ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

The Flagged Double Schur Function

William Y.C. Chen , Bingqing Li2 and J.D. Louck3

2Department of Risk Management and Insurance, Nankai University, Tianjin, 300071, People's Republic of China

DOI: 10.1023/A:1013217015135

Abstract

The double Schur function is a natural generalization of the factorial Schur function introduced by Biedenharn and Louck. It also arises as the symmetric double Schubert polynomial corresponding to a class of permutations called Grassmannian permutations introduced by A. Lascoux. We present a lattice path interpretation of the double Schur function based on a flagged determinantal definition, which readily leads to a tableau interpretation similar to the original tableau definition of the factorial Schur function. The main result of this paper is a combinatorial treatment of the flagged double Schur function in terms of the lattice path interpretations of divided difference operators. Finally, we find lattice path representations of formulas for the symplectic and orthogonal characters for sp(2 n) and so(2 n + 1) based on the tableau representations due to King and El-Shakaway, and Sundaram. Based on the lattice path interpretations, we obtain flagged determinantal formulas for these characters.

Pages: 7–26

Keywords: double Schur function; flagged double Schur function; symplectic characters; orthogonal characters

Full Text: PDF

References

1. N. Bergeron and S. Billey, “RC-graphs and Schubert polynomials,” Experiment. Math. 2 (1993), 257-269.
2. L.C. Biedenharn and J.D. Louck, “A new class of symmetric polynomials defined in terms of tableaux,” Adv. Appl. Math. 9 (1988), 447-464.
3. L.C. Biedenharn and J.D. Louck, “Inhomogeneous basis set of symmetric polynomials defined by tableaux,” Proc. Nat. Acad. Sci. U.S.A. 87 (1990), 1441-1445.
4. L.C. Biedenharn, A.A. Bincer, M.A. Lohe, and J.D. Louck, “New relations and identities for generalized hypergeometric coefficients,” Adv. Appl. Math. 13 (1992), 62-121.
5. S.C. Billey, “Kostant polynomials and the cohomology ring for G/B,” Proc. Natl. Acad. Sci. U.S.A. 94 (1997), 29-32.
6. F. Brenti, “Determinants of super Schur functions, lattice paths, and dotted plane partitions,” Adv. Math. 98 (1993), 27-64.
7. W.Y.C. Chen and J.D. Louck, “The factorial Schur function,” J. Math. Phys. 34(9) (1993), 4144-4160.
8. S. Fomin and A.N Kirillov, “The Yang-Baxter equation, symmetric functions, and Schubert polynomials,” Discrete Math. 153 (1996), 123-143.
9. S. Fomin and R.P. Stanley, “Schubert polynomials and the nil-Coxeter algebra,” Adv. Math. 103 (1994), 196-207.
10. M. Fulmek and C. Krattenthaler, “A bijection between Proctor's and Sundaram's odd orthogonal tableaux,” Discrete Math. 161 (1996), 101-120.
11. M. Fulmek and C. Krattenthaler, “Lattice path proofs for determinantal formulas for symplectic and orthogonal characters,” J. Combin. Theory, Series A 77 (1997), 3-50.
12. W. Fulton, “Flags, Schubert polynomials, degeneracy loci, and determinantal formulas,” Duke Math. J. 55 (1992), 381-420.
13. W. Fulton, “Determinantal formulas for orthogonal and symplectic degeneracy loci,” J. Differential Geom. 43 (1996), 276-290.
14. W. Fulton and J. Harris, Representation Theory, Springer-Verlag, New York, 1991.
15. I. Gessel and G. Viennot, “Binomial determinants, paths, and hook length formulae,” Adv. Math. 58 (1985), 300-321.
16. I. Gessel and G. Viennot, “Determinants, paths, and plane partitions,” preprint.
17. I. Goulden and C. Greene, “A new tableau representation for supersymmetric Schur function,” J. Algebra 170 (1994), 687-703.
18. A.H. Hamel and I.P. Goulden, “Lattice paths and a sergeev-pragacz formula for skew supersymmetric functions,” Can. J. Math. 47(2) (1995), 364-382. CHEN, LI AND LOUCK
19. A.H. Hamel and I.P. Goulden, “Planar decompositions of tableaux and Schur function determinants,” Europ. J. Combin. 16 (1995), 461-477.
20. R.C. King and N.G.I. El-Sharkaway, “Standard Young tableaux and weight multiplicities of the classical Lie groups,” J. Phys. A: Math. Gen. 16 (1983), 3153-3177.
21. C. Krattenthaler, “A bijective proof of the hook-content formula for super Schur functions and a modified jeu de Taquin,” Electronic J. Combin. 3(2) (1996), R14.
22. A. Lascoux, “Puissances extérieures, déterminants et cycles de Schubert,” Bull. Soc. Math. France 102 (1974), 161-179.
23. A. Lascoux, “Classes de Chern des Variétés de drapeaux,” C. R. Acad. Sca. Paris Sér. I Math. 295(5) (1982), 393-398.
24. A. Lascoux, “Interpolation,” unpublished notes.
25. A. Lascoux, and M. Sch\ddot utzenberger, “Géométrie algébrique-polynómes de Schubert,” C. R. Acad. Sci. Paris 294 (1982), 447-450.
26. I.G. Macdonald, “Notes on Schubert polynomials,” Publication du LACIM, Université du Quéec `a Montréal, No. 6, 1991.
27. I.G. Macdonald, “Schur functions: Theme and variations,” in Actes 28e Seminaire Lotharingien, 498/S-27, Publ. I.R.M.A. Strasbourg, 1992, pp. 5-39.
28. I.G. Macdonald, Symmetric Functions and Hall Polynomial, Oxford Univ. Press, New York, 1979.
29. M.A. Méndez, “The umbral calculus of symmetric functions,” Adv. Math. 124 (1996), 207-271.
30. M.A. Méndez, “Umbral shifts and symmetric functions of Schur type,” in Mathematical Essays in Honor of Gian-Carlo Rota, B.E. Sagan, and R.P. Stanley (Eds.), Birkh\ddot auser, Boston, 1998, pp. 285-303.
31. A. Molev, “Factorial supersymmetric Schur functions and super Capelli identities,” Kirillov's Seminar on Representation Theory, G.I. Olshanski (Ed.), Amer. Math. Soc. Iransl., Ser. 2, Vol. 181, AMS, Providence, R. I., 1998, pp. 109-137.
32. A. Molev and B.E. Sagan, “A Littlewood-Richardson rule for factorial Schur functions,” Trans. Amer. Math. Soc. 351 (1999), 4429-4443.
33. A. Okounkov, “Quantum immanants and higher Capelli identities,” Transformation Groups 1 (1996), 99-126.
34. P. Pragacz and A. Thorup, “On a Jacobi-Trudi identity for supersymmetric polynomials,” Adv. Math. 95 (1992), 8-17.
35. R.A. Proctor, “A Schensted algorithm with models tensor representations of the orthogonal group,” Can. J. Math. 42 (1990), 28-49.
36. F. Sottile, “Pieri's formula for flag manifolds and Schubert polynomials,” Ann. Inst. Fourier 46 (1996), 89-110.
37. R.P. Stanley, “Theory and application of plane partitions, I,” Studies in Appl. Math. 50 (1971), 167-188.
38. R.P. Stanley, “On the number of reduced decompositions of elements of Coxter groups,” Eur. J. Combin. 5 (1984), 359-372.
39. S. Sundaram, “Orthogonal tableaux and an insertion algorithm for so(2n + 1),” J. Combin. Theory Ser. A 53 (1990), 239-256.
40. S. Veigneau, “SP, a package for Schubert polynomials realized with the computer algebra system Maple, J. Symbolic Computation 23 (1997), 413-425.
41. M.L. Wachs, “Flagged Schur functions, Schubert polynomials, and symmetrizing operators,” J. Combin. Theory, Ser. A 40 (1985), 276-289.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition