ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

On the Combinatorics of Projective Mappings

György Elekes and Zoltán Király

DOI: 10.1023/A:1012799318591

Abstract

We consider composition sets of one-dimensional projective mappings and prove that small composition sets are closely related to Abelian subgroups.

Pages: 183–197

Keywords: projective mapping; composition set; abelian subgroup

Full Text: PDF

References

1. A. Balog and E. Szemerédi, “A statistical theorem of set addition,” Combinatorica 14 (1994), 263-268.
2. J. Beck, “On the lattice property of the plane and some problems of Dirac, Motzkin and Erd\Acute\Acute os,” Combinatorica 3 (3-4) (1983), 281-297.
3. Y. Bilu, “Structure of sets with small sumset,” Asterisque, SMF 258 (1999), 77-108.
4. G. Elekes, “On linear combinatorics I,” Combinatorica 17 (4) (1997), 447-458.
5. G. Elekes, “On linear combinatorics II,” Combinatorica 18 (1) (1998), 13-25.
6. G. A. Freiman, Foundations of a Structural Theory of Set Addition, Translation of Mathematical Monographs vol.
37. Amer. Math. Soc., Providence, R.I., USA, 1973.
7. R. Graham and J. Ne\check set\check ril (Eds.), The Mathematics of Paul Erd\Acute\Acute os, Springer-Verlag, Berlin, 1996.
8. M. Laczkovich and I.Z. Ruzsa, “The number of homothetic subsets,” in The Mathematics of Paul Erdos, R. Graam and J. Ne\check set\check ril(Eds.), Springer-Verlag, Berlin, 1996.
9. J. Pach and P. K. Agarwal, Combinatorial Geometry, J. Wiley and Sons, New York, 1995.
10. J. Pach and M. Sharir, “On the number of incidences between points and curves,” Combinatorics, Probability and Computing 7 (1998), 121-127.
11. I. Z. Ruzsa, “Arithmetical progressions and the number of sums,” Periodica Math. Hung. 25 (1992), 105-111.
12. I. Z. Ruzsa, “Generalized arithmetic progressions and sum sets,” Acta Math. Sci. Hung. 65 (1994), 379-388.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition