Linear Point Sets and Rédei Type k-blocking Sets in $P G(n, q)$

L. STORME* 1s@cage.rug.ac.be
Dept. of Pure Maths and Computer Algebra, Ghent University, Krijgslaan 281, 9000 Gent, Belgium

P. SZIKLAI ${ }^{\dagger}$
sziklai@cs.bme.hu
Technical University Budapest, Pázmány P. sétany 1/d, Budapest, Hungary, H-1117
Received June 21, 2000; Revised May 16, 2001

Abstract

In this paper, k-blocking sets in $P G(n, q)$, being of Rédei type, are investigated. A standard method to construct Rédei type k-blocking sets in $P G(n, q)$ is to construct a cone having as base a Rédei type k^{\prime}-blocking set in a subspace of $P G(n, q)$. But also other Rédei type k-blocking sets in $P G(n, q)$, which are not cones, exist. We give in this article a condition on the parameters of a Rédei type k-blocking set of $P G\left(n, q=p^{h}\right), p$ a prime power, which guarantees that the Rédei type k-blocking set is a cone. This condition is sharp. We also show that small Rédei type k-blocking sets are linear.

Keywords: Rédei type k-blocking sets, directions of functions, linear point sets

1. Introduction

There is a continuously growing theory on Rédei type blocking sets and their applications, also on the set of directions determined by the graph of a function or (as over a finite field every function is) a polynomial; the intimate connection of these two topics is obvious.
Throughout this paper $A G(n, q)$ and $P G(n, q)$ denote the affine and the projective space of n dimensions over the Galois field $G F(q)$ where $q=p^{h}, p$ a prime power. We consider $P G(n, q)$ as the union of $A G(n, q)$ and the 'hyperplane at infinity' H_{∞}. A point set in $P G(n, q)$ is called affine if it lies in $\operatorname{AG}(n, q)$, while a subspace of $P G(n, q)$ is called affine if it is not contained in H_{∞}. So in this sense an affine line has one infinite point on it. Let $\theta_{n}=|P G(n, q)|$.

A k-blocking set $B \subset P G(n, q)$ is a set of points intersecting every $(n-k)$-dimensional subspace, it is called trivial if it contains a k-dimensional subspace. A point $b \in B$ is essential if $B \backslash\{b\}$ is no longer a k-blocking set (so there is an $(n-k)$-subspace L intersecting B in b only, such an $(n-k)$-subspace can be called a tangent $) ; B$ is minimal if all its points are essential. Note that for $n=2$ and $k=1$ we get the classical planar blocking sets.

[^0]Definition 1 We say that a set of points $U \subset A G(n, q)$ determines the direction $d \in H_{\infty}$, if there is an affine line through d meeting U in at least two points. Denote by D the set of determined directions. Finally, let $N=|D|$, the number of determined directions.

We will always suppose that $|U|=q^{k}$. Now we show the connection between directions and blocking sets:

Proposition 2 If $U \subseteq A G(n, q),|U|=q^{k}$, then U together with the infinite points corresponding to directions in D form a k-blocking set in $P G(n, q)$. If the set D does not form a k-blocking set in H_{∞} then all the points of U are essential.

Proof: Any infinite ($n-k$)-subspace $H_{n-k} \subset H_{\infty}$ is blocked by D : there are q^{k-1} (disjoint) affine $(n-k+1)$-spaces through H_{n-k}, and in any of them, which has at least two points in U, a determined direction of $D \cap H_{n-k}$ is found.

Let $H_{n-k-1} \subset H_{\infty}$ and consider the affine ($n-k$)-subspaces through it. If $D \cap H_{n-k-1} \neq$ \emptyset then they are all blocked. If H_{n-k-1} does not contain any point of D, then every affine ($n-k$)-subspace through it must contain exactly one point of U (as if one contained at least two then the direction determined by them would fall into $D \cap H_{n-k-1}$), so they are blocked again. So $U \cup D$ blocks all affine $(n-k)$-subspaces and all the points of U are essential when D does not form a k-blocking set in H_{∞}.

Unfortunately in general it may happen that some points of D are non-essential. If D is not too big (i.e. $|D| \leq q^{k}$, similarly to planar blocking sets) then it is never the case.

Proposition 3 If $|D|<\frac{q^{n-1}-1}{q^{n-k-1}-1}$, then all the points of D are essential.
Proof: Take any point $P \in D$. The number of ($n-k-1$)-subspaces through P in H_{∞} is $\frac{\theta_{n-2} \theta_{n-3} \ldots \theta_{k}}{\theta_{n-k-2} \theta_{n-k-3} \ldots \theta_{1} \cdot 1}$. Any other $Q \in D \backslash\{P\}$ blocks at most $\frac{\theta_{n-3} \ldots \theta_{k}}{\theta_{n-k-3} \ldots \theta_{1} \cdot 1}$ of them. So some affine $(n-k)$-subspace through one of those infinite $(n-k-1)$-subspaces containing P only, will be a tangent at P.

The k-blocking set B arising in this way has the property that it meets a hyperplane in $|B|-q^{k}$ points. On the other hand, if a minimal k-blocking set of size $\leq 2 q^{k}$ meets a hyperplane in $|B|-q^{k}$ points then, after deleting this hyperplane, we find a set of points in the affine space determining these $|B|-q^{k}$ directions, so the following notion is more or less equivalent to a point set plus its directions: a k-blocking set B is of Rédei type if it meets a hyperplane in $|B|-q^{k}$ points. We remark that the theory developed by Rédei in his book [4] is highly related to these blocking sets. Minimal k-blocking sets of Rédei type are in a sense extremal examples, as for any (non-trivial) minimal k-blocking set B and hyperplane H, where H intersects B in a set $H \cap B$ which is not a k-blocking set in $H,|B \backslash H| \geq q^{k}$ holds.

Since the arising k-blocking set has size $q^{k}+|D|$, in order to find small k-blocking sets we will have to look for sets determining a small number of directions.

Hence the main problem is to classify sets determining few directions, which is equivalent to classifying small k-blocking sets of Rédei type. A strong motivation for the investigations
is, that in the planar case, A. Blokhuis, S. Ball, A. Brouwer, L. Storme and T. Szőnyi classified blocking sets of Rédei type, with size $<q+\frac{q+3}{2}$, almost completely:

Result $4[1]$ Let $U \cup D$ be a minimal blocking set of Rédei type in $P G(2, q), q=p^{h}$, $U \subset A G(2, q),|U|=q, D$ is the set of directions determined by $U, N=|D|$. Let e (with $0 \leq e \leq h)$ be the largest integer such that each line with slope in D meets U in a multiple of p^{e} points. Then we have one of the following:
(i) $e=0$ and $(q+3) / 2 \leq N \leq q+1$,
(ii) $e=1, p=2$, and $(q+5) / 3 \leq N \leq q-1$,
(iii) $p^{e}>2$, $e \mid h$, and $q / p^{e}+1 \leq N \leq(q-1) /\left(p^{e}-1\right)$,
(iv) $e=h$ and $N=1$.

Moreover, if $p^{e}>3$ or $\left(p^{e}=3\right.$ and $\left.N=q / 3+1\right)$, then U is a $G F\left(p^{e}\right)$-linear subspace, and all possibilities for N can be determined explicitly.

We call a Rédei k-blocking set B of $P G(n, q)$ small when $|B| \leq q^{k}+\frac{q+3}{2} q^{k-1}+q^{k-2}+$ $q^{k-3}+\cdots+q$. These small Rédei k-blocking sets will be studied in detail in the next sections.

It is our goal to study the following problem. A small Rédei k-blocking set in $P G(n, q)$ can be obtained by constructing a cone with vertex a $(k-2)$-dimensional subspace Π_{k-2} in $P G(n, q)$ and with base a small Rédei blocking set in a plane Π_{2}^{\prime} skew to Π_{k-2}.

However, these are not the only examples of small k-blocking sets in $\operatorname{PG}(n, q)$. For instance, the subgeometry $P G(2 k, q)$ of $P G\left(n=2 k, q^{2}\right)$ is a small k-blocking set of $P G$ $\left(2 k, q^{2}\right)$, and this is not a cone.

We give a condition (Theorem 16) on the parameters of the small Rédei k-blocking set in $P G(n, q)$ which guarantees that this small Rédei k-blocking set is a cone; so that the exact description of this k-blocking set is reduced to that of the base of the cone.

This condition is also sharp since the k-blocking set $P G(2 k, q)$ in $P G\left(2 k, q^{2}\right)$ can be used to show that the conditions imposed on n, k and h in Theorem 16 cannot be weakened.

To obtain this result, we first of all prove that small Rédei k-blocking sets B of $P G(n, q)$ are linear (Corollary 12). In this way, our results also contribute to the study of linear k-blocking sets in $P G(n, q)$ discussed by Lunardon [3].

Warning In the remaining part of this paper we always suppose that the conditions of the "moreover" part of Result 4 are fulfilled.

2. k-blocking sets of Rédei type

Proposition 5 Let $U \subset A G(n, q),|U|=q^{k}$, and let $D \subseteq H_{\infty}$ be the set of directions determined by U. Then for any point $d \in D$ one can find an $(n-2)$-dimensional subspace $W \subseteq H_{\infty}, d \in W$, such that $D \cap W$ blocks all the $(n-k-1)$-dimensional subspaces of W.
The proposition can be formulated equivalently in this way: D is a union of some B_{1}, \ldots, B_{t}, each one of them being $a(k-1)$-blocking set of a projective subspace W_{1}, \ldots, W_{t} resp., of dimension $n-2$, all contained in H_{∞}.

Proof: The proof goes by induction; for any point $d \in D$ we find a series of subspaces $S_{1} \subset S_{2} \subset \cdots \subset S_{n-1} \subset A G(n, q), \operatorname{dim}\left(S_{r}\right)=r$ such that $s_{r}=\left|S_{r} \cap U\right| \geq q^{k-n+r}+1$ and d is the direction determined by S_{1}. Then, using the pigeon hole principle, after the r-th step we know that all the $(n-k-1)$-dimensional subspaces of $S_{r} \cap H_{\infty}$ are blocked by the directions determined by points in S_{r}, as there are q^{k-n+r} disjoint affine $(n-k)$-subspaces through any of them in S_{r}, so at least one of them contains 2 points of $U \cap S_{r}$.

For $r=1$ it is obvious as d is determined by at least $2=q^{0}+1 \geq q^{k-n+1}+1$ points of some line S_{1}. Then for $r+1$ consider the $\frac{q^{n-r}-1}{q-1}$ subspaces of dimension $r+1$ through S_{r}, then at least one of them contains at least

$$
s_{r}+\frac{q^{k}-s_{r}}{\frac{q^{n-r}-1}{q-1}}=q^{k+1-n+r}+\frac{\left(s_{r}-q^{k-n+r}\right)\left(q^{n-r}-q\right)}{q^{n-r}-1}>q^{k+1-n+r}
$$

points of U.
Corollary 6 For $k=n-1$ it follows that D is the union of some $(n-2)$-dimensional subspaces of H_{∞}.

Observation 7 A projective triangle in $P G(2, q), q$ odd, is a blocking set of size $3(q+1) / 2$ projectively equivalent to the set of points $\left\{(1,0,0),(0,1,0),(0,0,1),\left(0,1, a_{0}\right),\left(1,0, a_{1}\right)\right.$, $\left.\left(-a_{2}, 1,0\right)\right\}$, where a_{0}, a_{1}, a_{2} are non-zero squares [2, Lemma 13.6]. The sides of the triangle defined by $(1,0,0),(0,1,0),(0,0,1)$ all contain $(q+3) / 2$ points of the projective triangle, so it is a Rédei blocking set.

A cone, with a $(k-2)$-dimensional vertex at H_{∞} and with the q points of a planar projective triangle, not lying on one of those sides of the triangle, as a base, has q^{k} affine points and it determines $\frac{q+3}{2} q^{k-1}+q^{k-2}+q^{k-3}+\cdots+q+1$ directions.

Lemma 8 Let $U \subset A G(n, q),|U|=q^{n-1}$, and let $D \subseteq H_{\infty}$ be the set of directions determined by U. If $H_{k} \subseteq H_{\infty}$ is a k-dimensional subspace not completely contained in D then each of the affine $(k+1)$-dimensional subspaces through it intersects U in exactly q^{k} points.

Proof: There are q^{n-1-k} mutually disjoint affine $(k+1)$-dimensional subspaces through H_{k}. If one contained less than q^{k} points from U then some other would contain more than q^{k} points (as the average is just q^{k}), which would imply by the pigeon hole principle that $H_{k} \subseteq D$, contradiction.

Theorem 9 Let $U \subset A G(n, q),|U|=q^{n-1}$, and let $D \subseteq H_{\infty}$ be the set of directions determined by U. Suppose $|D| \leq \frac{q+3}{2} q^{n-2}+q^{n-3}+q^{n-4}+\cdots+q^{2}+q$. Then for any affine line ℓ either
(i) $|U \cap \ell|=1$ (iff $\ell \cap H_{\infty} \notin D$), or
(ii) $|U \cap \ell| \equiv 0 \quad\left(\bmod p^{e}\right)$ for some $e=e_{\ell} \mid h$.
(iii) Moreover, in the second case the point set $U \cap \ell$ is $G F\left(p^{e}\right)$-linear, so if we consider the point at infinity p_{∞} of ℓ; two other affine points p_{0} and p_{1} of $U \cap \ell$, with $p_{1}=p_{0}+p_{\infty}$, then all points $p_{0}+x p_{\infty}$, with $x \in G F\left(p^{e}\right)$, belong to $U \cap \ell$.

Proof: (i) A direction is not determined iff each affine line through it contains exactly one point of U. (ii) Let $|U \cap \ell| \geq 2, d=\ell \cap H_{\infty}$. Then, from Corollary 6, there exists an ($n-2$)-dimensional subspace $H \subset D, d \in H$. There are q^{n-2} lines through d in $H_{\infty} \backslash H$, so at least one of them has at most

$$
\leq \frac{|D|-|H|}{q^{n-2}} \leq \frac{\frac{q+1}{2} q^{n-2}-1}{q^{n-2}}=\frac{q+1}{2}-\frac{1}{q^{n-2}}
$$

points of D, different from d. In the plane spanned by this line and ℓ we have exactly q points of U, determining less than $\frac{q+3}{2}$ directions. So we can use Result 4 for (ii) and (iii).

Corollary 10 Under the hypothesis of the previous theorem, U is a $G F\left(p^{e}\right)$-linear set for some e|h.

Proof: Take the greatest common divisor of the values e_{ℓ} appearing in the theorem for each affine line ℓ with more than one point in U.

The preceding result also means that for any set of affine points ('vectors') $\left\{a_{1}, a_{2}, \ldots, a_{t}\right\}$ in U, and $c_{1}, c_{2}, \ldots, c_{t} \in G F\left(p^{e}\right), \sum_{i=1}^{t} c_{i}=1$, we have $\sum_{i=1}^{t} c_{i} a_{i} \in U$ as well. This is true for $t=2$ by the corollary, and for $t>2$ we can combine them two by two, using induction, like

$$
\begin{aligned}
& c_{1} a_{1}+\cdots+c_{t} a_{t} \\
& \quad=\left(c_{1}+\cdots+c_{t-1}\right)\left(\frac{c_{1}}{c_{1}+\cdots+c_{t-1}} a_{1}+\cdots+\frac{c_{t-1}}{c_{1}+\cdots+c_{t-1}} a_{t-1}\right)+c_{t} a_{t}
\end{aligned}
$$

where $c_{1}+\cdots+c_{t}=1$.
Theorem 11 Let $U \subset A G(n, q),|U|=q^{k}$, and let $D \subseteq H_{\infty}$ be the set of directions determined by U. If $|D| \leq \frac{q+3}{2} q^{k-1}+q^{k-2}+\cdots+q^{2}+q$, then any line ℓ intersects U either in one point, or $|U \cap \ell| \equiv 0\left(\bmod p^{e}\right)$, for some $e=e_{\ell} \mid$ h. Moreover, the set $U \cap \ell$ is GF(p^{e})-linear.

Proof: If $k=n-1$, then the previous theorem does the job, so suppose $k \leq n-2$. Take a line ℓ intersecting U in at least 2 points. There are at most $q^{k}-2$ planes joining ℓ to the other points of U not on ℓ; and their infinite points together with D cover at most $q^{k+1}+\frac{1}{2} q^{k}+\cdots$ points of H_{∞}, so they do not form a $(k+1)$-blocking set in H_{∞}. Take any ($n-k-2$)-dimensional space H_{n-k-2} not meeting any of them, then the projection π of $U \cup D$ from H_{n-k-2} to any 'affine' $(k+1)$-subspace S_{k+1} is one-to-one between U and $\pi(U) ; \pi(D)$ is the set of directions determined by $\pi(U)$, and the line $\pi(\ell)$ contains the images of $U \cap \ell$ only (as H_{n-k-2} is disjoint from the planes spanned by ℓ and the other points of U not on ℓ). The projection is a small Rédei k-blocking set in S_{k+1}, so, using the previous theorem, $\pi(U \cap \ell)$ is $G F\left(p^{e}\right)$-linear for some $e \mid h$. But then, as the projection preserves the cross-ratios of quadruples of points, the same is true for $U \cap \ell$.

Corollary 12 Under the hypothesis of the previous theorem, U is a $G F\left(p^{e}\right)$-linear set for some e|h.

Proof: Let e be the greatest common divisor of the values e_{ℓ} appearing in the preceding theorem for each affine line with more than one point in U.

3. Linear point sets in $A G(n, q)$

First we generalize Lemma 8.
Proposition 13 Let $U \subset A G(n, q),|U|=q^{k}$, and let $D \subseteq H_{\infty}$ be the set of directions determined by U. If $H_{r} \subseteq H_{\infty}$ is an r-dimensional subspace, and $H_{r} \cap D$ does not block every $(n-k-1)$-subspace of H_{r} then each of the affine $(r+1)$-dimensional subspaces through H_{r} intersects U in exactly $q^{r+k+1-n}$ points.

Proof: There are q^{n-1-r} mutually disjoint affine $(r+1)$-dimensional subspaces through H_{r}. If one contained less than $q^{r+k+1-n}$ points from U then some other would contain more than $q^{r+k+1-n}$ points (as the average is just $q^{r+k+1-n}$), which would imply by the pigeon hole principle that $H_{r} \cap D$ would block all the $(n-k-1)$-dimensional subspaces of H_{r}, contradiction.

Lemma 14 Let $U \subseteq A G\left(n, p^{h}\right)$, $p>2$, be a $G F(p)$-linear set of points. If U contains a complete affine line ℓ with infinite point v, then U is the union of complete affine lines through v (so it is a cone with infinite vertex, hence a cylinder).

Proof: Take any line ℓ^{\prime} joining v and a point $Q^{\prime} \in U \backslash \ell$, we prove that any $R^{\prime} \in \ell^{\prime}$ is in U. Take any point $Q \in \ell$, let m be the line $Q^{\prime} Q$, and take a point $Q_{0} \in U \cap m$ (any affine combination of Q and Q^{\prime} over $G F(p)$; see paragraph after the proof of Corollary 10). Now the cross-ratio of Q_{0}, Q^{\prime}, Q (and the infinite point of m) is in $G F(p)$. Let $R:=\ell \cap Q_{0} R^{\prime}$, so $R \in U$. As the cross-ratio of Q_{0}, R^{\prime}, R, and the point at infinity of the line $R^{\prime} R$, is still in $G F(p)$, it follows that $R^{\prime} \in U$. Hence $\ell^{\prime} \subset U$.

Lemma 15 Let $U \subseteq A G\left(n, p^{h}\right)$ be a $G F(p)$-linear set of points. If $|U|>p^{n(h-1)}$ then U contains a line.

Proof: The proof goes by double induction (the 'outer' for n, the 'inner' for r). The statement is true for $n=1$. First we prove that for every $0 \leq r \leq n-1$, there exists an affine subspace $S_{r}, \operatorname{dim} S_{r}=r$, such that it contains at least $\left|S_{r} \cap U\right|=s_{r} \geq p^{h r-n+2}$ points. For $r=0$, let S_{0} be any point of U. For any $r \geq 1$, suppose that each r-dimensional affine subspace through S_{r-1} contains at most $p^{h r-n+1}$ points of U, then

$$
\begin{aligned}
p^{h n-n+1} \leq|U| & \leq \frac{p^{h n}-p^{h(r-1)}}{p^{h r}-p^{h(r-1)}}\left(p^{h r-n+1}-s_{r-1}\right)+s_{r-1} \\
& \leq \frac{p^{h n}-p^{h(r-1)}}{p^{h r}-p^{h(r-1)}}\left(p^{h r-n+1}-p^{h(r-1)-n+2}\right)+p^{h(r-1)-n+2} .
\end{aligned}
$$

But this is false, contradiction.

So in particular for $r=n-1$, there exists an affine subspace S_{r} containing at least $\left|S_{r} \cap U\right| \geq p^{h(n-1)-n+2}$ points of U. But then, from the ($n-1$)-st ('outer') case we know that $S_{n-1} \cap U$ contains a line.

Now we state the main theorem of this paper. We assume $p>3$ to be sure that Result 4 can be applied.

Theorem 16 Let $U \subset A G(n, q), n \geq 3,|U|=q^{k}$. Suppose U determines $|D| \leq \frac{q+3}{2} q^{k-1}+$ $q^{k-2}+q^{k-3}+\cdots+q^{2}+q$ directions and suppose that U is a $G F(p)$-linear set of points, where $q=p^{h}, p>3$.

If $n-1 \geq(n-k) h$, then U is a cone with an $(n-1-h(n-k))$-dimensional vertex at H_{∞} and with base a $G F(p)$-linear point set $U_{(n-k) h}$ of size $q^{(n-k)(h-1)}$, contained in some affine $(n-k) h$-dimensional subspace of $A G(n, q)$.

Proof: It follows from the previous lemma (as in this case $|U|=p^{h k} \geq p^{n(h-1)+1}$) that $U=U_{n}$ is a cone with some vertex $V_{0}=v_{0} \in H_{\infty}$. The base U_{n-1} of the cone, which is the intersection with any hyperplane disjoint from the vertex V_{0}, is also a $G F(p)$-linear set, of size q^{k-1}. Since U is a cone with vertex $V_{0} \in H_{\infty}$, the set of directions determined by U is also a cone with vertex V_{0} in H_{∞}. Thus, if U determines N directions, then U_{n-1} determines at most $(N-1) / q \leq \frac{q+3}{2} q^{k-2}+q^{k-3}+q^{k-4}+\cdots+q^{2}+q$ directions. So if $h \leq \frac{(n-1)-1}{(n-1)-(k-1)}$ then U_{n-1} is also a cone with some vertex $v_{1} \in H_{\infty}$ and with some $G F(p)-$ linear base U_{n-2}, so in fact U is a cone with a one-dimensional vertex $V_{1}=\left\langle v_{0}, v_{1}\right\rangle \subset H_{\infty}$ and an $(n-2)$-dimensional base U_{n-2}, and so on; before the r-th step we have V_{r-1} as vertex and U_{n-r}, a base in an $(n-r)$-dimensional space, of the current cone (we started "with the 0-th step"). Then if $h \leq \frac{(n-r)-1}{(n-r)-(k-r)}$, then we can find a line in U_{n-r} and its infinite point with V_{r-1} will generate V_{r} and a U_{n-1-r} can be chosen as well. When there is equality in $h \leq \frac{(n-r)-1}{(n-r)-(k-r)}$, so when $r=n-(n-k) h-1$, then the final step results in $U_{(n-k) h}$ and $V_{n-1-h(n-k)}$.

The previous result is sharp as the following proposition shows.
Proposition 17 In $A G\left(n, q=p^{h}\right)$, for $n \leq(n-k) h$, there exist $G F(p)$-linear sets U of size q^{k} containing no affine line.

Proof: For instance, $A G(2 k, p)$ in $A G\left(2 k, p^{2}\right)$ for which $n=2 k=(n-k) h=(2 k-k) 2$.
More generally, write $h k=d_{1}+d_{2}+\cdots+d_{n}, 1 \leq d_{i} \leq h-1 \quad(i=1, \ldots, n)$ in any way. Let U_{i} be a $G F(p)$-linear set contained in the i-th coordinate axis, $O \in$ $U_{i},\left|U_{i}\right|=p^{d_{i}} \quad(i=1, \ldots, n)$. Then $U=U_{1} \times U_{2} \times \cdots \times U_{n} \quad$ is a proper choice for U.

References

1. A. Blokhuis, S. Ball, A. Brouwer, L. Storme, and T. Szőnyi, "On the number of slopes determined by a function on a finite field," J. Combin. Theory, Ser. A 86 (1999), 187-196.
2. J.W.P. Hirschfeld, Projective Geometries over Finite Fields (Second Edition), Oxford University Press, Oxford, 1998.
3. G. Lunardon, "Linear k-blocking sets in $P G(n, q)$," Combinatorica, to appear.
4. L. Rédei, Lückenhafte Polynome über endlichen Körpern, Birkhäuser Verlag, Basel, 1970. (English translation: Lacunary Polynomials over Finite Fields, North-Holland, Amsterdam, 1973).

[^0]: *http://cage.rug.ac.be/~ls
 ${ }^{\dagger}$ Research was partially supported by OTKA F030737, T 029255 , D 32817 and Eötvös grants. The second author is also grateful for the hospitality of the Ghent University where this work was done.

