are alge-

braic fiber bundles over G/HV̆ with fibers Ż , Żε, Ż M respectively, since both G → G/H
and H → H/HV̆ admit regular sections on Zariski open subsets.

The projection πX : Z → X, (N , ω, V) �→ V restricts to Ż → Ẋ and to Żε → Ẋε, and
these pairs inherit equivariant actions of HV̆ . (HV̆ is intransitive even on Ẋε.)

We want to compare Żε, Ż M with Z̆ε, Z̆ M . To do this, we further fix a complementary
maximal isotropic subspace V̆ †. Let us say that V = (Vk)

2n
k=0 ∈ Ẋε is split along (V̆ , V̆ †) if

Vk = (Vk ∩ V̆ ) ⊕ (Vk ∩ V̆ †) holds for every k, and put

Ẋ0
ε = {V ∈ Ẋε | V is split along (V̆ , V̆ †)}

and

Ż0
ε = Żε ∩ π−1

X

(
Ẋ0

ε

) ⊃ Ż0
M = Ż M ∩ π−1

X

(
Ẋ0

ε

)
Now we define a subgroup

H1 = {h ∈ HV̆ | h induces the identity maps on V̆ and V/V̆ }

(see (4) below). Due to Lemma 5.4 and Lemma 5.6 below, Ẋ0
ε meets every H1-orbit on Ẋε

(exactly once). Hence the maps H1 × Ż0
ε → Żε and H1 × Ż0

M → Ż M given by the action of
H1 on Żε (preserving Ż M ) are surjective.

We define intermediate varieties

Ẑ0
ε = {

(N̆ , V) ∈ N̆ × Ẋ0
ε | R(V) is N̆ -stable

}
and

Ẑ0
M = {

(N̆ , V) ∈ Ẑ0
ε | typeN̆ (R(V)) = M

}
,
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so that the projections Ż0
ε → Ẋ0

ε and Ż0
M → Ẋ0

ε factor through Ẑ0
ε and Ẑ0

M respectively.
Lemma 5.4 below implies Ẋ0

ε
∼= X̆ε via V �→ R(V), and hence we have Ẑ0

ε
∼= Z̆ε and

Ẑ0
M

∼= Z̆ M .
Moreover, by Lemma 5.7, there exists a vector bundleQ over Ẋ0

ε such that Ż0
ε
∼=Q ×̇

X0
ε

Ẑ0
ε .

Thus Ż0
ε is isomorphic to a vector bundle over Ẑ0

ε , and by restriction, Ż0
M is also isomorphic

to a vector bundle over Ẑ0
M . Since Ẑ0

M
∼= Z̆ M is irreducible by Proposition 4.5, Ż0

M is
irreducible, and hence Z M = G · Ż M = G · (H1 · Ż0

M) = G · Ż0
M is also irreducible.

With some more work, we will see in Corollary 5.9 that Żε is isomorphic to an algebraic
vector bundle over Z̆ε. By restriction, Ż M is isomorphic to an algebraic vector bundle over
Z̆ M . Since Z̆ M is nonsigular by Proposition 4.5, Ż M is also nonsigular. Hence Z M , which
is an algebraic fiber bundle over G/HV̆ with Ż M as fiber, is also nonsingular.

As for the dimension, we have dim Z M = dim Ż M + dim G/HV̆ = dim Ż M + 4n2 −
(n2 + (

n+1
2 )). Corollary 5.9 gives dim Ż M = dim Z̆ M + (

n+1
2 ) = dim Z̆ + (

n+1
2 ) = n2 − n +

(
n+1

2 ), so that dim Z M = 4n2 − n. ✷

We argue some more details to state and prove the Lemmas quoted in the proof of
Proposition 5.1. We continue to use various notations introduced there. In particular, we
continue to fix ω0, V̆ and V̆ †. Also, let (pk, qk) be the coordinates of the kth point of Wε as
in Section 4.

We start by giving an alternate description for the pair (K, K′) corresponding to R(V),

which is useful when �R(V) = V̆ is specified.

Lemma 5.2 Let V = (Vk)
2n
k=0 ∈ Ẋε, W = R(V) = (Wk)

2n
k=0, ιε(W) = (K, K′), K = (Ki )

2n
i=0

and K′ = (K ′
j )

2n
j=0. Then we have Vk ∩V̆ = K pk and V ⊥

k ∩V̆ = K ′
qk

(or equivalently Vk + V̆ =
(K ′

qk
)⊥) for any k. In other words, we have Ki = Vai ∩ V̆ and K ′

j−1 = (Vb j + V̆ )⊥ for any
i and j .

Proof: First, recall from the definition of ḡ in the proof of Lemma 4.2 that

k∑
k ′=0

Wk ′ = K pk and
2n∑

k ′=k

Wk ′ = K ′
qk

for all 0 � k � 2n.

Now fix k, and inductively claim for k � k1 � 2n that Vk ∩ ∑k1
k ′=0 Wk ′ = K pk . The case

k1 = k is what we just recalled. Suppose k1 > k. It is easy by induction if Wk1−1 ⊃ Wk1 .
Otherwise Wk1 = Wk1−1 ⊕Cv with some v /∈ Vk1−1 by the proof of Lemma 2.1, so that Vk ∩∑k1

k ′ = 0 Wk ′ = Vk ∩ Vk1−1 ∩ ∑k1
k ′=0 Wk ′ = Vk ∩ Vk1−1 ∩ ∑k1−1

k ′ = 0 Wk ′ = Vk ∩ ∑k1−1
k ′ = 0 Wk ′ = K pk

by induction. Putting k1 = 2n, we have the first statement. The second statement follows
from the first, applied to V⊥, since R(V⊥) is W read backwards. ✷

We can use ω0 to identify V̆ † with V̆ ∗; namely put

τ : V̆ † → V̆ ∗, w0(v, v′) = 〈v, τ (v′)〉 (∀v ∈ V̆ , ∀v′ ∈ V̆ †).
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Then, for any subspace K ⊂ V̆ , the orthogonal complement of K in V̆ ∗ corresponds to
K ⊥ ∩ V̆ † by τ−1. (This K ⊥ is taken with respect to ω0 inside V, and note that K ⊂ V̆
implies K ⊥ ⊃ V̆ ⊥ = V̆ , so that K ⊥ = V̆ ⊕ (K ⊥ ∩ V̆ †)).

Lemma 5.3 Let V, W, K, K′ be as in Lemma 5.2. Then V is split along (V̆ , V̆ †) if and
only if we have Vk = K pk ⊕ (K ′

qk

⊥ ∩ V̆ †) for all k.

Proof: We have K ′
qk

⊥ ∩ V̆ † = (Vk + V̆ ) ∩ V̆ † by Lemma 5.2. If V is split, this equals

Vk ∩ V̆ †, so that Vk = (Vk ∩ V̆ )⊕(Vk ∩ V̆ †) = K pk ⊕(K ′
qk

⊥ ∩ V̆ †). Conversely if the equality

in Lemma 5.3 holds, then Vk is a sum of a subspace of V̆ and a subspace of V̆ †, whence V
is split. ✷

Lemma 5.4 For W ∈ X̆ε, let s(W) denote the split flag determined by Lemma 5.3 for
(K, K′) = ιε(W). Then s is a closed embedding of X̆ε into Ẋε, whose image equals Ẋ0

ε , and
is a section of Ṙε = R|Ẋε

: Ẋε → X̆ε.

Proof: The map (K, K′) �→ V = (Vk)
2n
k=0, Vk = K pk ⊕ (K ′

qk

⊥ ∩ V̆ †) is a morphism of al-
gebraic varieties X̆ × X̆ → X . We have Vk ∩ V ⊥

k = (K pk ∩ K ′
qk

) ⊕ ((K ′
qk

+ K pk )
⊥ ∩ V̆ †),

which reduces to K pk ∩ K ′
qk

= Wk if (K, K′) is ε-transversal. Therefore we have s(W) ∈ Ẋε

and Ṙε ◦ s(W) = W, so that s is a section of Ṙε. Actually s(W) ∈ Ẋ0
ε since it is split and

s ◦ Ṙε|Ẋ0
ε
= idẊ0

ε
due to Lemma 5.3, so that im s = Ẋ0

ε . Now Ẋ0
ε is closed in Ẋε, since it is

defined by the condition dim(Vk ∩ V̆ †) � n − qk = k − pk for all k (note that dim(Vk ∩ V̆ †)

cannot exceed k − pk for V ∈ Ẋε, since dim(Vk ∩ V̆ ) = pk and V̆ ∩ V̆ † = {0}). Hence s is a
closed embedding. ✷

We use explicit matrix representation to further analyze the situation. For any basis
v = (v1, v2, . . . , vn) of V̆ , define a basis v† of V̆ † by

v† = (
v†

n, . . . , v
†
2, v

†
1

)
, v

†
i = τ−1(v∗

i ) (1 � ∀i � n),

where v∗ = (v∗
1 , v

∗
2 , . . . , v

∗
n) is the dual basis of v. Fix a basis ĕ of V̆ , and let ĕ† be as above.

We will employ matrix representation with respect to the basis

e = (
ĕ1, ĕ2, . . . , ĕn, ĕ†

n, . . . ĕ†
2, ĕ†

1

)
.

This puts us in the same situation as the previous sections, where we defined e to be the
standard basis and the form ω0 by an explicit matrix J .

Let us express HV̆ and H1 explicitly. If A is an n × n matrix, let t ′
A denote the “transpose”

of A with respect to the reverse diagonal, namely t ′
A = J1

t ′
AJ1 (J1 is the matrix that appeared

before the statement of Proposition 2.2 quoted in Section 1.3). Put

sn = {S ∈ Mn(C) | t ′
S = S}.
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Then sn can be regarded as the matrix representation of

{φ ∈ HomC(V̆ †, V̆ ) | tφ = φ}

with respect to the basis ĕ† and ĕ, where tφ ∈ HomC(V̆ ∗, (V̆ †)∗) is identified with an element
of HomC(V̆ †, V̆ ) by using τ twice. It can also be identified with S2(V̆ ), the space of
symmetric tensors over V̆ of rank 2. Then HV̆ and H1 have the forms

HV̆ =
{(

A S

O t ′
A−1

) ∣∣∣∣∣A ∈ GL(n, C), S ∈ sn

}
and (3)

H1 =
{(

E S

O E

) ∣∣∣∣∣S ∈ sn

}
= {expS̃ | S ∈ sn}, (4)

where S̃ = ( O S
O O ), which satisfies S̃2 = O and exp S̃ = E + S̃. Hence S �→ exp S̃ gives an

isomorphism of H1 with a vector group, and in particular H1 is connected.
Let ai , 1 � i � n, and b j , 1 � j � n, be defined with respect to ε as in Section 3.

Lemma 5.5 Let V ∈ X and W ∈ X̆ε, ιε(W) = (K, K′). Fix bases v = (vi )
n
i=1 and w =

(w j )
n
j=1 of K and K′ respectively. Let A, B be the matrices representing v and w in terms

of ĕ respectively. (It follows that the matrix representation of the basis w† of V̆ † in terms of ĕ†

is t ′
B−1, and that K ′⊥

j ∩ V̆ † is spanned by w†
n, w

†
n−1, . . . , w

†
j+1). Then we have V ∈ Ṙ−1

ε (W)

(where Ṙε = R|Ẋε
) if and only if V has a basis u = (uk)

2n
k=1 whose matrix representation in

terms of e has the form(
A O

O t ′
B−1

) (
E L

O E

)
ẇε,

wε =
(

1 2 · · · n n + 1 · · · 2n − 1 2n

a1 a2 · · · an bn · · · b2 b1

)−1

∈ S2n, (5)

where the ai and b j correspond to ε as in Section 3, and ẇε denotes the permutation matrix
representing wε. Two such bases span the same flag if and only if the entries of L in the
positions

Lν = {(i, j) | 1 � i, j � n, j � νn+1−i }

are the same.

Proof: The multiplication by ẇε from the right amounts to changing the order of the
columns according to the permutation w−1

ε . Therefore (5) is equivalent to saying that:
for each k, the subspace Vk is spanned by v1, v2, . . . , vpk and

w†
n + l ′n, w

†
n−1 + l ′n−1, . . . , w

†
qk+1 + l ′qk+1, where l ′n, l ′n−1, . . . , l ′qk+1 ∈ V̆ . (6)
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We first assume V ∈ Ṙ−1
ε (W) and prove (6) inductively on k, starting with the case k = 0,

which is trivial. If k > 0 and k = ai for some i, then we have i = pk, and K pk−1 = Vk−1 ∩ V̆ �
Vk ∩ V̆ = K pk . Since vpk ∈ K pk − K pk−1, the subspace Vk is spanned by Vk−1 and vpk . Due
to the induction hypothesis, (6) also holds for this k. On the other hand if k = b j for
some j, then we have j = qk + 1, and (K ′

qk+1)
⊥ = Vk−1 + V̆ � Vk + V̆ = (K ′

qk
)⊥. Since

w
†
qk+1 ∈ (K ′

qk
)⊥ − (K ′

qk+1)
⊥, we have Vk + V̆ = Vk−1 + V̆ + Cw

†
qk+1, namely Vk is spanned

by Vk−1 and w
†
qk+1 modulo V̆ . Therefore there exists uk ∈ w

†
qk+1 + V̆ such that Vk is spanned

by Vk−1 and uk . Due to the induction hypothesis, (6) also holds for this k.
Conversely assume (6). Then it follows that Vk ∩ V̆ = ∑pk

i=1 Cvi = K pk and Vk + V̆ =∑n
j=qk+1 Cw

†
j + V̆ = (K ′

qk
)⊥ by definition. Then V ⊥

k ∩ Vk ⊂ (Vk ∩ V̆ )⊥ ∩(Vk + V̆ ) = K ⊥
pk

∩
(K ′

qk
)⊥ = (K pk + K ′

qk
)⊥, which equals V̆ ⊥ = V̆ by the ε-transversality of (K, K′). Therefore

Vk ∩ V ⊥
k = Vk ∩ V ⊥

k ∩ V̆ = (Vk ∩ V̆ ) ∩ (V ⊥
k ∩ V̆ ⊥) = (Vk ∩ V̆ ) ∩ (Vk +V̆ )⊥ = K pk ∩ K ′

qk
=

Wk . Since this holds for all k, we have V ∈ Ṙ−1
ε (W).

Finally let L and L ′ be two n by n matrices. Then (5) spans the same flag for L and L ′

if and only if there exists a matrix b ∈ B (see Section 2) such that ( E L
O E )ẇεb = ( E L ′

O E )ẇε,

namely ẇεbẇ−1
ε = ( E L ′−L

O E ). This means that the (i, j) entry of L ′ − L is zero unless ai

comes earlier than bn+1− j . This condition is equivalent to j > νn+1−i (see figure 5), hence
follows the final claim. ✷

Remark This endows Ẋε with a vector bundle structure over X̆ε, which depends on the
choice of V̆ †, and of which Ẋ0

ε is the zero section. In fact, let S̆ denote the set of all bases of
V̆ , and let p̆ : S̆ × S̆ → X̆ × X̆ denote the map (v, w) �→ (Fl(v), Fl(w)). Then X̆ × X̆ can
be covered by open sets U on each of which p̆ admits a regular section ξ �→ (v(ξ), w(ξ)).
If H= Mn(C) and Hν̄ = {L = (li j ) ∈H | li j = 0 for (i, j) ∈Lν}, then this argument gives an
isomporphism (as varieties) Ṙ−1

ε (U ) ∼= U × (H/Hν̄ ) commuting with projections onto U .
If U and U ′ are two such open sets, with regular sections (v, w) and (v′, w′), the transition
function U ∩ U ′ → GL(H/Hν̄ ) is given by ξ �→ (L mod Hν̄ �→ σ(ξ)L t ′

τ(ξ) mod Hν̄ ),

where v(ξ) = v′(ξ)σ (ξ) and w(ξ) = w′(ξ)τ (ξ) on U ∩ U ′ (note that B̆Hν̄
t ′

B̆ ⊂Hν̄ , where
B̆ is the group of the invertible n × n upper triangular matrices).

Lemma 5.6 The action of H1 on Ẋε respects each fiber of Ṙε = R|Ẋε
: Ẋε → X̆ε, V �→

R(V), and is transitive on each fiber.

Proof: The group HV̆ acts on Ẋε and X̆ε, and Ṙε is HV̆ -equivariant. Since the subgroup
H1 acts trivially on X̆ε, it preserves each fiber of Ṙε. Fix W ∈ X̆ε, and let v, w, A, B be as in
Lemma 5.5. Then s(W) ∈ Ẋ0

ε ∩ Ṙ−1
ε (W) (see Lemma 5.4) can be represented by the basis

( A O
O t ′B−1 )ẇε. An element of H1 carries this flag to the one corresponding to(

E S

O E

) (
A O

O t ′
B−1

)
ẇε =

(
A O

O t ′
B−1

) (
E A−1S t ′

B−1

O E

)
ẇε.

Now v and w satisfy the assumption for Lemma 4.4, so the entries of A−1S t ′
B−1 in Lν

provide all elements of C|ν| as S varies, since the (i, j)-entry of A−1S t ′
B−1 is the value of

v∗
i ⊗ w∗

n+1− j at S. Hence H1 acts transitively on each fiber of Ṙε. ✷
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Remark This shows that the vector bundle Ẋε over X̆ε is a quotient of the trivial vector
bundle X̆ε × sn, via the “action” map (W, S) �→ (exp S̃) · s(W).

Lemma 5.7 There exists a vector bundle Q over Ẋ0
ε
∼= X̆ε of rank (

n+1
2 ) − |ν| such that

Ż0
ε
∼=Q ×̇

X0
ε

Ẑ0
ε .

Proof: For S ∈ sn, let φS ∈ HomC(V̆ †, V̆ ) denote the map represented by S in the bases
ĕ† of V̆ † and ĕ of V̆ . Let (N̆ , V) ∈ Ẑ0

ε (so that V splits along (V̆ , V̆ †)), and let (N , V) ∈ Żε

be such that N |V̆ = N̆ . We have Gω0 ∩ GV ⊂ Gω0 ∩ GV̆ = HV̆ , and

LieHV̆ =
{(

A S

O − t ′
A

) ∣∣∣∣∣A ∈ gl(n, C), S ∈ sn

}

by (3). Since N ∈ Lie(Gω0 ∩ GV) (see the paragraph after the proof of Proposition 2.2), we
can write N in this form. Then N |V̆ = N̆ if and only if A represents N̆ in the basis ĕ. Note
that N is automatically nilpotent if N has this form and N |V̆ is nilpotent. Since V splits and
we have Vk ∩ V̆ = K pk and Vk ∩ V̆ † = K ′

qk

⊥ ∩ V̆ † for all k (where (K, K′) = ιε(R(V))), the
condition N ∈ Lie GV breaks up into N̆Ki ⊂ Ki , N̆K ′

j ⊂ K ′
j for all i and j (already fulfilled

due to the definition of Ẑ0
ε ) and

φS(K ′
qk

⊥ ∩ V̆ †) ⊂ K pk , 0 � ∀k � 2n.

Since this condition for φS only depends on V, we can define Q⊂ Ẋ0
ε × sn by this condition

and have Ż0
ε
∼=Q ×̇

X0
ε

Ẑ0
ε .

It remains to show that Q is a vector bundle over Ẋ0
ε
∼= X̆ε. For W ∈ X̆ε, let Q(W) denote

the set of S satisfying the above condition for (K, K′) = ιε(W), or equivalently

Q(W) = {
S ∈ sn | φS

(
K ′

n− j
⊥ ∩ V̆ †

) ⊂ Kn−ν ′
j
(1 � ∀ j � l(ν ′))

}
= {

S ∈ sn | 〈φs
(
w

†
n+1− j

)
, v∗

n+1−i

〉 = 0(∀( j, i) ∈ ν ′)
}
,

where v, w are arbitary bases of K, K′ respectively, since K ′
n− j

⊥ ∩ V̆ † is spanned by w†
n,

w
†
n−1, . . . , w

†
n− j+1. Shifting to the symmetric tensors over V̆ , we have

∼= {S ∈ S2(V̆ ) | 〈S, v∗
n+1−i ⊗ w∗

n+1− j 〉 = 0 (∀(i, j) ∈ ν)}.

Let X̆ε × S2(V̆ ) → X̆ε be the trivial vector bundle with fiber S2(V̆ ). By Lemma 4.4, the
forms v∗

n+1−i ⊗ w∗
n+1− j , (i, j) ∈ ν, remain linearly independent when restricted to S2(V̆ )

so long as (Fl(v), Fl(w)) is ε-transversal. If U ⊂ X̆ε is an open subset admitting a regu-
lar section ξ �→ (v(ξ), w(ξ)) of p̆ over ιε(U ) (see remark after Lemma 5.6), this section
defines |ν| linear independent regular sections of the dual bundle U × (S2(V̆ ))∗ → U, and
Q(W) is the space of solutions of their values at W. By a general argument in Lemma 5.8
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below,
⋃

W ∈ U {W} × Q(W) ⊂ U × S2(V̆ ) is a subbundle of rank (
n+1

2 ) − |ν|, and hence so
is

⋃
W ∈ X̆ε

{W} × Q(W) ⊂ X̆ε × S2(V̆ ). ✷

Although the following general claim, used in the proof of Lemma 5.7, is elementary, let
us include a proof for convenience.

Lemma 5.8 Let U be a variety over C, W a finite-dimensional vector space over C and
d its dimension, and let U × W → U be the trivial vector bundle over U with fiber W .
Suppose α1, α2, . . . , αe ∈O(U ) ⊗ W ∗ are regular sections of the dual bundle which are
everywhere linearly independent, and put Q(u) = ⋂e

p=1 ker αp(u) ⊂ W for all u ∈ U. Then⋃
u ∈ U {u} × Q(u) ⊂ U × W is a subbundle of rank d − e.

Proof: Fix a basis (sq)
d
q=1 of W, and let A = (apq) ∈ Me,d(O(U )) be defined by αp =∑

q apqs∗
q for all p, where (s∗

q ) is the dual basis of (sq). Then Q(u) = {b | A(u)b = 0},
where b is the column vector representing an element of W in terms of (sq). For each
q ∈ (

{1,2,...,d}
e ), let Uq ⊂ U be the set of points where the columns of A indexed by the

elements of q are linearly independent. Then U = ⋃
q Uq is an open covering. If q̌ denotes

the complement of q, then inside Uq there are |q̌| = d − e linearly independent solutions
bp, one for each p ∈ q̌, of the form bp = sp + ∑

q ∈ q bpqsq . The coefficients bpq , q ∈ q,

are polynomials in the entries of A and the inverse of the full minor of A consisting of the
columns indexed by q, hence belong to O(Uq). Namely they give d − e regular sections of
W over Uq. Hence

⋃
u ∈ U {u} × Q(u) ⊂ U × W is a subbundle of rank d − e. ✷

Let us remark here a little more on the structure of Żε.

Corollary 5.9 Żε is isomorphic to an algebraic vector bundle over Z̆ε of rank (
n+1

2 ).

Proof: By an argument similar to Lemma 5.8, remark after Lemma 5.6 implies that X̆ε can
be covered by open sets U for which (1) one can choose a |ν|-dimensional subspace PU ⊂ sn

such that, for every W ∈ U, the map PU � S �→ (exp S̃) · s(W) gives a linear isomorphism
PU

∼= Ṙ−1
ε (W). Note that the collection of these isomorphisms constitutes a trivialization

of the vector bundle Ṙε : Ẋε → X̆ε over U, which we denote by α : Ṙ−1
ε (U ) ∼= U × PU .

Combining with Lemma 5.7, one can impose one more condition on U . For simplicity, we
put Ũ = {(N̆ , W) ∈ Z̆ε | W ∈ U } for each open set U ⊂ X̆ε. We require that (2) the vector
bundle Ż0

ε → Ẑ0
ε
∼= Z̆ε is trivial over Ũ . Let us denote this projection by π for now, and let

β : π−1(Ũ ) ∼= Ũ × QU be a trivialization, with some vector space QU .
Let p denote the projection Żε � (N , V) �→ (N |V̆ , R(V)) ∈ Z̆ε. Then we have an iso-

morphism γ : p−1(Ũ ) � (N , V) �→ ((N |V̆ , R(V)), (S, q)) ∈ Ũ × (PU ⊕ QU ), where S is the
PU -component of α(V) and q is the QU -component of β((exp S̃)−1 · (N , V)). Note that
(exp S̃)−1 · (N , V) ∈ Ż0

ε . Suppose U ′ is another such open set, and let α′, β ′, γ ′ be the coun-
terparts of α, β, γ for U ′, respectively. Remark after Lemma 5.6 [resp. Lemma 5.7] shows
that the transition map from α to α′ [resp. β to β ′] is a linear isomorphism (which we
denote by A [resp. B]) with coefficients in O(Ũ ∩ Ũ ′). We claim that the transition map
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from γ to γ ′ is also a linear isomorphism, PU ⊕ QU → PU ′ ⊕ QU ′ , whose coefficients are
in O(Ũ ∩ Ũ ′). This will conclude our argument.

Let (N̆ , W) ∈ Ũ ∩ Ũ ′ ⊂ Z̆ε and (N , V) ∈ p−1((N̆ , W)) ⊂ p−1(Ũ ∩ Ũ ′) ⊂ Żε. Put γ (N ,

V) = ((N̆ , W), (S, q)) and γ ′(N , V) = ((N̆ , W), (S′, q ′)). By definition, we have S′ =
A(S). Also we have

β((exp S̃)−1 · (N , V)) = β(Ad(exp S̃)−1(N ), s(W)) = ((N̆ , s(W)), q)

and

β ′((exp S̃′)−1 · (N , V)) = β ′(Ad(exp S̃′)−1(N ), s(W)) = ((N̆ , s(W)), q ′)

We want to clarify the relation between q and q ′. As an intermediary, we put β((exp S̃′)−1 ·
(N , V)) = ((N̆ , s(W)), q ′′). Then we have q ′ = B(q ′′). Writing Ad(exp S̃)−1(N ) =( N̆ P

O −t ′N̆ )

in the basis e, we have

Ad(exp S̃′)−1(N ) = Ad(E + (S − A(S))̃ )

(
N̆ P

O − t ′
N̆

)

=
(

N̆ P + (A(S) − S)t ′
N̆ + N̆ (A(S) − S)

O − t ′
N̆

)
.

If we define ÃN̆ : PU → sn by S �→ (A(S) − S) t ′
N̆ + N̆ (A(S) − S), then this is a linear

map whose coefficients are inO(Ũ ∩ Ũ ′). We have q ′′ = q + βW ◦ ÃN̆ (S), where βW : Q(W)

→ QU is the restriction of β to the fibers of W. Note that the composition βW ◦ ÃN̆ is also
a linear map with coefficients in O(Ũ ∩ Ũ ′). We then have q ′ = B(q) + B ◦ βW ◦ ÃN̆ (S),

which is a linear map PU ⊕ QU → Q′
U again with coefficients in O(Ũ ∩ Ũ ′). Therefore the

transition map from γ to γ ′, PU ⊕ QU � (S, q) �→ (A(S), B(q) + B ◦βW ◦ ÃN̆ (S)) ∈ PU ′ ⊕
QU ′ , is a linear isomorphism depending regularly on (N̆ , W) ∈ Ũ ∩ Ũ ′. ✷

Corollary 5.10 The subvarieties Z M , M ∈M2n, give all irreducible components of Z.

Proof: This follows from Proposition 3.1 and Proposition 5.1 by the general argument
reviewed in the third paragraph of Section 1.2. ✷

6. Coincidence with the combinatorial correspondence

We have seen that the irreducible components of the variety Z are parametrized by the
Brauer diagrams on 2n points (Proposition 2.5) as well as the updown tableaux of degree 2n
(Proposition 5.1 and Corollary 5.10). Thus the relation Zd = Z M for d ∈D2n and M ∈M2n

determines a bijection Mgeom :D2n →M2n . On the other hand, there is a “combinatorial”
bijection between these sets reviewed in Section 1.3, which we denote by Mcomb.

Our objective is to show that these two bijections are the same. The following is the
essense of its proof.
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Proposition 6.1 Let d ∈D2n, and let M ∈M2n be the updown tableau produced from d by
the combinatorial correspondence reviewed in Section 1.3. If (ω, V) ∈Od , then the nilpotent
elements N in LieG(ω,V) form a vector space, in which the ones such that (N , ω, V) ∈ Z M

form a Zariski open and dense subset.

Proof: By Proposition 2.2, we may assume that V = Vwd and ω = ω0. Then, as in the
proof of Lemma 2.3, Rad (ω0 | Vi ) is spanned by the ewd (k), k ∈ {1, 2, . . . , i} ∩ id({i +1, i +
2, . . . , 2n}). Let Ii denote the set of k satisfying this condition, namely the set of position
labels of the left-end vertices of the edges in d that connect one of the i vertices from the left
with one of the 2n − i vertices from the right. Note that wd(Ii ) ⊂ {1, 2, . . . , n} since these
are left-end vertices. Since �R(ω0, Vwd ) is a maximal isotropic subspace, this implies that
it coincides with

∑n
i=1 C ei , which here we denote by V̆ .

By Lemma 2.4, the nilpotent elements in Lie G(ω0,Vwd ) form a Lie subalgebra ud , which
is a vector space. Let ŭd denote the space of n × n matrices whose nonzero entries are only
in positions (p, q) satisfying 1 � p, q � n, w−1

d (p) < w−1
d (q) (or equivalently p < q), and

w−1
d (q ′) < w−1

d (p′). Then Lemma 2.4 says that the map N �→ N |V̆ , which takes the top-left
quadrant, maps ud onto ŭd . Suppose that the entries of N |V̆ in the above mentioned positions
are algebraically independent over Q. Note that these N form a Zariski dense subset of ud .
Now for each i put N̆i = N̆ | Rad(ω0|Vi ). Then the matrix representation of N̆i is the submatrix
of N |V̆ consisting of the rows and columns indexed by wd(Ii ). Let 	i (d) denote the poset
consisting of the elements of wd(Ii ) and in which p and q have the order relation p ≺ q if
and only if w−1

d (p) � w−1
d (q) (or equivalently p � q) and w−1

d (q ′) � w−1
d (p′). Then N̆i is

a generic matrix of the poset 	i (d) (see Section 1.2). By a theorem of Gansner and Saks
(again see Section 1.2), the Jordan type of N̆i is equal to the Greene-Kleitman invariant of
the poset 	i (d).

Now consider the tableau T (i) produced from d in the combinatorial correspondence.
The entries of T (i) are the elements of 	i (d), namely the 1 � p � n such that the label p
appears among the leftmost i vertices and such that the label p′ appears among the rightmost
2n − i vertices of d . If p1 < p2 < · · · < ps are the elements of 	i (d) in the increasing order
(which is the same as the order of their appearance as labels of d from left to right), and if
w ∈ Sr denotes the permutation such that the corresponding primed numbers appear from
right to left in the order (pw(1))

′, (pw(2))
′, . . . , (pw(s))

′, then the poset 	i (d) is isomorphic
to 	(w) (see the final paragraph of Section 1.2). Since the rules of row insertion are only
concerned with the relative magnitudes of the letters involved, we know that T (i) is obtained
from P(w) (see the second paragraph of Section 1.1) by replacing each entry a with pa,

so that the shape of T (i) equals the Greene-Kleitman invariant of 	(w) ∼= 	i (d), which
equals the Jordan type of N̆i as we saw in the previous paragraph.

Hence the elements N ∈ ud such that (N , ω0, Vwd ) ∈ Z M form a Zariski dense subset of
ud . By Proposition 3.1, this subset is Zariski locally closed. Since a Zariski locally closed
subset can be dense only if it is Zariski open, this subset is Zariski open and dense. ✷

In summary, we have shown the following:

Theorem 6.2 Let Mcomb :D2n →M2n denote the combinatorial bijection reviewed in
Section 1.3, and let Mgeom :D2n →M2n denote the bijection through the labeling of
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the irreducible components of Z , namely, for d ∈D2n, we put Mgeom(d) = M for the
unique M ∈M2n satisfying Z M = Zd , whose existence as well as uniqueness is assured
by Proposition 2.5, Proposition 5.1 and Corollary 5.10. Then we have Mcomb = Mgeom.

Proof: Let d ∈D2n, and let M = Mcomb(d). Then Proposition 6.1 shows that a Zariski
dense subset of Zd is contained in Z M . This implies Zd ⊂ Z M , and hence Zd ⊂ Z M .
Since both sides are irreducible components of Z , we actually have Zd = Z M , whence
M = Mgeom(d).

Since both Mcomb and Mgeom are bijections, this is enough to conclude that they
coincide. ✷

Remark If d and M are related as above, then Zd ∩ Z M is Zariski open and dense in
Zd = Z M (and hence in Zd and in Z M ). In fact, Zd (resp. Z M ) is Zariski locally closed in
Z by Proposition 2.5 (resp. Proposition 3.1), and hence in Zd = Z M . Since Zd (resp. Z M )
is Zariski dense in Zd = Z M by definition, it is Zariski open by the same argument as in
the final part of the proof of Proposition 6.1. The intersection of two Zariski open dense
subsets of a variety is also Zariski open and dense.

7. Discussions

1. Updown tableaux appear as the “recording tableaux” in Berele’s correspondence [2],
which gives the character-level decomposition of (C2n)⊗ f under Sp(2n, C). On the other
hand, there are “semistandard” versions of updown tableaux (see [10]), and certain semi-
standard updown tableaux encode the Sp(2n)-tableaux (see [35]; a more straightforward
encoding is embedded in [19]; a more delicate version in [1]), which also appear in Berele’s
correspondence. Moreover, there are generalizations of the bijection discussed in this paper
for semistandard updown tableaux (see [10], [22] and [18]). Is there a geometric explanation
of Berele’s correspondence?

2. Are there geometric interpretations of other Robinson-Schensted-type correspon-
dences? For example, can one find an interpretation analogous to Steinberg’s for shifted
tableaux (see [24])? Can one relate the Edelman-Greene correspondence (see [6]) or its
shifted analogue (see [13, 15]) with geometry?

Notes

1. After submitting the first version of this paper, P. Trapa informed us of the variety Zθ defined by Springer and
also investigated by himself (see [31], and the variety M in [37]). This seems to provide another ground for
the interpretation duscussed in the present paper, and the comparison will be made elsewhere. We thank him
for the information and comments. We also thank H. Ochiai for related remarks on Steinberg’s variety Z . [31]
and [37] were added to the bibliography.

2. Remark after Corollary 4.6 may be regarded a corrected version of an auxiliary result in a preliminary version
of this paper, which mistakenly claimed that ι̃−1

ε (Z̆T,T ′ ) coincides with Z̆ M even before taking closures in Z̆ε,

if M and (T, T ′) are related as in the remark.
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