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Abstract. Combinatorial objects called rigged configurations give rise to q-analogues of certain Littlewood–
Richardson coefficients. The Kostka–Foulkes polynomials and two-column Macdonald–Kostka polynomials occur
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of certain graded GL(n)-modules supported in a nilpotent conjugacy class closure in gl(n).
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1. Introduction

Consider the Levi (block diagonal) subgroup GL(η) ⊂ GL(n, C)

GL(η) =
t∏

i=1

GL(ηi , C)

where η = (η1, η2, . . . , ηt ) is a sequence of positive integers summing to n. Define the
Littlewood–Richardson (LR) coefficient to be the multiplicity

LRλ
R = dim HomGL(η)

(
ResGL(n)

GL(η)Vλ, VR1 ⊗ VR2 ⊗ · · · ⊗ VRt

)
where Vλ is the irreducible GL(n, C) module of highest weight λ and VRi is the irreducible
GL(ηi , C)-module of highest weight Ri . There is a well-known set LRT(λ; R) of Young
tableaux (which shall be referred to as LR tableaux) whose cardinality is the above coefficient
LRλ

R [22].
In [41] one of the authors and J. Weyman began the combinatorial study of a family

of polynomials Kλ;R(q) which are q-analogues of the LR coefficients LRλ
R and are by

definition the Poincaré polynomials of isotypic components of Euler characteristics of
certain C[gln]-modules supported in nilpotent conjugacy class closures. The polynomials
Kλ;R(q) were conjecturally described as the generating function over catabolizable tableaux
with the charge statistic, giving a simultaneous generalization of two formulas of Lascoux
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and Schützenberger for the Kostka–Foulkes polynomials [19, 23]. The Kostka–Foulkes
polynomials occur as special cases in two different ways, namely, when each partition Ri is
a single row, or each is a single column. When µ has two columns, the Macdonald–Kostka
polynomial Kλ,µ(q, t) has a nice formula in terms of the polynomials Kλ;R(q) where each
partition Ri has size at most 2 [7, 40].

Our point of departure is the observation that when each Ri is a rectangular partition,
the polynomial Kλ;R(q) seems to coincide with another q-analogue of the appropriate
LR coefficients, given by the set RC(λ; R) of rigged configurations [18]. One of the au-
thors had already given a bijection 	R : LRT(λ; R) → RC(λ; R) [10]. The latter set is
endowed with a natural statistic RC(λ; R) → N. An obvious problem is to give a direct
description of the statistic on LRT(λ; R) that is obtained by pulling back the statistic on
RC(λ; R) via the bijection 	R . We offer two conjectures for this statistic, which gener-
alize the formulas for the charge statistic given by Donin [5] and Lascoux, Leclerc, and
Thibon [20].

Like the LR coefficients of which they are q-analogues, the polynomials Kλ;R(q) satisfy
symmetry and monotonicity properties that extend those satisfied by the Kostka–Foulkes
polynomials [41]. Indeed, some of these symmetries only appear after generalizing from
the Kostka–Foulkes case to the rectangular LR case. We give bijections and injections that
exhibit these properties combinatorially, for each of the three kinds of objects (LR tableaux,
catabolizable tableaux, and rigged configurations). In particular, the monotonicity prop-
erty is exhibited by functorial statistic-preserving embeddings of families of LR tableaux,
generalizing the theory of the cyclage due to Lascoux and Schützenberger [19, 25].

There is another q-analogue of LR coefficients introduced by Lascoux, Leclerc, and
Thibon [15, 20]. These polynomials arise in a completely different manner, namely, as
coefficient polynomials in a generating function over ribbon tableaux. We conjecture that
the polynomials Kλ;R(q) coincide with theirs.

The paper is organized as follows. Section 2 recalls the definition of the polynomial
Kλ;R(q) and its symmetry and monotonicity properties. Sections 3 through 5 give the
three conjectured combinatorial descriptions for the polynomials Kλ;R(q). Section 6 gives
(conjecturally statistic-preserving) bijections 	R from LR tableaux to rigged configurations
and 	rows(R) from rigged configurations to catabolizable tableaux. For each of these kinds
of objects Sections 7 through 10 give bijections and injections that reflect the symmetry
and monotonicity properties of the polynomials Kλ;R(q). These maps were defined so that
they are intertwined by the maps 	R and 	rows(R).

1.1. Update

The original version of this manuscript was submitted for publication in 1998. Three years
passed before it was refereed. During that time many of the conjectures became theorems.
The text is unchanged except for corrections and minor points of exposition. In this section
we shall indicate which conjectures have been proven, and where the proofs may be found.

There are several areas where the so-called generalized Kostka polynomials have arisen
(see the survey paper [12]). We give names to the polynomials which are naturally defined
in these various contexts.
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1. Twisted modules supported on the nullcone [37, 38, 41]. Kλ;R(q) (defined in (2.2))
is the graded Euler characteristic character of such a module. In [41] the notion of a
catabolizable tableau is introduced, and CTλ;R(q) is defined in (5.1) as the generating
function of such tableaux by the charge statistic.

2. Cyclage theory of Littlewood–Richardson tableaux, developed independently in 1998
by Schilling and Warnaar [35] and the second author [37, 38]. LRTλ;R(q) is defined
in (4.3) as the generating function of Littlewood–Richardson tableaux, except that the
statistic (7.1) should used instead of (4.2).

3. Affine crystal theory [35, 39]. Here we shall denote by Xλ;R(q) the classically restricted
one-dimensional sum, defined, for example, in [35, Def. 3.8].

4. Multiplicities of Bethe vectors [16, 18, 35]. RCλ;R(q) is defined in (3.4) as the generating
function over rigged configurations. See also the survey article [13].

5. Parabolic affine Kazhdan–Lusztig polynomials [20, 26]. We shall denote these by cλ
R(q);

it is denoted K̃ (p)


λ (q) in Section 2.10, where p and 
 are determined by R.

K = LRT is proved in [37, Thm. 10]. Up to the (unproven) equality of the two chargeR
statistics (4.2) and (7.1), this is Conjecture 7. LRT = X is proved in [35, Cor. 5.2] and [39].
LRT = RC follows from [16, Def.-Prop. 4.1, Thm. 9.1]. The equality LRT = CT is proved in
the case that each rectangle is contained in the previous one, by [38, Thms. 4, 10]; perhaps
the closest result to proving this equality is [38, Thm. 21]. The equality LRT = c (Conjecture
5) is the most important conjecture in this paper that remains open.

We now proceed through the rest of the conjectures in order. Conjectures 2 and 3 (for
LRT) follow from [35, Thm. 7.1] and [38, Thm. 30]. Conjecture 4 is true for K using an
easy geometric argument; see the discussion of [38, Thm. 2]. For LRT it is an interesting
combinatorial problem, settled by [35, (6.11)] and [38, Thm. 4]. Conjecture 6 follows from
K = LRT = RC. Conjecture 8 is known when LRT = CT is (see the previous paragraph).
We believe Conjecture 8 holds for any dominant sequence of partitions R, not only for
rectangles. Conjecture 9 is [16, Thm. 9.1]. Conjecture 10 is equivalent to Conjecture 8 in
light of Conjecture 18, which is proved in [16, Thm. 8.3]. Conjecture 11 is [16, Lemma 8.5].
Conjecture 12 is [16, Thm. 5.6]. Conjecture 13 follows from [38, Thm. 4] and Conjecture
18, except for the statement about catabolizable tableaux. Conjecture 14 is [30, Thm. 5.7].
Conjecture 15 can be shown to hold using the results of [38] in the case that each rectangle
is contained in the previous one. Conjecture 16 is [16, Thm. 7.1]. Conjecture 17 follows
from results in [38, Sec. 3].

2. Definition and properties of Kλ;R(q)

The material in this section essentially follows [41].

2.1. Generating function definition

Letη = (η1, η2, . . . , ηt )be a sequence of positive integers that sum to n,γ = (γ1, γ2, . . . , γn)

an integral weight (that is, γ ∈ Z
n), and Rootsη the set of ordered pairs (i, j) such that
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1 ≤ i ≤ η1 + η2 + · · · + ηr < j ≤ n for some r . Let A be the symmetric group on the set
A, [a, b] the closed interval of integers i with a ≤ i ≤ b, [n] = [1, n], x = (x1, x2, . . . , xn) a
sequence of variables, xγ = xγ1

1 xγ2
2 · · · xγn

n , and ρ = (n −1, n −2, . . . , 1, 0). The symmetric
group [n] acts on polynomials in x by permuting variables. Define the operators J and π

by

J ( f ) =
∑

w∈[n]

(−1)ww(xρ f )

π f = J (1)−1 J ( f )

J (1) is the Vandermonde determinant. For the dominant (weakly decreasing) integral weight
λ = (λ1 ≥ λ2 ≥ · · · ≥ λn), the character sλ(x) of Vλ is given by the Laurent polynomial

sλ(x) = πxλ.

When λ is a partition (that is, λn ≥ 0), sλ is the Schur polynomial.
Let Bη(x; q), Hγ,η(q), and Kλ,γ,η(q) be the formal power series defined by

Bη(x; q) =
∏

(i, j)∈Rootsη

1

1 − qxi/x j

Hγ,η(x; q) = π(xγ Bη(x; q))

=
∑

λ

sλ(x)Kλ,γ,η(q), (2.1)

where λ runs over the dominant integral weights in Z
n . Ostensibly given by power series,

the Kλ,γ,η(q) are in fact polynomials with integer coefficients [41].
Let R be the sequence (R1, R2, . . . , Rt ) with Ri ∈ Z

ηi a dominant integral weight for all
i , and γ (R) ∈ Z

n the weight obtained by concatenating the parts of the Ri in order. Define

Kλ;R(q) := Kλ,γ (R),η(q). (2.2)

It is known [41] that

Kλ;R(1) = LRλ
R . (2.3)

From now on it is assumed that λ is a partition and each Ri is a rectangular partition
having ηi rows and µi columns.

2.2. Special cases

Let λ be a partition.

1. Let Ri be the single row (µi ) for all i , where µ is a partition of length at most n. Then

Kλ;R(q) = Kλ,µ(q),
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the Kostka–Foulkes polynomial. For a definition of the Kostka–Foulkes polynomials (as
well as the cocharge and Macdonald–Kostka versions mentioned below) see [27].

2. Let Ri be the single column (1ηi ) for all i . Then

Kλ;R(q) = K̃λt ,η+(q),

the cocharge Kostka–Foulkes polynomial, where λt is the transpose or conjugate of
the partition λ and η+ is the partition obtained by sorting the parts of η into weakly
decreasing order.

3. Let k be a positive integer and Ri the rectangle with k columns and ηi rows. Then Kλ;R(q)

is the Poincaré polynomial of the isotypic component of the irreducible GL(n)-module
of highest weight (λ1−k, λ2−k, . . . , λn −k) in the coordinate ring of the Zariski closure
of the nilpotent conjugacy class whose Jordan form has diagonal block sizes given by
the transpose of the partition η+. In the case µ = (1n) these are Kostant’s generalized
exponents in type A.

4. Let λ be a partition of n and µ a two-column partition. In this case J. Stembridge [40]
gave an explicit formula for the Macdonald–Kostka polynomials, which has the form

Kλ,(2r ,1n−2r )(q, t) =
r∑

k=0

qk

[
r

k

]
t

Mk
r−k(t)

where the Mk
r−k(t) are members of a family of polynomials Md

m(t) that are defined by it-
erated degree–shifted differences of ordinary Kostka–Foulkes polynomials. S. Fishel [7]
gave a combinatorial description of the polynomials Md

m(t) in terms of rigged configura-
tions, using a variation of the original statistic of [18] on the set of rigged configurations
corresponding to standard tableaux. Using the original statistic but replacing standard
tableaux by tableaux corresponding to sequences of tiny rectangles of the form (2), (1,1),
and (1), we have

Mk
r−k(t) = Kλ,((2)r−k ,(1,1)k ,(1)n−2r )(t). (2.4)

The polynomials Md
m(t) are defined by a recurrence that may be interpreted in terms

of minimal degenerations of nilpotent conjugacy class closures [14]. If the right hand
side of (2.4) is replaced by a conjecturally equivalent formulation involving rigged
configurations, the resulting formula is proven in Section 10.

2.3. Defining recurrence

The polynomials Kλ;R(q) satisfy the following recurrence which generalizes Morris’ recur-
rence for the Kostka–Foulkes polynomials [29] and Weyman’s recurrence for the Poincaré
polynomials in case (3) above [43]. The polynomials Kλ;R(q) are uniquely defined by the
initial condition

Kλ;(R1)(q) = δλ,R1
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and the recurrence

Kλ;R(q) =
∑

w∈[n]/[η1]×[η1+1,n]

(−1)wq |α(w)| ∑
τ

Kτ,R̂(q)LRτ
α(w),β(w) (2.5)

where w runs over the minimal length permutation in each coset in [n] of the given Young
subgroup, α(w) and β(w) are the first η1 and last n − η1 parts of the weight w−1(λ + ρ) −
(R1 + ρ), and R̂ = (R2, R3, . . . , Rt ). The w-th summand is understood to be zero if α(w)

has a negative part.
The case that R = (R1, R2) is now calculated explicitly. Suppose µ1 ≥ µ2. It is easy to

show that for any λ,

LRλ
(R1,R2)

∈ {0, 1}. (2.6)

Assuming this multiplicity is one, it follows from (2.5) that

Kλ;(R1,R2)(q) = qd (2.7)

where d is the number of cells in λ strictly to the right of the µ1-th column.

Example 1 We give a running example. Let n = 9, µ = (3, 2, 1), η = (2, 4, 3). Let

R = ((3, 3), (2, 2, 2, 2), (1, 1, 1)) λ = (5, 4, 3, 2, 2, 1, 0, 0, 0)

Applying (2.5), all summands are zero except for the identity permutation. Using the LR
rule, it is not hard to see that the summand for τ is zero unless τ is one of the three partitions
(3, 3, 3, 2), (3, 3, 2, 2, 1), and (3, 2, 2, 2, 1, 1). Three applications of (2.7) yield

Kλ;R(q) = q3(K(3,3,3,2),R̂(q) + 2K(3,3,2,2,1),R̂(q) + K(3,2,2,2,1,1),R̂(q))

= q3(q3 + 2q2 + q1) = q6 + 2q5 + q4.

2.4. Positivity

The sequence R is said to be dominant if γ (R) is. The following positivity conjecture and
theorem are due to Broer.

Conjecture 1 ([2]) If R is dominant (but not necessarily a sequence of rectangles) then
Kλ;R(q) ∈ N[q].

Theorem 1 ([1]) Conjecture 1 holds when R is a sequence of rectangles.

Example 2 For λ = (2, 2) and the non-dominant sequence of rectangles R = {(1), (3)},
Kλ;R(q) = q − 1.
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2.5. Cocharge normalization

Given a sequence of rectangles R, let ri, j (R) be the number of rectangles in R that contain
the cell (i, j), or equivalently, the number of indices a such that µa ≥ i and ηa ≥ j . Define
the number

n(R) =
∑
(i, j)

(
ri, j (R)

2

)
(2.8)

and the polynomial

K̃λ;R(q) = qn(R)Kλ;R(q−1) (2.9)

When R consists of single-rowed shapes, the above assertion and both the two Kostka–
Foulkes special cases imply that

Kλ,µ(q) = qn(µ) K̃λ,µ(q−1)

where n(µ) = ∑
j (

µt
j

2
). This coincides with the definition of the cocharge Kostka–Foulkes

polynomials.

Example 3 In our running example, the matrix (ri, j ) is given by

(ri, j ) =

3 2 1 0 · · ·
3 2 1 0 · · ·
2 1 0 0 · · ·
1 1 0 0 · · ·

with all other entries zero, so n(R) = 2(
3
2 ) + 3(

2
2 ) = 9 and K̃λ;R(q) = q5 + 2q4 + q3.

Here is another version of the positivity conjecture, which adds an observation about an
upper bound on the powers of q that may occur.

Conjecture 2 For R dominant, K̃λ;R(q) ∈ N[q].

2.6. Reordering symmetry

Theorem 2 ([41]) Suppose R and R′ are dominant sequences of rectangles that are
rearrangements of each other. Then Kλ;R(q) = Kλ;R′(q).

This property is not obvious since the reordering of the sequence of rectangles results in
a major change in the generating function Hγ,η(x; q).
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2.7. Contragredient duality symmetry

Let rev(η) denote the reverse of η. Fix a positive integer k such that k ≥ λ1 and k ≥ µi for
all i . Let λ̃ = (k − λn, k − λn−1, . . . , k − λ1) and R̃i = ((k − µi )

ηi ) for 1 ≤ i ≤ t . Note
that λ̃ (resp. R̃i ) is obtained by the 180 degree rotation of the complement of the partition
λ (resp. Ri ) inside the k × n rectangle (resp. k × ηi rectangle). Then

Proposition 3 ([41]) For R dominant,

Kλ;R(q) = Kλ̃;rev(R̃)(q). (2.10)

Example 4 In our running example, take k = 5. Then we have

K(5,4,3,2,2,1,0,0,0),((3,3),(2,2,2,2),(1,1,1))(q) = K(5,5,5,4,3,3,2,1,0),((4,4,4),(3,3,3,3),(2,2))(q).

2.8. Transpose symmetry

Let Rt be the sequence of rectangles obtained by transposing each of the rectangles in R.

Conjecture 3 Let R be dominant and R′ a dominant rearrangement of Rt . Then

Kλt ;R′(q) = K̃λ;R(q), (2.11)

where the left hand side is computed in GL(m) where m is the total number of columns in
the rectangles of R.

This property is mysterious; it is not obvious from the properties of the modules that
define the polynomials Kλ;R(q).

Example 5 In the running example, λt = (6, 5, 3, 2, 1, 0) and

Rt = ((2, 2, 2), (4, 4), (3))

R′ = ((4, 4), (3), (2, 2, 2))

Using (2.5) we have

K(6,5,3,2,1,0),((4,4),(3),(2,2,2))(q) = q5 + 2q4 + q3,

which agrees with the computation of K̃λ;R(q) in Example 3.

2.9. Monotonicity

Let α and β be sequences of nonnegative integers. Say that α �β if α+ �β+ in the domi-
nance partial order on partitions.
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Given a sequence of rectangles R, let τ k(R) be the partition whose parts consist of the
ηi such that µi = k, sorted into decreasing order. In other words, τ k(R) is the multiset of
heights of the rectangles in R that have exactly k columns. Say that R � R′ if τ k(R) � τ k(R′)
for all k.

Conjecture 4 Suppose R and R′ are dominant with R � R′. Then Kλ;R′(q) ≥ Kλ;R(q)

coefficientwise.

Example 6 Let R be as usual and R′ = ((3), (3), (2, 2, 2, 2), (1, 1, 1)). The sequence of
partitions τ k(R) and τ k(R′) are given by

τ .(R) = ((3), (4), (2), (), . . .)

τ .(R′) = ((3), (4), (1, 1), (), . . .)

Now

Kλ;R′(q) = 2q7 + 4q6 + 3q5 + q4

which dominates Kλ;R(q) coefficientwise.

Suppose all of the rectangles have the same number of columns k, so that τ j is empty
for j �= k. In this case Conjecture 4 may be verified as follows. For the partition µ of n, let
Aµ be the coordinate ring of the closure of the nilpotent conjugacy class of matrices with
transpose Jordan type µ. If ν is another partition with µ � ν, then restriction of functions
gives a natural epimorphism of graded GL(n)-modules Aν → Aµ. This special case includes
a monotonicity property of the cocharge Kostka polynomials:

K̃λ,ν(q) ≥ K̃λ,µ(q) if µ � ν. (2.12)

The first combinatorial proof of this fact was given in [19, 24, 25]. It uses two substan-
tial results. The first is the original interpretation [23] of the Kostka–Foulkes polynomial
Kλ,µ(q) as the generating function over the set T (λ, µ) of tableaux of shape λ and content
µ with the charge statistic. The second is a cocharge-preserving embedding of T (λ, µ) into
T (λ, ν). An alternate proof of this fact is given in [3, 11]. Under the statistic-preserving
bijection in [18] that sends tableaux to rigged configurations, the image T (λ, µ) is easily
seen to be a subset in the image of T (λ, ν), yielding (2.12).

2.10. Generalized Kostka polynomials and ribbon tableaux

According to (2.3) and Conjecture 2, the generalized Kostka polynomials are q-analogues
of tensor product multiplicities. Another q-analogue of tensor product multiplicities was
introduced by A. Lascoux, B. Leclerc and J.-Y. Thibon [20] using the spin generating
functions for the set of p-ribbon tableaux. We refer the reader to [20, Sections 4 and 6] for
the definitions of the notions of a p-ribbon tableau T , the spin s(T ) of a p-ribbon tableau,
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and the “p-ribbon version” of the modified Hall–Littlewood polynomials G̃(p)


 (Xn; q). Let

 be the partition with empty p-core and p-quotient (R1, R2, . . . , Rp) (see [27, Chapter 1,
Example 8], for the definitions of the p-core and p-quotient of a partition λ). By definition

G̃(p)


 (Xn; q) =
∑

T ∈Tabp(
,≤n)

qs̃(T )xwt (T ),

where the sum runs over the set Tabp(
, ≤ n) of p-ribbon tableaux of shape 
 filled with
numbers not exceeding n, wt (T ) is the weight or content of the ribbon tableau T , and
s̃(T ) = − s(T ) + max{s(T ) | T ∈ Tabp(
, ≤ n)} is the cospin of the p-ribbon tableau T ,
cf. [20, (25)]. It is known [20, Theorem 6.1] that G̃(p)


 (Xn; q) is a symmetric function.
Following [20], let us define polynomials K̃ (p)


λ (q) via the decomposition

G̃(p)


 (Xn; q) =
∑



K̃ (p)


λ (q)sλ(Xn).

The p-quotient bijection of Littlewood, induces a weight-preserving bijection from p-ribbon
tableaux of shape 
 to p-tuples of tableaux of shapes R1, R2, . . . , Rp [42], yielding the
equality

G̃(p)


 (Xn; 1) = sR1(Xn)sR2(Xn) · · · sRp (Xn)

Taking the coefficient of sλ(Xn), it follows that G̃(p)


 (Xn; 1) is the multiplicity of the highest
weight sl(n)-module Vλ in the tensor product VR1 ⊗ · · · ⊗ VRp .

Recall that a sequence of partitions R = (R1, . . . , Rp) is called dominant, if for all
1 ≤ i ≤ p − 1, the last part of Ri is at least as large as the first part of Ri+1.

Conjecture 5 Let R = (R1, . . . , Rp) be a dominant sequence of rectangular partitions,
and 
 the partition with empty p-core and p-quotient (R1, . . . , Rp). Then

K̃λ;R(q) = K̃ (p)


λ (q).

3. Rigged configurations

Rigged configurations are combinatorial objects that provide a new interpretation of the
Kostka–Foulkes polynomial [18]. However, this construction applies for arbitrary sequences
of rectangles, not just those consisting of all single-rowed rectangles. This section follows
[18].

Let λ be a partition and R a sequence of rectangular partitions such that |λ| = ∑
i |Ri |.

Let Ri have ηi rows and µi columns as usual. A configuration of type (λ; R) is a sequence
of partitions ν = (ν1, ν2, . . .) such that

|νk | =
∑
j>k

λ j −
∑
a≥1

µa max(ηa − k, 0)

= −
∑
j≤k

λ j +
∑
a≥1

µa min(k, ηa) (3.1)
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for each k ≥ 1. Note that if k ≥ �(λ) and k ≥ ηa for all a, then νk is empty. We make the
convention that ν0 is the empty partition.

For a partition ρ, let Qn(ρ) = ρ t
1 + ρ t

2 + · · · + ρ t
n be the number of cells in the first n

columns of ρ. The vacancy numbers of the configuration ν of type (λ; R) are defined by

Pk,n(ν) = Qn(ν
k−1) − 2 Qn(ν

k) + Qn(ν
k+1) +

∑
a≥1

min(µa, n) δηa ,k (3.2)

for k, n ≥ 1, where δi, j is the Kronecker delta. Say that a configuration ν of type (λ; R) is
admissible if Pk,n(ν) ≥ 0 for all k, n ≥ 1.

Example 7 In the running example, there is a unique admissible configuration of type
(λ; R), given by

ν = ((1), (2, 1), (2, 1), (2, 1), (1))

Below is the table Pk,n(ν) of vacancy numbers for k, n ≥ 1 with k as row index and n as
column index.

0 1 1 · · ·
0 0 1 · · ·
1 1 1 · · ·
0 0 0 · · ·
0 1 1 · · ·
1 1 1 · · ·
0 0 0 · · ·
...

...
... · · ·

A rigging L of an admissible configuration ν of type (λ; R) consists of an integer label
Lk

s for each row νk
s of each of the partitions of ν, such that:

1. 0 ≤ Lk
s ≤ Pk,νk

s
(ν) for every k ≥ 1 and 1 ≤ s ≤ �(νk).

2. If νk
s = νk

s+1, then Lk
s ≥ Lk

s+1.

Only some of the vacancy numbers Pk,n(ν) appear as upper bounds for the labels Lk
s , namely,

those where n is a part of the partition νk . The second condition merely says that the labels
for a fixed partition νk and part size n, should be viewed as a multiset.

Example 8 To indicate the maximum rigging Lmax of the configuration ν, we replace
each part νk

s by its maximum label Pk,νk
s
(ν), obtaining

Lmax = ((0), (0, 0), (1, 1), (0, 0), (0))
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So ν has the four riggings

((0), (0, 0), (0, 0), (0, 0), (0)) ((0), (0, 0), (0, 1), (0, 0), (0))

((0), (0, 0), (1, 0), (0, 0), (0)) ((0), (0, 0), (1, 1), (0, 0), (0))

A rigged configuration of type (λ; R) is a pair (ν, L) where ν is an admissible configu-
ration of type (λ; R) together with a rigging L . Let C(λ; R) denote the set of admissible
configurations of type (λ; R) and RC(λ; R) the set of rigged configurations of type (λ; R).

The first important property of rigged configurations is that they are enumerated by the
LR coefficient LRλ

R .

Theorem 4 ([18])

LRλ
R = |RC(λ; R)| =

∑
ν∈C(λ;R)

∏
k,n≥1

(
Pk,n(ν) + mn(ν

k)

mn(ν
k)

)

where mn(ρ) denotes the number of parts of the partition ρ of size n.

Rigged configurations are endowed with a natural statistic we call cocharge. Let (ν, L) ∈
RC(λ; R). Denote by αk,n = (νk)t

n the size of the n-th column of the k-th partition νk of ν.
The cocharge of (ν, L) is defined by

cocharge(ν, L) = cocharge(ν) +
∑
k≥1

�(νk )∑
s=1

Lk
s

(3.3)
cocharge(ν) =

∑
k,n≥1

αk,n(αk,n − αk+1,n)

The q-binomial coefficient is defined by(
n

k

)
q

= (1 − qn)(1 − qn−1) · · · (1 − qn−k+1)

(1 − qk)(1 − qk−1) · · · (1 − q)
.

Define the polynomial RCλ;R(q) by

RCλ;R(q) =
∑

(ν,L)∈RC(λ;R)

qcocharge(ν,L)

=
∑

ν∈C(λ;R)

qcocharge(ν)
∏

k,n≥1

(
Pk,n(ν) + mn(ν

k)

mn(ν
k)

)
q

. (3.4)

Conjecture 6 For R dominant,

K̃λ;R(q) = RCλ;R(q) (3.5)
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Example 9 Let ν be the sole member of RC(λ; R) as above. We have

cocharge(ν) = 1(1 − 2) + 2(2 − 2) + 2(2 − 2) + 2(2 − 1) + 1(1 − 0)

+ 0(0 − 1) + 1(1 − 1) + 1(1 − 1) + 1(1 − 0)

= (−1 + 2 + 1) + (−1 + 1) = 3,

so that RCλ;R(q) = q3(1 + q)(1 + q), which agrees with K̃λ;R(q).

4. Littlewood–Richardson tableaux

This section discusses a set LRT(λ; R) of tableaux that has cardinality LRλ
R .

For the definitions of a (semistandard) tableau, skew tableau, and the (row-reading) word
of a tableau T (denoted here by word(T )), see [6]. We shall often identify a (skew) tableau
with its row-reading word. Let P(w) denote Schensted’s insertion tableau for the word
w [34]; it is the unique tableau of partition shape that is equivalent to w under Knuth’s
degree three relations [17]. A right factor of the word w is any word v such that w = uv

for some word u. Say that a word w is lattice if the content of every right factor of w is a
partition.

We now fix notation for the sequence of rectangles R. Let the intervals A1, A2, etc., be
given by dividing the interval [n] into successive subintervals of sizes η1, η2, etc. Let Ki be
the rectangular tableau of shape Ri whose j-th row consists of µi copies of the j-th largest
letter of the interval Ai for 1 ≤ j ≤ ηi .

Example 10 Let λ = (5, 4, 3, 2, 2, 1) and R = (R1, R2, R3) with R1 = (3, 3), R2 =
(2, 2, 2, 2) and R3 = (1, 1, 1). µ = (3, 2, 1), η = (2, 4, 3), γ = (3, 3, 2, 2, 2, 2, 1, 1, 1),
A1 = [1, 2], A2 = [3, 6], A3 = [7, 9].

K1 = 1 1 1

2 2 2
K2 =

3 3

4 4

5 5

6 6

K3 =
7

8

9

.

Say that a word v in the alphabet [n] is R-LR (short for R-Littlewood–Richardson)
if the restriction v|Ai of v to the alphabet Ai , is lattice in the alphabet Ai for all i , or
equivalently, that P(v|Ai ) = Ki for all i . Clearly an R-LR word must have content γ (R).
Let LRT(λ; R) be the set of R-LR words which are also tableaux of shape λ. We call
these LR tableaux. Note that if each rectangle of R is a single row, then LRT(λ; R) =
T (λ, γ ).
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Example 11 LRT(λ; R) consists of the following four tableaux.

1 1 1 3 3

2 2 2 4

4 5 7

5 6

6 8

9

1 1 1 3 3

2 2 2 7

4 4 8

5 5

6 6

9

1 1 1 3 7

2 2 2 4

3 5 8

4 6

5 9

6

1 1 1 3 7

2 2 2 8

3 4 9

4 5

5 6

6

(4.1)

Let T be the first tableau. The skew tableaux T |Ai are given below.

T |A1 =

1 1 1 · ·
2 2 2 ·
· · ·
· ·
· ·
·

T |A2 =

· · · 3 3

· · · 4

4 5 ·
5 6

6 ·
·

T |A3 =

· · · · ·
· · · ·
· · 7

· ·
· 8

9

We have word(T |A1) = 222111, word(T |A2) = 65645433, and word(T |A3) = 987, which are
lattice in their respective alphabets.

The classical Littlewood–Richardson rule [22] immediately yields the following result.

Proposition 5 |LRT(λ; R)| = LRλ
R.

Next we define a statistic chargeR on LR tableaux.
Let v be a word of partition content. Say that the sequence of words {v1, v2, . . .} is a

standard decomposition of v, if the vi are standard words (words without repeated letters)
of weakly decreasing size and v is a shuffle of the words {vi }, that is, the vi may be
simultaneously disjointly embedded in v and exhaust the letters of v.

Now let R be dominant, v an R-LR word, and {vi } a standard decomposition of v. Say
that {vi } is proper if vi |A j is either empty or the decreasing word consisting of the letters
of A j , for all i and j . Assuming this holds, let ui be the reverse of the word obtained from
vi by replacing each letter in A j by the letter j . Define

chargeR(v) = min
{vi }

∑
i

cocharge(ui ) (4.2)

where {vi } runs over the proper standard decompositions of v and {ui } is related to vi as
above. Say that a proper standard decomposition of an R-LR word v is minimal if it attains
the minimum in the definition of chargeR(v).
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1. When µ is a partition and Ri = (µi ) for all i , the subalphabet A j = { j}, so every standard
decomposition is proper and ui is the reverse of vi . But for standard words, the cocharge
of the reverse of a word equals the charge. So chargeR is the usual charge statistic,
since Donin [5] asserts that the particular standard decomposition given by Lascoux and
Schützenberger [23] is always minimal.

2. When Ri = (1ηi ) for all i , an R-LR word v is necessarily standard, so v1 = v and by
definition chargeR(v) = cocharge(u1)

Example 12 Let R = ((2, 2), (2, 2, 2), (2), (1)) so that µ = (2, 2, 2, 1) and η = (2, 3,

1, 1). The alphabets A j are given by [1, 2], [3, 5], [6, 6] and [7, 7]. Let λ = (5, 4, 2, 1,

1, 0, 0). We indicate part of the computation of chargeR for the tableau T given below.

T =

1 1 3 3 6

2 2 4 6

4 5

5

7

We have word(T ) = 7.5.45.2246.11336. It turns out that chargeR(word(T )) = 7. There are
at most 23 = 8 distinct proper standard decompositions of word(T ) depending on choices
involving the letters 4, 5, and 6; the pairs of ones, twos, and threes occur side by side and
thus do not generate other proper decompositions. The unique minimal decomposition is
v1 = 7542613, v2 = 524136. To see this, reversing these subwords gives (3162457, 631425).
Replacing each letter in A j by j we have the pair of words (u1, u2) = (2131224, 321212).
To take the cocharge we act by automorphisms of conjugation to change them to partition
content, obtaining (2131124, 321211). Taking the cocharges of these words, we obtain
(3, 4) whose sum is 7. Let us now perform the same computation for the circular standard
decomposition of Lascoux and Schützenberger (which is always proper): v1 = 7524136
and v2 = 542613. We have u1 = 3212124 and u2 = 213122. Acting by automorphisms of
conjugation to move to partition content, we have (3212114, 213112), whose cocharges are
(6, 2) whose sum is 8, which is not minimal.

It would be desirable to have an algorithm that computes a minimal standard decom-
position. The above example shows that the algorithm of Lascoux and Schützenberger for
selecting a standard decomposition in the computation of charge, does not work for chargeR .

For R dominant, define

LRTλ;R(q) =
∑

T ∈LRT(λ;R)

qchargeR(T ). (4.3)

Conjecture 7 For R dominant,

Kλ;R(q) = LRTλ;R(q).
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5. Catabolizable tableaux

We recall from [41] the notion of an R-catabolizable tableau. Recall the subintervals Ai

and the canonical rectangular tableaux Ki from Section 4. Let S be a tableau of partition
shape. Suppose that S|A1 = K1. Let S+ be the first η1 rows of the skew tableau S − K1 and
let S− be the remainder. Define the (row) R1-catabolism CatR1(S) of S to be the tableau
P(S+S−). Say that S is R-catabolizable if S|A1 = K1 and CatR1(S) is R̂-catabolizable in the
alphabet [η1 +1, n] = [n]− A1, where R̂ = (R2, R3, . . .). The empty tableau is considered
to be the unique catabolizable tableau for the empty sequence of rectangles. Note that an
R-catabolizable tableau must have content γ (R).

Denote by CT(λ; R) the set of R-catabolizable tableaux of shape λ.

Example 13 Recall the tableaux K1, K2, and K3 from Example 10. Here are the four
tableaux that comprise the set CT(λ; R).

1 1 1 5 6

2 2 2 6

3 3 7

4 4

5 8

9

1 1 1 6 6

2 2 2 7

3 3 8

4 4

5 5

9

1 1 1 5 7

2 2 2 6

3 3 8

4 4

5 9

6

1 1 1 6 7

2 2 2 8

3 3 9

4 4

5 5

6

Let S be the first of these tableaux. The following calculation shows that S is R-
catabolizable.

S =

1 1 1 5 6

2 2 2 6

3 3 7

4 4

5 8

9

S − K1 =

· · · 5 6

· · · 6

3 3 7

4 4

5 8

9

S+S− =

3 3 7

4 4

5 8

9

5 6

6

CatR1(S) =

3 3 7

4 4 8

5 5 9

6 6

CatR2 CatR1 S =
7

8

9

CatR3 CatR2 CatR1 S = ∅.

Define

CTλ;R(q) =
∑

S∈CT(λ;R)

qcharge(S). (5.1)
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Conjecture 8 Let R be dominant. Then

Kλ;R(q) = CTλ;R(q).

When each rectangle in R is a single row, this formula (as well as that in Conjecture 7)
specializes to the description of the Kostka–Foulkes polynomials in [23].

When each rectangle is a single column, this formula specializes (with some work [41])
to a formula for the cocharge Kostka–Foulkes polynomials [19].

6. Bijections between the three sets

In [18] two bijections LRT(λ; R) → RC(λ; R) were given, in the case that all were single
rows or all single columns. When all are single rows, LRT(λ; R) = T (λ, µ), the set of
tableaux of shape λ and content µ. When all rectangles are single columns, there is an
obvious bijection LRT(λ; R) → T (λt , η) given by taking the transpose of a tableau and
then relabelling (see the LR-transpose map in Section 9). In [18] it is asserted that the first
of these two bijections is statistic-preserving. One of the authors [10] has given a common
generalization of these bijections, which we denote by

�R : LRT(λ; R) → RC(λt ; Rt ).

For those that have some familiarity with [18] we point out two twists in its definition.
The first difference is in the labelling convention. In [18] the bijections use the notion of a
singular string in a rigged configuration (ν, J ), that is, a part νk

s whose label J k
s attains the

maximum value Pk,νk
s
(ν). This convention is called the quantum number labelling. Here we

employ the coquantum number labelling, in which a singular string is a part νk
s whose label

Lk
s is zero. The second difference is the direction in which the cells of the rectangles Ri

are ordered. In [18] the cells of the one-rowed rectangles are ordered along rows, but here
the cells of the rectangles are ordered along columns. This accounts for the transposing of
shapes in passing from LR tableaux to rigged configurations.

Conjecture 9 For R dominant, the bijection �R is statistic-preserving, that is, for T ∈
LRT(λ; R) and (ν, L) = �R(T ), we have

chargeR(T ) = cocharge(ν, L).

The dominance of R is only necessary for the definition of chargeR .
This bijection may also be used to define a map from rigged configurations to catabolizable

tableaux. Let rows(R) be the sequence of rectangles obtained by slicing each rectangle of
R into single rows. Recall the weight γ = γ (R); its parts give the single-rowed shapes of
rows(R). In our running example, rows(R) = ((3), (3), (2), (2), (2), (2), (1), (1), (1)) and
γ = (3, 3, 2, 2, 2, 2, 1, 1, 1). Similarly, define columns(Rt ) to be the sequence of transposes
of rows(R). We have the bijection

�−1
rows(R) : RC(λt ; columns(Rt )) → LRT(λ, rows(R)) = T (λ, γ )
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It is clear from the definitions that there is an inclusion

RC(λt ; Rt ) ⊆ RC(λt ; columns(Rt )).

Let

bR : RC(λt ; Rt ) → T (λ, γ )

be the restriction of the map �−1
rows(R) to the subset RC(λt ; Rt ).

Conjecture 10 If R is dominant then ImbR = CT(λ; R), and bR ◦ �R is a bijection
LRT(λ; R) → CT(λ; R) sending chargeR to charge.

In Section 10 the composite map LRT(λ; R) → CT(λ; R) is given without using rigged
configurations as an intermediate set.

7. Symmetry bijections

Let R and R′ be any two sequences of rectangles that are rearrangements of each other. It
follows immediately from the definitions that RC(λ; R) = RC(λ; R′), so that

RCλ;R(q) = RCλ;R′(q)

We now give the symmetry bijections of LR tableaux and a another conjectural description
for chargeR . Fix the sequence of rectangles R = (R1, R2, . . . , Rt ). Let R be the set of
rearrangements of R. [t] acts on R in the obvious way. For u ∈ [t], we wish to define
bijections

u R : LRT(λ; R) → LRT(λ; u R)

that give an action of [t] on LR tableaux in the sense that the two bijections LRT(λ; R) →
LRT(λ; vu R) given by (v ◦u)R and vu R ◦u R , coincide. When each rectangle in R is a single
row, these bijections coincide with the action of the symmetric group on the plactic algebra
by the automorphisms of conjugation [25], whose Coxeter generators are sometimes called
crystal reflection operators.

Suppose that u is the adjacent transposition s1 = (12) and R = (R1, R2) consists of two
rectangles. Let P ∈ LRT(λ; R). By (2.6), both the sets LRT(λ; R) and LRT(λ; (R2, R1)) are
singletons, say {P} and {P ′} respectively. In this case the bijection s1 = (s1)R is defined by
s1 P = P ′, and its inverse (also denoted s1 by suppressing the subscript) is given by s1 P ′ = P .
The tableau P ′ can be calculated as follows. Let A′

1, A′
2, K ′

1 and K ′
2 be the subalphabets

and canonical tableaux for the sequence of rectangles s1 R = (R2, R1). Clearly P ′|A′
1
= K ′

1.
The remainder P ′|A′

2
of P ′ is the tableau of shape λ/R2 obtained by the jeu-de-taquin given

by sliding the tableau K ′
2 to the southeast into the skew shape λ/R1 using the order of cells

defined by the skew tableau P|A2 .
Next suppose u = sp where p > 1. Let B = Ap ∪ Ap+1. Let (P, Q) be the tableau pair

corresponding to the column insertion of the row-reading word of the skew tableau T |B .
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Since T ∈ LRT(λ; R), the tableaux T |Ap and T |Ap+1 are lattice with respect to the alphabets
Ap and Ap+1 respectively. Since the lattice condition is invariant under Knuth equiva-
lence, it follows that the restrictions of P to the alphabets Ap and Ap+1 are lattice, so
that P ∈ LRT(ρ; (Rp, Rp+1)) in the alphabet B, where ρ is the shape of P . Let P ′ be
the unique tableau in the singleton set LRT(ρ; (Rp+1, Rp)) in the alphabet B. By [44]
[Theorem 1], there is a skew tableau U of the same skew shape as T |B , whose row-
reading word corresponds to the tableau pair (P ′, Q) under column insertion. Define spT
be the tableau which agrees with U on the alphabet B and agrees with T on the com-
plement of B. Note that spT ∈ LRT(λ; sp R) since latticeness is preserved under Knuth
equivalence.

Example 14 Let p = 2. The subalphabets for the sequence of rectangles sp R are A′
1 =

[1, 2], A′
2 = [3, 5], and A′

3 = [6, 9], with B = [3, 9]. Consider the first tableau T of
Example 11. The tableau s2T is computed as follows.

T =

1 1 1 3 3

2 2 2 4

4 5 7

5 6

6 8

9

T |B =

· · · 3 3

· · · 4

4 5 7

5 6

6 8

9

word(T ) = 9.68.56.457.4.33

P =

3 3 7

4 4

5 5

6 6

8

9

Q =

1 2 6

3 5

4 8

7 10

9

11

P ′ =

3 6 6

4 7

5 8

7 9

8

9

(s2T )|B =

· · · 3 6

· · · 4

5 6 7

7 8

8 9

9

s2T =

1 1 1 3 6

2 2 2 4

5 6 7

7 8

8 9

9

For an arbitrary permutation u ∈ [t], the bijection

u R : LRT(λ; R) → LRT(λ; u R)
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is defined to be the composition u = sa1 sa2 · · · sar , where a1a2 · · · ar is a reduced word for
u. These bijections were chosen with the following property in mind.

Conjecture 11 The following diagram commutes:

LRT(λ; R)
u R−→ LRT(λ; u R)

�R↓ ↓�u R

RC(λt ; Rt ) === RC(λt ; u(Rt ))

In particular, the bijection u R is independent of the reduced word of u, and the bijections
of the form u R define an action of [t] on the collection R of LR tableaux.

When each rectangle in R is a single row, a version of this result is stated in [3][(2.17)].
It suffices to prove Conjecture 11 for adjacent transpositions sp. We show that this

conjecture may be reduced to another conjecture on evacuation. Let ev = ev[n] denote the
evacuation involution on tableaux in the alphabet [n]; it is defined by the conditions

shape
(
ev(T )|[k]

) = shape
(
P

(
T |[n+1−k,n]

))
for all 1 ≤ k ≤ n. Since latticeness is preserved by Knuth equivalence, ev restricts to a
bijection LRT(λ; R) → LRT(λ; rev(R)) where rev(R) is the reverse of R.

Consider also the involution θ on RC(λ; R) = RC(λ; rev(R)) given by (ν, L) �→ (ν, J )

where

Lk
s + J k

s = Pk,νk
s
(ν)

for all k ≥ 1, 1 ≤ s ≤ �(νk). This is slightly sloppy since the labels have to be reordered to
satisfy the formal definition of a rigging. The involution θ complements each coquantum
number Lk

s with respect to its maximum possible value.

Conjecture 12 The following diagram commutes:

LR(|λ; R)
ev−→ LR(λ; rev(R))

�R↓ ↓�rev(R)

RC(λt ; Rt ) −→
θ

RC(λt ; rev(Rt ))

When each rectangle of R is a single row, a similar assertion is made in [18].

Lemma 6 Conjecture 11 follows from Conjecture 12.

Proof: We may assume that u = sp. If p = 1 this may be verified directly using the defini-
tion of the map �R . So suppose p > 1. Again by the definition of �R , it suffices to assume
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that t = p + 1, that is, sp exchanges the last two rectangles in R. We have

evspT = s1evT

for all T ∈ LRT(λ; R), which holds since latticeness is preserved by Knuth equivalence.
Using the fact that ev is an involution, that Conjecture 11 holds for s1, and assuming
Conjecture 12, it follows that Conjecture 11 also holds for sp. ✷

Next is another conjectural characterization of the statistic chargeR on LR tableaux;
its definition requires Conjecture 11. The notation in the definition of the bijection sp

is used here. Let T ∈ LRT(λ; R). Define the statistic dp,R(T ) to be the number of cells
in P = P(T |Ap∪Ap+1) that lie to the right of the c-th column, where c = max(µp, µp+1).
Compare this to (2.7). Let

dR(T ) =
t−1∑
p=1

(t − p) dp,R(T ).

The alternate definition for chargeR (valid for any R) is:

chargeR(T ) = 1

t!

∑
u∈[t]

du R(uT ) (7.1)

(see Conjecture 7). It is not clear why this quantity should be an integer. When each rectangle
in R is a single row, (7.1) specializes to the formula for the charge given in [21]. By definition

chargeu R(uT ) = chargeR(T ) (7.2)

for all T ∈ LRT(λ; R) and u ∈ [t].

Example 15 Let us use (7.1) to compute chargeR for the tableau T of Example 14. It is
necessary to compute the entire orbit of T under the action of [3].

T =

1 1 1 3 3

2 2 2 4

4 5 7

5 6

6 8

9
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s1T =

1 1 5 5 5

2 2 6 6

3 3 7

4 4

6 8

9

s2T =

1 1 1 3 6

2 2 2 4

5 6 7

7 8

8 9

9

s2s1T =

1 1 5 8 8

2 2 6 9

3 3 7

4 4

8 9

9

s1s2T =

1 4 4 4 6

2 5 5 5

3 6 7

7 8

8 9
9

s1s2s1T =

1 4 4 8 8

2 5 5 9

3 6 6

7 7

8 9

9

We now give the statistics d1,u R , d2,u R , and du R for each of the tableaux uT , with t = 3.

u d1,u R d2,u R du R

id 3 1 7

s1 3 0 6

s2 2 1 5

s2s1 3 0 6

s1s2 2 1 5

s1s2s1 3 1 7

So chargeR(T ) = (7 + 6 + 5 + 6 + 5 + 7)/3! = 6.

Finally we give the symmetry bijection for catabolizable tableaux. Let R and R′ be
sequences of rectangles that rearrange each other and u ∈ [n] the shortest permutation
such that γ (R′) = uγ (R). From [3] it follows that the following diagram commutes, where
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u acts by an automorphism of conjugation:

T (λ, γ (R)) u−→ T (λ, γ (R′))
�rows(R)↓ ↓�rows(R′)

Rc(λt ; columnsRt )) === RC(λt ; (columns(R′)t ))

Conjecture 10 implies the following result.

Conjecture 13 The automorphism of conjugation u restricts to a bijection

ImbR → ImbR′ ,

so that the diagram commutes:

Rc(λt ; Rt ) === RC(λt ; (R′)t )

bR↓ ↓bR′

T (λ, γ (R)) −→u T (λ, γ (R′))

In particular, if both R and R′ are dominant, then u restricts to a bijection

CT(λ; R) → CT(λ; R′).

The conjecture is trivial when each rectangle in R is a single row, but is quite interesting
even when each rectangle is a single column (in which case the permutation u is the identity).

Example 16 Let R′ = s1 R = ((2, 2, 2, 2), (3, 3), (1, 1, 1)). Then the permutation u of
minimal length sending γ (R) to γ (R′) is given by u = 561234789, which has the reduced
word 43215432. Let S be the first tableau in Example 13. Here the operators si are the
automorphisms of conjugation, or equivalently the rectangle-switching bijections for the
appropriate sequences of one-rowed rectangles.

S =

1 1 1 5 6

2 2 2 6

3 3 7

4 4

5 8
9

s4s3s2s1s5s4s3s2S =

1 1 5 5 6

2 2 6 6

3 3 7

4 4

5 8
9

8. Duality bijections

This section uses the notation of Subsection 2.7. Fix an integer k such that k ≥ λ1 and
k ≥ µi for all 1 ≤ i ≤ t . Let (R̃)t denote the sequence of rectangles whose i-th partition is
(R̃i )

t , a (k − µi ) × ηi rectangle.
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First we define a duality bijection for rigged configurations.

Proposition 7 There is a bijection of admissible configurations

C(λt ; Rt ) → C((λ̃)t ; (R̃)t )

ν = (ν1, ν2, . . . , νk−1, (), . . .) �→ ν̃ = (νk−1, νk−2, . . . , ν1, (), . . .)

Furthermore, for every 1 ≤ i ≤ k − 1 and j ≥ 1, Pi, j (ν) = Pk−i, j (ν̃). In particular the
above bijection on configurations induces a cocharge-preserving map of rigged configu-
rations RC(λt ; Rt ) → RC((λ̃)t ; (R̃)t ) such that (ν, L) �→ (ν̃, L̃) where L̃ p

s = L̃k−p
s for all

1 ≤ p < k and 1 ≤ s ≤ �(ν p) = �(ν̃k−p).

In other words, the bijection merely replaces the first k−1 labelled partitions of (ν, L) (the
rest are empty) by the reverse sequence of labelled partitions. The proof is straightforward.
It follows immediately that

RCλt ;Rt (q) = RC(λ̃)t ;(R̃)t (q)

Next we consider the duality bijections for LR tableaux. Let T be any tableau of shape
λ and content γ . Define the dual tableau T̃ of T (with respect to the n × k rectangle) to
be the unique tableau of shape λ̃ such that the j th column of T̃ is the set complement
within the interval [n], of the (k + 1 − j)-th column of T . Clearly T̃ has content γ̃ =
(k − γn, k − γn−1, . . . , k − γ1).

Example 17 In our examples, we have n = 9 and

λ = (5, 4, 3, 2, 2, 1, 0, 0, 0) R = ((3, 3), (2, 2, 2, 2), (1, 1, 1))

Let k = 5. Then

λ̃ = (5, 5, 5, 4, 3, 3, 2, 1, 0)

R̃ = ((2, 2), (3, 3, 3, 3), (4, 4, 4))

The tableau T ∈ LRT(λ; R) is sent to T̃ ∈ LRT(λ̃; R̃).

T =

1 1 1 3 3

2 2 2 4

4 5 7

5 6

6 8

9

T̃ =

1 1 3 3 3

2 2 4 4 7

4 5 5 7 8

5 6 6 9

6 7 8

7 8 9

8 9

9
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The duality map respects Knuth equivalence in the following sense. Let b be a strictly
decreasing word in the alphabet [n]. Let b̃ be the strictly decreasing word whose letters are
complementary in [n] to those of b.

Proposition 8 ([31]) Let a, b, c, and d be strictly decreasing words in the alphabet [n].
Then ab ∼K cd if and only if b̃ã ∼K d̃c̃ where ∼K denotes Knuth equivalence. In particular,
for any skew tableau T, P(T̃ ) = P̃(T ), where, for the purpose of applying the duality map,
all tableaux are regarded as having the same number of (possibly empty) columns.

The duality bijection on tableaux also restricts to a map from LR tableaux to LR tableaux.

Proposition 9 The bijection T �→ T̃ restricts to a bijection

LRT(λ; R) → LRT(λ̃; R̃).

Furthermore, for every T ∈ LRT(λ; R) we have

chargeR(T ) = chargeR̃(T̃ ), (8.1)

using (7.1) as the definition of chargeR.

Proof: Let T be a tableau of shape λ and content γ . The following are equivalent:

1. T ∈ LRT(λ; R).
2. T |Ai is lattice in the alphabet Ai for all i .
3. For all 0 ≤ j ≤ k and all i , the last j columns of T |Ai have partition content in the

alphabet Ai .
4. For all 0 ≤ j ≤ k and all i , the first j columns of T̃Ai has antipartition content in the

alphabet Ai .
5. For all 0 ≤ j ≤ k and all i , the last k − j columns of T̃ |Ai have partition content in the

alphabet Ai .
6. T̃ |Ai is lattice in the alphabet Ai for all i .
7. T̃ ∈ LRT(λ̃; R̃).

The equivalence of the first three and last three assertions follow by definition. The equiva-
lence of items 3 and 4 follows from the definition of T̃ . The equivalence of 4 and 5 follows
from the fact that for each letter x ∈ Ai , the letter x appears with total multiplicity µi .

To verify (8.1), it suffices to show that for all 1 ≤ p ≤ t − 1 and all u,

dp,u R(uT ) = dp,u R̃(uT̃ )

It is immediate that u R̃ = ũ R. It suffices to establish the identities

dp,R(T ) = dp,R̃(T̃ ) for all R (8.2)

uT̃ = ũT for all u. (8.3)
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To prove (8.2), one can reduce to the case p = 1 and t = 2 by Proposition 8. Without loss of
generality assume that µ1 ≥ µ2. Let α and β be the left and right partitions given by slicing
the skew shape λ/R1 vertically just after the µ1-th column. The Littlewood-Richardson rule
implies that the 180 degree rotation of α fits together with β to form the rectangle R2. We
have

d1,R(T ) = µ2n − (
λt

1 + · · · + λt
µ2

)
= λ̃t

k + λ̃t
k−1 + · · · + λ̃t

k+1−µ2

= d1,R̃(T̃ ),

proving (8.2).
It suffices to prove (8.3) when u is an adjacent transposition sp. Let B = Ap ∪ Ap+1.

By the definitions it follows immediately that spT̃ and s̃pT agree when restricted to the
complement of the alphabet B. It remains to show that the restrictions of the two tableaux
to B agree. By Proposition 8, we may assume that p = 1 and t = 2. But this case follows
immediately since taking the dual tableau and applying s1 both send LR tableaux to LR
tableaux, and all of the relevant sets of LR tableaux are singletons. ✷

It follows from (7.1) that

LRTλ;R(q) = LRT λ̃;R̃(q)

Moreover,

Conjecture 14 The following diagram commutes

LRT(λ; R) dual−→ LRT(λ̃; R̃)

�R↓ ↓�R̃

RC(λt , Rt ) −→ RC(λt , (R̃)t )

where the bottom map is given in Prop. 7.

To discuss the duality bijection for catabolizable tableaux, we give a modified defini-
tion that slices the tableaux vertically rather than horizontally. In this section let us refer
to R-catabolizability as R-row catabolizability and to the R1-catabolism as the R1-row
catabolism.

Let S be a tableau of partition shape with S|A1 = K1. Let Sl and Sr be the left and
right subtableaux obtained by slicing the skew tableau S − K1 vertically just after the
µ1-th column. Define the R1-column catabolism CCatR1(S) of S by P(Sr Sl). Say that S
is R-column catabolizable if S|A1 = K1 and CCatR1(S) is R̂-column catabolizable, where
R̂ = (R2, R3, . . .). Let CCT(λ; R) denote the set of R-column catabolizable tableaux of
shape λ.

Proposition 10 S is R-column catabolizable if and only if S̃ is R̃-column catabolizable.
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Proof: Fix a sufficiently large number k. All dual tableaux will be taken with respect to k
columns. Note first that S|A1 = K1 if and only if S̃|A1 is the tableau of shape R̃1 whose i-th
row consists of k − µ1 copies of the letter i for all 1 ≤ i ≤ η1. Then Proposition 8 implies
that the dual of the tableau CCatR1(S) with respect to the alphabet [n] − A1, is equal to the
tableau CCatR̃1

(S̃). The result follows by induction. ✷

The following conjecture connects the two kinds of catabolizability using the images of
the maps bR .

Conjecture 15 Suppose R is a sequence of rectangles such that Rt is dominant. Then
Im bR = CCT(λ; R).

Using Conjectures 13 and 15 one obtains a duality bijection for row catabolizable tableaux
using automorphisms of conjugation and the tableau duality bijection.

Example 18 If the hypothesis of Conjecture 15 is not satisfied then CCT(λ; R) could be
too large. For example, let λ = (2, 2), R = ((1, 1, 1), (1)), and R′ = ((1), (1, 1, 1)).
Then CCT(λ; R) is empty. But CCT(λ; R′) is not; it is equal to CCT((2, 2); ((1, 1),

(1, 1))).

9. Transpose bijections

A bijection LRT(λ; R) → LRT(λt ; Rt ) is given by the relabelling which sends T to the
transpose of the tableau obtained from T by replacing the j-th occurrence (from the left)
of the letter η1 + η2 + · · · + ηi−1 + k by the letter µ1 + µ2 + · · · + µi−1 + j , for all i ,
1 ≤ j ≤ µi and 1 ≤ k ≤ ηi . We call this map the LR transpose.

Example 19 λt = (6, 5, 3, 2, 1) and Rt
1 = (2, 2, 2), Rt

2 = (4, 4) and Rt
3 = (3). The

set LRT(λt ; Rt ) is given by the following four tableaux, which are the images under the
LR transpose map of the four tableaux of LRT(λ; R) listed in Example 11.

1 1 4 4 4 6

2 2 5 5 6

3 3 6

4 5

5

1 1 4 4 4 6

2 2 5 5 5

3 3 6

5 5

6

1 1 4 4 4 4

2 2 5 5 6

3 3 6

5 5

6

1 1 4 4 4 4

2 2 5 5 5

3 3 6

5 6

6

For rigged configurations, we wish to define a bijection RC(λ; R) → RC(λt ; Rt ) (called
the RC-transpose) sending (ν, L) → (ν̂, L̂) with the property that

cocharge(ν, L) = n(R) − cocharge(ν̂, L̂). (9.1)

The bijection on configurations is most easily defined using a variant of the original
construction. Let ν be an admissible (λ; R) configuration. Recall that ν0 is the empty
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partition and αk,n is the size of the n-th column of the partition νk . Define the matrix (mi, j )

by

mi, j = αi−1, j − αi, j (9.2)

for i, j ≥ 1, or equivalently,

αi, j = −
i∑

k=1

mk, j (9.3)

The matrix (mi, j ) will be used in place of the configuration ν. Let us calculate the row and
column sums of the matrix (mi, j ) and the cocharge of ν in terms of the mi, j . Let θ be the
indicator function for nonnegative numbers:

θ(x) =
{

1 if x ≥ 0,

0 if x < 0.

Since α0, j = 0 for all j and αi, j = 0 for large i ,∑
i

mi, j =
∑

i

(αi−1, j − αi, j ) = 0. (9.4)

Using (3.1) and the notation r+ = max(r, 0), we have∑
j

mi, j =
∑

j

(αi−1, j − αi, j ) = |νi−1| − |νi |

=
∑

j>i−1

(
λ j −

∑
a

µa(ηa − (i − 1))+

)
−

∑
j>i

(
λ j −

∑
a

µa(ηa − i)+

)
= λi −

∑
a

µaθ(ηa − i), (9.5)

The cocharge (3.3) can be rewritten as

cocharge(ν) =
∑

k,n≥1

αk,n(αk,n − αk+1,n)

=
∑

k,n≥1

(−m1,n − m2,n − · · · − mk,n)mk+1,n

= −
∑
n≥1

j>k≥1

mk,nm j,n

= −1/2
∑
n≥1

j �=k≥1

mk,nm j,n
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= 1/2
∑

k,n≥1

m2
k,n − 1/2

∑
j,k,n≥1

mk,nm j,n

= 1/2
∑

k,n≥1

m2
k,n

=
∑

k,n≥1

(
mk,n

2

)
, (9.6)

where the last two equalities hold by (9.4). Define the matrix m̂i, j by

m̂i, j = −m j,i + θ(λ j − i) −
∑

a

θ(µa − i)θ(ηa − j) (9.7)

Observe that this process is an involution. Applying this process to (m̂i, j ) with respect to
the pair (λt ; Rt ),

ˆ̂mi, j = −m̂ j,i + θ
(
λt

j − i
) −

∑
a

θ(ηa − i)θ(µa − j)

= −
(

−mi, j + θ(λi − j) −
∑

a

θ(µa − j)θ(η i)

)
+ θ

(
λt

j − i
)

−
∑

a

θ(ηa − i)θ(µa − j)

= mi, j + θ
(
λt

j − i
) − θ(λi − j) = mi, j

Note that in (9.7) the sum over a is equal to r j,i (R), the number of rectangles in R that
contain the cell ( j, i). We must show that the matrix (m̂i, j ) corresponds to an admissible
configuration of type (λt ; Rt ). Let α̂i, j , ν̂i

j , Pi, j (ν̂), and mi (ν̂
j ) denote the analogous quan-

tities involving m̂i, j in place of mi, j . The first step is to show that each ν̂i is a partition, that
is, m j (ν̂

i ) ≥ 0 for all i, j ≥ 1. We have

m j (ν̂
i ) = α̂i, j − α̂i, j+1

=
i∑

k=1

(−m̂k, j + m̂k, j+1)

=
i∑

k=1

(m j,k − m j+1,k − θ(λ j − k) + θ(λ j+1 − k)

+
∑

a

θ(µa − k)(θ(ηa − j) − θ(ηa − ( j + 1)))

=
i∑

k=1

(α j−1,k − α j,k − α j,k + α j+1,k) − min(λ j , i)

+ min(λ j+1, i) +
∑

a

min(µa, i)δηa , j



56 KIRILLOV AND SHIMOZONO

= Qi (ν
j−1) − 2Qi (ν

j ) + Qi (ν
j+1) +

∑
a

min(µa, i)δηa , j

− min(λ j , i) + min(λ j+1, i)

= Pj,i (ν) − min(λ j , i) + min(λ j+1, i) (9.8)

We require the following technical result on vacancy numbers, whose proof is in the
appendix. Recall that mn(ρ) is the number of parts of the partition ρ of size n.

Lemma 11 Let ν be a configurationof type (λ; R). The following are equivalent.
1. ν is admissible, that is, Pk,n(ν) ≥ 0 for all k, n ≥ 1.
2. For every k, n ≥ 1, if mn(ν

k) > 0 then Pk,n(ν) ≥ 0.
3. For every k, n ≥ 1,

Pk,n(ν) ≥ min(λk, n) − min(λk+1, n) (9.9)

Moreover, if ν is admissible then

mn(ν
k) = 0 whenever n > λk+1. (9.10)

From (9.8), Lemma 11, and the admissibility of ν, it follows that ν̂i is a partition for all
i ≥ 1. Next it is verified that ν̂ is a configuration of type (λt ; Rt ).

|ν̂i | =
∑

j

α̂i, j =
∑

j

i∑
k=1

− m̂k, j

=
∑

j

i∑
k=1

(
m j,k − θ(λ j − k) +

∑
a

θ(µa − k)θ(ηa − j)

)

=
i∑

k=1

∑
j

m j,k −
∑

j

min(λ j , i) +
∑

a

min(µa, i)ηa

= −
i∑

j=1

λt
j +

∑
a

min(µa, i)ηa

by (9.7) and (9.4). Comparing this with (3.1), ν̂ is a configuration of type (λt ; Rt ), since
Rt is obtained from R by switching the roles of µ and η. Finally it must be verified that ν̂

is admissible. Since the map m �→ m̂ is involutive as a map of matrices, it is valid to apply
the formula (9.8) to ν̂ instead of ν, obtaining

Pi, j (ν̂) = mi (ν
j ) + min

(
λt

i , j
) − min

(
λt

i+1, j
) ≥ mi (ν

j ) ≥ 0.

Therefore the map (mi, j ) �→ (m̂i, j ) defines a bijection C(λ; R) → C(λt ; Rt ).
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This map is extended to riggings as follows. By Lemma 11 and (9.8), the map m �→ m̂
has the additional property that

if mn(ν
k) > 0 then Pk,n(ν) = mk(ν̂

n). (9.11)

Applying (9.11) to the inverse map, it follows that

if mk(ν̂
n) > 0 then Pn,k(ν̂) = mn(ν

k). (9.12)

To show that the two sets of rigged configurations RC(λ; R) and RC(λt ; Rt ) have the same
cardinality, it suffices to show that the rectangle of height mn(ν

k) and width Pk,n(ν) and
the rectangle of height mk(ν̂

n) and width Pn,k(ν̂), are either transposes of each other or are
both empty. But this follows from (9.11) and (9.12).

Let us give a specific bijection between the riggings. Let (ν, L) ∈ RC(λ; R). Let ν̂ be
the admissible configuration of type (λt ; Rt ) given by (9.7). Note that a rigging L of ν

determines, for each pair k, n ≥ 1, a partition ρk,n(ν, L) inside a rectangle of height
mn(ν

k) and width Pk,n(ν) given by the the labels of the parts of νk of size n.
Let L̂ be the rigging of the configuration ν̂ such that ρn,k(ν̂, L̂) is the transpose of the

complementary partition to ρk,n(ν, L) in the rectangle of height mn(ν
k) and width Pk,n(ν),

for all k, n ≥ 1.
Then the map (ν, L) �→ (ν̂, L̂) defines the RC-transpose bijection RC(λ; R) →

RC(λt ; Rt ).

Proposition 12

RCλt ;Rt (q) = qn(R)RCλ;R(q−1) (9.13)

Proof: It is enough to check that the RC-transpose bijection (ν, L) �→ (ν̂, L̂) satisfies

cocharge(ν, L) + cocharge(ν̂, L̂) = n(R). (9.14)

(see (2.8)). By the definition of the rigging L̂ , it is enough to check that

cocharge(ν) + cocharge(ν̂) +
∑

k,n≥1

Pk,n(ν)mn(ν
k) = n(R). (9.15)

The sum
∑

k,n Pk,n(ν)mn(ν
k) is calculated first. For the vacancy numbers,

Qn(ν
k−1) − 2Qn(ν

k) + Qn(ν
k+1) =

n∑
j=1

(αk−1, j − 2αk, j + αk+1, j )

=
n∑

j=1

(mk, j − mk+1, j )
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and

Pk,n(ν) =
n∑

j=1

(mk, j − mk+1, j ) +
∑
a≥1

min(µa, n)δηa ,k . (9.16)

The multiplicities mn(ν
k) are given by

mn(ν
k) = αk,n − αk,n+1 =

k∑
i=1

(−mi,n + mi,n+1). (9.17)

The desired sum is given by

∑
k,n≥1

Pk,n(ν)mn(ν
k) =

∑
k,n≥1

(
n∑

j=1

(mk, j − mk+1, j ) +
∑

a

min(µa, n)δηa ,k

)

×
k∑

i=1

(−mi,n + mi,n+1)

=
∑

k≥i≥1
n≥ j≥1

(mk, j − mk+1, j )(−mi,n + mi,n+1)

+
∑

k≥i≥1
n≥1

∑
a

min(µa, n)δηa ,k)(−mi,n + mi,n+1)

= −
∑
i, j≥1

m2
i, j +

∑
a

ηa∑
i=1

∑
n≥1

min(µa, n)(−mi,n − mi,n+1)

= −2 cocharge(ν) −
∑

a

ηa∑
i=1

µa∑
n=1

mi,n

= −2 cocharge(ν) −
∑

a

∑
i, j≥1

mi, jθ(µa − j)θ(ηa − i)

= −2 cocharge(ν) −
∑
i, j≥1

mi, j ri, j (9.18)

where ri, j = ri, j (R) is as in the definition of n(R). (2.8)
Next the cocharge of the configuration ν̂ is calculated. By (3.3), (9.6), and (9.7), we have

cocharge(ν̂) =
∑
i, j≥1

(
m̂i, j

2

)
=

(−m j,i + θ(λ j − i) − r j,i

2

)
. (9.19)

Using the identities
( a+b

2

) = ( a
2

) + ( b
2

) + ab and
(−a

2

) = ( a
2

) + a, we have

cocharge(ν̂) =
∑
i, j≥1

((
m j,i

2

)
+

(
θ(λ j − i)

2

)
+

(r j,i

2

)



A GENERALIZATION OF THE KOSTKA–FOULKES POLYNOMIALS 59

− m j,iθ(λ j − i) + m j,i r j,i − θ(λ j − i)r j,i + m j,i + r j,i

)
= cocharge(ν) + 0 + n(R) +

∑
i, j≥1

(m j,i r j,i

+ (1 − θ(λ j − i))(m j,i + r j,i )).

Suppose i and j are such that θ(λ j − i) = 0, that is, i > λ j . Then the cell ( j, i) is not
in the partition shape λ. Since the number of rigged configurations |RC(λ; R)| is equal to
the LR coefficient LRλ

R , each rectangle Ra must be contained in λ. It follows that r j,i = 0.
Eq. (9.10) guarantees that α j−1,i = 0. Since i > λ j ≥ λ j+1, α j,i = 0 also holds. By (9.2)
m j,i = 0. It follows that

cocharge(ν̂) = cocharge(ν) + n(R) +
∑
i, j≥1

m j,i r j,i

Together with (9.18), this implies (9.15). ✷

The transpose bijections were chosen with the following property in mind.

Conjecture 16 The following diagram commutes:

LRT(λ; R)
LR-transpose

—————→ LRT(λt ; Rt )

�R ↓ ↓ �Rt

RC(λt ; Rt )
RC-transpose

—————→ RC(λ, R)

We now give a map from the R-catabolizable tableaux of shape λ, to the R-column
catabolizable tableaux of shape λ̃, in the case that R is dominant.

Let S ∈ CT(λ; R). Let S1 = CatR1(S) and let Q1 = Qc(word(S+)word(S−)) where word
(T ) is the row-reading word of the (skew) tableau T , and Qc(w) is the Schensted Q symbol
for the column insertion of the word w [34]. The image U ∈ CT(λt ; Rt ) of S under our
proposed bijection, is uniquely defined by the property that CCat(U ) = U1 where U1 is the
image of S1 (which is defined by induction), and that Qt

1 = Q(word(Ur )word(Ul)), where
Q(a) is the Schensted Q symbol for the row insertion of a (see the definition of CCatR1(U )).

In practice one first computes the sequence of tableaux S0 = S and Si = CatRi (Si−1),
together with the recording tableaux Qi coming from the column insertion of the appropriate
row-reading words. Then one computes the sequence of tableaux, . . . , U2, U1 by setting
Ui to be the tableau such that CCatRt

i
(Ui ) = Ui+1 with recording tableau Qt

i .
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Example 20 Let S be the first tableau listed in Example 13. We give the successive
catabolisms of S together with the recording tableaux Qi .

S = S0 =

1 1 1 5 6

2 2 2 6

3 3 7

4 4

5 8

9

S1 =

3 3 7

4 4 8

5 5 9

6 6

Q1 =

1 2 3

4 5 10

6 7 11

8 9

11

S2 =
7

8

9

Q2 =
1

2

3

S3 = ∅ Q3 = ∅

The sequence of tableaux Ui are calculated by “reverse column catabolisms” whose row
insertions are recorded by the transposes of the Qs.

U3 = ∅ Qt
3 = ∅

U2 = 6 6 6 Qt
2 = 1 2 3

U1 =
4 4 4 4

5 5 5 5

6 6 6

Qt
1 =

1 4 6 8

2 5 7 9

3 10 11

U = U0 =

1 1 4 4 5 6

2 2 5 5 6

3 3 6

4 4

5

Conjecture 17 The above map gives a bijection CT(λ; R) to CCT(λt ; Rt ) when R and
Rt are dominant.

The essential point to check is that U is in fact semistandard, since it is conceivable that
there could be violations of semistandardness between pairs of entries of the form U (i, µ1)

and U (i, µ1 + 1) for i > η1.
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10. Monotonicity maps

For this section assume that R � R′.
From the definitions it follows directly that RC(λt ; Rt ) ⊆ RC(λt ; (R′)t ) which is obvi-

ously a cocharge-preserving embedding. At the end of this section we give a direct descrip-
tion of a related charge-preserving embedding ζ : RC(λ; R) ↪→ RC(λ; rows(R)).

A consequence of Conjecture 10 is that if both R and R′ are dominant, then CT(λ; R) ⊆
CT(λ; R′).

For LR tableaux, we describe embeddings

θ R′
R : LRT(λ; R) → LRT(λ; R′)

where R � R′. To define such embeddings it is enough to assume that R covers R′, that is,
for some k, τ j (R) = τ j (R′) for all k �= k and τ k(R) covers τ k(R′) in the dominance order.
Using the rectangle switching bijections we may assume that R and R′ have the form

R = ((ka), (kb), R3, R4, . . .)

R′ = ((ka−1, (kb+1), R3, R4, . . .)

where a > b + 1. The injection is defined as follows; it generalizes the rectangle-switching
bijection in Section 7. Let T ∈ LRT(λ; R) and B = [a + b]. Then T |B comprises the set
LRT(ρ; ((ka), (kb))), where ρ is the shape of T |B . It follows that LRT(ρ; ((ka−1, kb+1)))

consists of a single tableau T ′′. Let T ′ be defined by T ′|B = T ′′ and T ′|[n]−B = T |[n]−B . It
is clear from the definitions that T ′ ∈ LRT(λ; R′). The injection is given by T �→ T ′.

By composing embeddings of the form θ R′
R for R � R′ a covering relation, one may obtain

maps of the form θ R′
R for any pair R � R′.

This conjecture is a consequence of the following.

Conjecture 18 Let R � R′ be a covering relation. Then θ R′
R is independent of the sequence

of covering relations in � leading from R to R′, and

LRT(λ; R)
θ R′

R−→ LRT(λ; R′)
�R↓ ↓�R′

RC(λt ; Rt )
inclusion
–——→ RC(λt ; (R′)t )

We conclude this section with a charge-preserving embedding

ζ : RC(λ; R) ↪→ RC(λ; rows(R)).

First we must define the charge of a rigged configuration and say a few words about
quantum versus coquantum numbers.
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The charge of a rigged configuration (ν, J ) is defined by

charge(ν, J ) = charge(ν) +
∑
k≥1

l(νk )∑
s=1

J k
s ,

where

charge(ν) =
∑

k,n≥1

(
αk−1,n − αk,n + ∑

a(ηa − k)θ(µa − n)

2

)
.

The definition of charge is compatible with the quantum number labelling in the following
sense. Suppose (ν, L) ∈ RC(λ; R); we view L as coquantum numbers. Let J be the rigging
of ν obtained by complementing the rigging L , that is,

J k
s = Pk,νk

s
(ν) − Lk

s .

Write �R(ν, L) = (ν, J ) for this involution. The J are quantum numbers. The point is
that

charge(ν, J ) + cocharge(ν, L) = n(R). (10.1)

To see this, it is equivalent to show that

charge(ν) = n(R) − cocharge(ν) −
∑

k,n≥1

Pk,n(ν)mn(ν
k).

In light of (9.18) this is equivalent to

charge(ν) = n(R) + cocharge(ν) +
∑

k,n≥1

mk,nrk,n.

where (mk,n) is the matrix associated to ν (see (9.2)) and rk,n = rk,n(R) is as in (2.8). Then

charge(ν) =
∑

k,n≥1

(
mk,n + rk,n

2

)
=

∑
k,n≥1

((
mk,n

2

)
+

(
rk,n

2

)
+ mk,nrk,n

)
= cocharge(ν) + n(R) +

∑
k,n

mk,nrk,n

which proves (10.1).
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Now let us define the map ζ . Let ν = (ν1, ν2, . . .) be an admissible configuration of type
(λ; R) and J a rigging of ν. Define ζ(ν, J ) = (ν̃, J̃ ) where

ν̃k = νk
⋃
a≥1

(
µ(ηa−k)+

a

)
and the quantum numbers on the “old” rows remain the same, and the “new” rows are
assigned the quantum number 0.

Proposition 13 ζ : RC(λ; R) ↪→ RC(λ; rows(R)) is a charge-preserving embedding.

This is an immediate consequence of the following description of ζ .

Lemma 14 The map ζ satisfies the commutative diagram

RC(λ; R)
ζ

——→ RC(λ; rows(R))

�R↓ ↑�rows(R)

RC(λ; R) RC(λ; rows(R))

transposeR↓ ↑transposerows(R)

RC(λt ; Rt ) ——→
inclusion

RC(λt ; (rows(R))t )

Proof: Let (ν, J ) ∈ RC(λ; R) and (ν̃, J̃ ) the image of the composite map defined by
the commutative diagram. Let �R(ν, J ) = (ν, L), �rows(R)(ν̃, J̃ ) = (ν̃, L̃), and let the
RC-transpose of (ν, L) be (ν̂, L̂). Observe that the composite map is charge-preserving.
We have

charge(ν̃, J̃ ) = n(rows(R)) − cocharge(ν̃, L̃)

= cocharge(ν̂, L̂)

= n(R) − cocharge(ν, L)

= charge(ν, J )

by applications of (10.1) and (9.14) for both R and rows(R).
So it suffices to show that the output (ν̃, J̃ ) of the composite map agrees with ζ(ν, J ).
Let (mi, j ), (m̂i, j ), and (t̂i, j ) be the matrices (9.2) corresponding to ν, ν̂, and ν̃. Let

ri, j = ri, j (R) and r̃i, j = ri, j (rows(R)) in the notation of (2.8). By two applications of the
definition of the RC-transpose map (9.7) and the definition of rows(R), we have

m̂i, j = −m j,i + θ(λ j − i) − r j,i

= −t̂ j,i + θ(λ j − i) − r̃ j,i .
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Solving for t̂ j,i , we have

t̂ j,i = m j,i + r j,i − r̃ j,i .

By (9.3) we have

α̃ j,i = α j,i −
j∑

k=1

r j,i − r̃ j,i

= α j,i −
j∑

k=1

∑
a

θ(µa − i)(θ(ηa − k) − ηaδ1,k)

= α j,i −
∑

a

θ(µa − i)(min(ηa, j) − ηa)

= α j,i +
∑

a

θ(µa − i)(ηa − j)+.

This is equivalent to the assertion that the configuration in ζ(ν, J ) is equal to ν̃.
To check the riggings, consider an index k and a part size n. It is first shown that the

following two assertions suffice.

1. If mn(ν
k) > 0 and Pk,n(ν) > 0 then ρk,n(ν, J ) = ρk,n(ν̃, J̃ ).

2. If mn(ν̃
k) > 0 and Pk,n(ν̃) > 0 then ρk,n(ν, J ) = ρk,n(ν̃, J̃ ).

To see why these conditions suffice, let us consider a part n of ν̃k , so that mn(ν̃
k) > 0.

Suppose first that this part n is “new”. If Pk,n(ν̃) = 0 then J̃ obeys the definition of ζ . So
suppose Pk,n(ν̃) > 0. Then by 2, ρk,n(ν, J ) = ρk,n(ν̃, J̃ ). Here the old parts of length n in
ν̃k have the same labels as in νk , using up all the nonzero parts of ρk,n(ν̃, J̃ ). Therefore
the new parts n in ν̃k have label zero, and (ν̃, J̃ ) is as in the definition of ζ . Otherwise
suppose n is an old part of ν̃k , so that mn(ν̃

k) > 0 and mn(ν
k) > 0. If either Pk,n(ν) > 0 or

Pk,n(ν̃) > 0 then by 1 or 2 we are done as before. If both are zero, then by admissibility
the quantum number for this part must be zero in both (ν, J ) and (ν̃, J̃ ), and again we are
done.

Now the proof of 2 is given; the proof of 1 is similar. For 2, the hypotheses allow us to apply
(9.11) for (ν̃, L̃) ∈ RC(λ; rows(R)), so that ρn,k(ν̂, L̂) is the complement of the transpose
of ρk,n(ν̃, L̃) in the mn(ν̃

k) × Pk,n(ν̃) rectangle. But by the definition of �rows(R), ρk,n(ν̃, J̃ )

is the complement of ρk,n(ν̃, L̃) in the mn(ν̃
k)× Pk,n(ν̃) rectangle. It follows that ρn,k(ν̂, L̂)

is the transpose of the partition ρk,n(ν̃, J̃ ), and that mk(ν̂
n) > 0 and Pn,k(ν̂) > 0. Applying

the same argument for (ν̂, L̂) ∈ RC(λt ; Rt ) it follows that ρk,n(ν, L) is the transpose of the
partition ρn,k(ν̂, L̂), so that 2 follows. ✷

It follows from the explicit description of ζ that we can embed the set RC(λ; R) into
RC(λ; rows(R)) such that for each k ≥ 1 and a ≥ 1 there exists a nonnegative integer
m := m(k, a) such that
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• αk,m+i − αk,m+i+1 = µa ,
• J k

m+i = 0, for all 0 ≤ i ≤ (ηa − k)+.

If this characterization of the set RC(λ; R) is compared with that given by S. Fishel [7]
for the set Mk

r−k , it follows immediately that

Mk
r−k(t) =

∑
(ν,J )∈RC(λ;R)

qcharge(ν,J )

where R = ((2)r−k, (1, 1)k, (1)n−2r ). This, together with (2.4), implies that the Poincaré
polynomial Kλ;R(q) and the above generating function over rigged configurations, coincide
in the case that R consists of some rectangles (2) followed by a sequence of rectangles (1, 1)

and (1).

Appendix

Before proving Lemma 11 it should be mentioned that the implication that 2 implies 1
is fundamental. It is used implicitly in the definition of the bijection from LR tableaux
to rigged configurations, even in the Kostka case. So all the results depending upon that
bijection require this lemma. Similarly, the definition of rigged configuration used in [7]
requires this lemma.

Proof: (of Lemma 11) Clearly it is enough to show that 2 implies 1 and 1 implies 3.
Suppose 2 holds. It is consistent with the definitions to make the convention that Pk,0(ν) = 0
for all k ≥ 1. Using the notation αk,n for the n-th part of the transpose of the partition νk ,
the difference of vacancy numbers is given by

Pk,n(ν) − Pk,n−1(ν) = αk−1,n − 2αk,n + αk+1,n +
∑

a

θ(µa − n)δηa ,k,

which holds for k, n ≥ 1. Taking differences again,

−Pk,n−1(ν) + 2Pk,n(ν) − Pk,n+1(ν)

= (Pk,n(ν) − Pk,n−1(ν)) − (Pk,n+1(ν) − Pk,n(ν))

= mn(ν
k−1) − 2mn(ν

k) + mn(ν
k+1) +

∑
a

δµa ,nδηa ,k,

valid for k, n ≥ 1. In particular the vacancy numbers have the partial convexity property

Pk,n(ν) ≥ 1/2(Pk,n−1(ν) + Pk,n+1(ν)) if mn(ν
k) = 0. (11.1)

So for 1 it is enough to show that Pk,n(ν) ≥ 0 for sufficiently large and small n. For
small n, recall that Pk,0(ν) = 0. For large n, Qn(ν

k) = |νk |, so that the vacancy numbers
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satisfy

Pk,n(ν) = |νk−1| − 2|νk | + |νk+1| +
∑

a

min(µa, n)δηa ,k

=
∑

j>k−1

λ j −
∑
a≥1

µa(ηa − (k − 1))+ − 2

( ∑
j>k

λ j −
∑
a≥1

µa(ηa − k)+

)
+

∑
j>k+1

λ j −
∑
a≥1

µa(ηa − (k + 1))+ +
∑

a

min(µa, n)δηa ,k

= λk − λk+1 +
∑
a≥1

min(0, n − µa)δηa ,k . (11.2)

Thus for large n, Pk,n(ν) ≥ λk − λk+1 ≥ 0, proving 1.
To prove 3, note that

min(λk, n) − min(λk+1, n) =


0 for n ≤ λk+1

n − λk+1 for λk+1 < n < λk

λk − λk+1 for λk ≤ n

(11.3)

For n ≤ λk+1 there is nothing to show. Suppose n ≥ λk . In light of (11.2) it suffices to
show that there is no index a such that ηa = k and n < µa . Suppose such an a exists. Then
µa > n ≥ λk . In particular, the rectangle Ra having ηa = k rows and µa columns is not
contained in the shape λ. By Theorem 4 it follows that there are no admissible configurations
of type (λ; R), which is a contradiction.

Finally suppose λk+1 < n < λk . In light of the partial convexity (11.1) and the boundary
conditions Pk,λk+1(ν) ≥ 0 and Pk,λk (ν) ≥ λk − λk+1, it is enough to show that mn(ν

k) = 0
for n > λk+1. Since νk is a partition it is enough to show λk+1 ≥ νk

1 for all k. Fix k.
Observe first that for any (λ; R), if there is an admissible configuration of type (λ; R)

then λ1 ≥ µa for all a. Indeed, if such a configuration exists then by Theorem 4, LRR
λ > 0,

and by the LR rule there must be an R-LR tableau of shape λ. But for this to happen, λ

must contain Ri for all i , hence λ1 ≥ µa for all a.
Thus it suffices to exhibit a pair (λ̃; R̃) such that λ̃1 = λk+1 and R̃ contains a rectangle

having νk
1 columns. Define the partition λ̃ and sequence of rectangles R̃ by

λ̃ = (λk+1, λk+2, . . .)

R̃ = {
(µa)

(ηa−k)+
} ∪ {(

νk
b

) ∣∣ 1 ≤ b ≤ �(νk)
}
.

In other words, λ̃ is obtained from λ by removing the first k parts, and R̃ is obtained from
R by removing k rows from each rectangle and adding a single row for each part of the
partition νk . Now it is enough to exhibit an admissible configuration of type (λ̃; R̃). Recall
that we are assuming that ν is an admissible configuration of type (λ; R). Let ν̃ be the
sequence of partitions defined by ν̃ p = νk+p for p ≥ 1. Let us check the condition that ν̃
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is a configuration of type (λ̃; R̃). For p ≥ 1,

|ν̃ p| = |νk+p|
=

∑
j>k+p

λ j −
∑

a

µa max(ηa − k − p, 0)

=
∑
j>p

λ̃ j −
∑

a

µa max((ηa − k)+ − p, 0) −
∑

1≤b≤�(νk )

νk
b max(1 − p, 0).

To check that ν̃ is admissible, let n ≥ 1 and p > 1 first:

Pp,n(ν̃) = Qn(ν̃
p−1) − 2Qn(ν̃

p) + Qn(ν̃
p+1) +

∑
a

min(µa, n)δ(ηa−k)+,p

+
∑

b

min
(
νk

b , n
)
δ1,p

= Qn(ν
k+p−1) − 2Qn(ν

k+p) + Qn(ν
k+p+1) +

∑
a

min(µa, n)δηa ,k+p

= Pk+p,n(ν) ≥ 0

by the admissibility of ν. For p = 1 and n ≥ 1 we have

P1,n(ν̃) = Qn(ν̃
0) − 2Qn(ν̃

1) + Qn(ν̃
2) +

∑
a

min(µa, n)δ(ηa−k)+,1

+
∑

b

min
(
νk

b , n
)
δ1,1

= 0 − 2Qn(ν
k+1) + Qn(ν

k+2) +
∑

a

min(µa, n)δηa ,k+1 + Qn(ν
k)

= Pk+1,n(ν) ≥ 0

again by the admissibility of ν. Thus ν̃ is an admissible configuration of type (λ̃; R̃) and
the proof is complete. ✷
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