
Journal of Algebraic Combinatorics 15 (2002), 71–97
c© 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

A Counting Formula for Labeled, Rooted Forests

KRISTEN A. LAMPE klampe@cc.edu
Department of Mathematics, Carroll College, Waukesha, WI 53186

Received October 13, 2000; Accepted September 4, 2001

Abstract. Given a power series, the coefficients of the formal inverse may be expressed as polynomials in the
coefficients of the original series. Further, these polynomials may be parameterized by certain ordered, labeled
forests. There is a known formula for the formal inverse, which indirectly counts these classes of forests, developed
in a non-direct manner. Here, we provide a constructive proof for this counting formula that explains why it gives
the correct count. Specifically, we develop algorithms for building the forests, enabling us to count them in a direct
manner.
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1. Introduction

The Jacobian Conjecture, first stated by O. Keller in 1939, serves as a motivation for this
paper. Let F : kn → kn be a polynomial over a field, k, of characteristic zero. We can write
F = (F1, . . . , Fn), where each Fi is a polynomial in n variables. Let J (F) = (Di Fj ) be the
Jacobian matrix for F , and j (F) = det(J (F)) be the Jacobian determinant. The Jacobian
Conjecture states that, if j (F) = a ∈ k∗, then F has a polynomial inverse.

One reduction shows, by increasing the dimension, that we may assume F = (F1, . . . , Fn)

is of the form Fi = Xi − Hi where Hi is a homogeneous polynomial of degree δ = 3 (see
Bass et al. [1] for this and other reductions, as well as a more complete history of the
problem.) Using a process called reversion, we may express the compositional inverse of
F , called G = (G1, . . . , Gn), as a series whose coefficients are polynomials over the coef-
ficients of the Fi . Moreover, Wright [6] expresses the inverse in this manner as a sum over
labeled, rooted trees. This this process applies when F = X − H is a power series as well,
so we will work in this more general setting.

A labeled, rooted tree is a minimally connected finite graph with one node designated
the root and each node given a label. We denote the different labels by 1, . . . , n, and the
tree by T . Two adjacent vertices have a parent-child relationship. The parent is the node
closer to the root, while the child is the node farther from the root.

In their paper, “Reversion of Power Series and the Extended Raney Coefficients,” the
authors Cheng et al. [2] use generating functions in infinitely many variables to get another
expression for the inverse in terms of trees, similar to that in [6]. This expression is the
starting point for this paper, so we endeavor to state it clearly here.

Let F1, . . . , Fn be power series in n variables of the form Fi = Xi − Hi , where Hi

consists of terms of degree two and higher. It is known that the power series inverse,
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G = (G1, . . . , Gn), of F = (F1, . . . , Fn) exists. Further, the coefficients of each Gi can be
expressed as polynomials whose indeterminates are the coefficients of the Fi . These poly-
nomials have coefficients in the integers and are, surprisingly, non-negative. They are called
the extended Raney coefficients, and the process of finding them is, as mentioned above,
called reversion. Next, we consider the definitions and notation used in the formula for the
inverse.

Notation 1.1 Having defined a labeled, rooted tree, we say a forest is an ordered collection,
sorted by root-label, of these trees. A forest gives rise to an inventory, α = (α1, . . . , αn) as
follows. For i = 1, . . . , n, let αi = (α

k1,...,kn
i ) be an n dimensional array over the natural

numbers with finitely many non-zero entries. For each i and each n-tuple k = (k1, . . . , kn),
let αk

i be the number of i-labeled nodes in the forest with k j children having label j , for
1 ≤ j ≤ n. Next, we define σ(αi ) = ∑

k αk
i and σ j (αi ) = ∑

k k jα
k
i . So σ(αi ) is the number

of i-labeled nodes and σ j (αi ) is the number of j-labeled children of i-labeled nodes. We
restrict ourselves to α such that

σ(αi ) ≥
n∑

j=1

σi (α j ). (1)

We define R(α) to be the number of forests having inventory α.

We also know that

pi = σ(αi ) −
n∑

j=1

σi (α j ) (2)

is the number of i-labeled roots in the forest. Then we say p = (p1, . . . , pn) is the root-type
of the forest. We say q = (q1, . . . , qn) is the leaf-type of the forest if there are qi i-labeled
leaves. Lastly, k = (k1, . . . , kn) is called the child-type of a node.

For k = (k1, . . . , kn), let |k| = k1 + · · · + kn . For Fi = Xi − Hi , where

Hi =
∑
|k|≥2

ak
i Xk,

Theorem 3.1 of [2] shows that

X p1
1 · · · X pn

n =
∑

q=(q1,...,qn)

eq
p Fq1

1 · · · Fqn
n

where

eq
p =

∑
R(α)

n∏
j=1

∏
|k|≥2

(
ak

j

)αk
j
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with the sum being indexed by all α having root-type p and leaf-type q, such that qi = α
(0,...,0)
i

and αk
i = 0 whenever |k| = 1. Notice that if p = ei , this formula becomes

Xi =
∑

q=(q1,...,qn)

eq
ei

Fq1
1 · · · Fqn

n .

In other words, we have found the inverse

Gi =
∑

q=(q1,...,qn)

eq
ei

Fq1
1 · · · Fqn

n .

Next, [2] uses a version of Jacobi’s residue formula to find a determinantal formula for
R(α). We define

M(αi ) = σ(αi )!∏ (
αk

i !
)

M̃(αi ) =
{

1 if all αk
i = 0

1
σ(αi )

M(αi ) otherwise

The formula found in Theorem 3.3 of [2] is then

Theorem 1.2

R(α) =

∣∣∣∣∣∣∣∣∣∣


M(α1) 0 · · · 0

0 M(α2) · · · 0
...

...
...

0 0 · · · M(αn)

 −


M̃(α1) 0 · · · 0

0 M̃(α2) · · · 0
...

...
...

0 0 · · · M̃(αn)



×


−σ1(α1) −σ2(α1) . . . −σn(α1)

−σ1(α2) −σ2(α2) . . . −σn(α2)

...
...

...

−σ1(αn) −σ2(αn) . . . −σn(αn)


∣∣∣∣∣∣∣∣∣∣

We may assume that σ(αi ) > 0 for all i . Indeed, suppose some σ(αi ) = 0, meaning there
are no nodes of label i and, by Eq. (1), σi (α j ) = 0 as well. Then, in Theorem 1.2, M(αi ) = 1,
M̃(αi ) = 1, and the determinant will have the i th row and column with zeroes except at the
(i, i) entry, which will have a 1. Hence, we may move to a lower dimension. From now on,
we will assume that α = (α1, . . . , αn) satisfies σ(αi ) > 0 for all i . Under this condition, the
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above theorem reduces to

R(α) =
(

n∏
i=1

M̃(αi )

) ∣∣∣∣∣∣∣∣
σ(α1) − σ1(α1) −σ2(α1) . . . −σn(α1)

...
...

−σ1(αn) −σ2(αn) . . . σ (αn) − σn(αn)

∣∣∣∣∣∣∣∣ (3)

Thus, [2] gives a formula for counting forests having inventory α without ever referring
to the forests themselves. The way this formula comes about, then, is fairly opaque. There is
no method given in [2] involving the enumeration of the forests by a direct counting process
that explains why Formula (3) holds. Here, we give such a method. Aside from illuminating
the formula in Eq. (3), this counting method has several other interesting consequences. In
the process of enumerating forests, we develop geometric objects called wreaths that are
new to this problem. Moreover, we develop a non-trivial method to classify wreaths that
corresponds nicely with Theorem 1.2’s determinantal formula. Further, using this counting
procedure as the basis of the argument, we can restate the Jacobian conjecture in a simpler
form. This last result will appear in a future paper, [4].

1.1. Outline of method

We first break down the nodes of the forest and write them in a linear fashion, called a
sorted permutation. Combinatorics tells us the number of possible arrangements that can
be made from a given set of nodes from a forest with inventory α, each arrangement giving
one sorted permutation. We then define an algorithm for taking a sorted permutation and
building a forest. Since the number of roots of each label is known, we can build this forest
tree by tree. Once the forest is built, if all the nodes have been used in this process, we
declare the sorted permutation a success. Otherwise, there will be leftover nodes and we
declare the sorted permutation a failure. It is these failures we need to count. The remaining
nodes in the sorted permutation have no roots, so they do not form trees, but instead form
objects with loops in them, called wreaths. This first algorithm also takes a failing sorted
permutation and associates to that failure a set of pairwise disjoint cycles, derived from
these wreaths.

Next, we define a second algorithm. This algorithm takes a given cycle and forms a
collection of sorted permutations which fail. Moreover, applying the first algorithm to
these sorted permutations will always result in the given cycle being one of the associated
cycles. We must take into consideration that the same sorted permutation may appear
with two different given cycles. After counting the number of failing sorted permutations
constructed with a given cycle, and counting how many times a sorted permutation appears
when considering all possible cycles, we thus acquire a count of the total number of distinct
failing sorted permutations.

Finally, we expand the given formula for R(α), and show that this quantity is precisely
the number of total sorted permutations for a given α minus the number of distinct failing
sorted permutations created by the second algorithm. In fact, interpreting the terms of the
formula as counting sorted permutations with certain cycles gives an exact match, term by
term, with the usual set theoretic formula for the cardinality of a union of sets.
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2. The Raney coefficients

In dimension n, [2] proves that, for a given inventory, α, satisfying σ(αi ) > 0 for all i , and
for

Dn =

∣∣∣∣∣∣∣∣∣∣

σ(α1) − σ1(α1) −σ2(α1) . . . −σn(α1)

−σ1(α2) σ (α2) − σ2(α2) . . . −σn(α2)

...
...

...

−σ1(αn) −σ2(αn) . . . σ (αn) − σn(αn)

∣∣∣∣∣∣∣∣∣∣
then R(α), the number of forests with inventory α, is shown to be

R(α) =
(

n∏
i=1

M̃(αi )

)
Dn. (4)

In order to provide a constructive proof that this formula counts the number of forests
with inventory α, we need to evaluate the determinant, Dn .

Claim 2.1 For M an n × n matrix such that M = D − A, where A = (ai j ) is an arbitrary
matrix and

D =

∣∣∣∣∣∣∣∣∣∣

d1 0 . . . 0

0 d2 . . . 0
...

...
...

0 0 . . . dn

∣∣∣∣∣∣∣∣∣∣
is a diagonal matrix, then

det(M) =
n∏

i=1

di +
n∑

r=1

(−1)r
∑

1≤i1<i2<···<ir ≤n

( ∏
l /∈{i1,...,ir }

dl

) ∣∣∣∣∣∣∣∣
ai1i1 ai1i2 . . . ai1ir

...
...

...

air i1 air i2 . . . air ir

∣∣∣∣∣∣∣∣
The proof follows from the bilinearity by rows of determinants. We can apply this claim

to Dn and note that

Dn =
n∏

i=1

σ(αi ) +
n∑

r=1

(−1)r
∑

1≤i1<i2<···<ir ≤n

( ∏
l /∈{i1,...,ir }

σ(αl)

)

×

∣∣∣∣∣∣∣∣
σi1

(
αi1

)
σi2

(
αi1

)
. . . σir

(
αi1

)
...

...
...

σi1

(
αir

)
σi2

(
αir

)
. . . σir

(
αir

)
∣∣∣∣∣∣∣∣ (5)
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To develop this determinant further, we need some vocabulary. In what follows, we will
fix an inventory, α, such that

σ(αi ) ≥
n∑

j=1

σi (α j ) for all 1 ≤ i ≤ n.

As in the introduction, αk
i represents the number of i-labeled nodes with child-type k =

(k1, . . . , kn), that is, having k j j-labeled children.

2.2 For i ∈ {1, 2, . . . , n} and k = (k1, . . . , kn), let L = Lα be a set containing the formal
symbol i k αk

i times. If αk
i > 1, put a different shade on each element of L of that type, so

all elements of L are distinct. An L-sorted permutation, w, is a sorted permutation of the
elements of L of the form

(1a1 , . . . , 1al )(2b1 , . . . , 2bk ) · · · (nc1 , . . . , ncm )

Each entry in the sorted permutation, representing an element of L , is called a letter. Each
letter’s superscript is an n-tuple, representing the child-type of that letter’s node. Thus, in
dimension n = 3, the letter 1012 represents a label 1 node having child-type (0, 1, 2). We
may view a letter as a node with labeled edges directed away from it. The label on the edge
denotes the label of the child to be placed at edge’s end.

Remark 2.3 Previously, we defined σ(αi ) and σi (α j ) in terms of forests. Note that, as we
have defined an L-sorted permutation, we may also determine σ(αi ) and σi (α j ) from L , or
any L-sorted permutation. Thus, σ(αi ) denotes the number of i-labeled letters and σi (α j )

is the sum of the ith child-type entries of all the j-labeled letters.

The number of L-sorted permutations is
∏n

i=1(σ (αi )!). If we were to remove the shading
from 2.2 that makes each letter distinct, combinatorics tells us we would have∏n

i=1(σ (αi )!)∏
i,k

(
αk

i !
)

distinct L-sorted permutations and this equals M(α) = ∏n
i=1 M(αi ). In what follows, we

will show there is a one-to-one correspondence between forests with inventory α and “suc-
cessful L-sorted permutations” without shading. Thus, to count the number of forests, we
count the number of successful sorted permutations without shading. By the above argu-
ment, it suffices to count the number of shaded successful sorted permutations and then
divide by the number of times a sorted permutation is repeated when the shading is removed.
Thus, using Equation (4), the goal is to show that the number of shaded successful sorted
permutations is(

n∏
i=1

((σ (αi ) − 1)!)

)
Dn. (6)
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2.1. Cycle definitions

A cycle, c, is a non-empty sequence of letters from the set L with the following three
properties.

(i) Each label is represented at most once.
(ii) Each letter designates an edge to connect it to the next cycle node. This implies that if

the ith letter in the cycle has label j , then the (i − 1)st letter has k j ≥ 1. For i = 1, we
use the convention that i − 1 is the last letter. If k j > 1, the subscript of the (i − 1)st
letter denotes the edge specified.

(iii) A cycle is unique only up to cyclic rotation. That is, the cycle obtained by shifting the
cycle entries x units left and moving the first x entries to be the last x entries will be
considered to be the same cycle.

For example, (1011, 3200
2 ) is a cycle. Also, (3200

2 , 1011) is the same cycle. For c a cycle, |c|
is the number of letters in c and Lc ⊆ L is the set of letters in c.

A cycle-type, c̄ = (x1, . . . , xs), is a sequence, mod rotation, of distinct labels xi where
s ≤ n. Every cycle, then, has an associated cycle-type.

The cycle (1011, 3200
2 ) is of type (1, 3).

Two cycles, c1 and c2, are said to be disjoint if they have no labels in common. We write
c1 ∩ c2 = ∅.

Going back to the determinant, Dn , we now associate to each term a collection of disjoint
cycle-types by using the following convention: σ(α j ) is not part of a cycle, but σi (α j ) is
read “ j calls i ,” meaning that (. . . , j, i, . . .) is part of a cycle-type. For example,

σ1(α1)σ2(α2)

n∏
j=3

σ(α j )

has 2 cycle-types, namely (1) and (2), whereas

σ2(α1)σ1(α2)

n∏
j=3

σ(α j )

has only one cycle-type, (1,2). We again regroup the terms in Dn , this time according to the
number of cycle-types in each term. Given a set of pairwise disjoint cycle-types c1, . . . , c j ,
let C be the set of labels appearing in c1 ∪· · ·∪ c j . Let c̄ = (x1, x2, . . . , xs) be a cycle-type.
Denote by σ(c̄) the number of cycles of cycle-type c̄ that can be formed from the elements
of L . Note that

σ(c̄) = σx2

(
αx1

)
σx3

(
αx2

) · · · σx1

(
αxs

)
.

Claim 2.4 With the notation above,

Dn =
n∏

i=1

σ(αi ) +
n∑

j=1

(−1) j
∑




(∏
l /∈C

σ(αl)

)
σ(c1)σ (c2) · · · σ(c j )
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where 
 sums over all possible collections, c̄1, . . . , c̄ j of j disjoint cycle-types and C de-
notes the labels represented in these j cycle-types.

Let r = |C |, the number of letters used in c1 ∪ · · · ∪ c j . Notice that each term in Dn , as
expressed in Eq. (5) is a product of n entries, n − r of which are σ(αl)’s. Let j denote the
number of cycle-types in a term of Dn . That is, j is the number of cycle-types in a term
from some determinant on the right hand side of Eq. (5). Then r is the number of rows
in that determinant corresponding to j . Each term from that determinant is a permutation
which we will call τ .

To prove Claim 2.4, we need

Claim 2.5 Let j, r , and τ be as defined in the preceeding paragraph. Then,

(−1)r sgn(τ ) = (−1) j

Proof: Viewing a cycle, c, as a permutation, sgn c makes sense. The proof, then, follows
from the fact that, for any cycle, c, of length, l, (−1)lsgn c = −1. ✷

Proof of Claim 2.4: According to Eq. (5), each term of Dn comes from, for some r ,

(−1)r
∑

1≤i1<···<ir ≤n

( ∏
l /∈{i1,...,ir }

σ(αl)

) ∣∣∣∣∣∣∣∣
σi1

(
αi1

) · · · σir

(
αi1

)
...

...

σi1

(
αir

) · · · σir

(
αir

)
∣∣∣∣∣∣∣∣ .

Hence r even or odd plays a role. We are grouping the terms according to the number of
cycle-types j , so j matters as well. We know

(−1)r
∑

1≤i1<···<ir ≤n

( ∏
l /∈{i1,...,ir }

σ(αl)

) ∣∣∣∣∣∣∣∣
σi1

(
αi1

) · · · σir

(
αi1

)
...

...

σi1

(
αir

) · · · σir

(
αir

)
∣∣∣∣∣∣∣∣

= (−1)r
∑

1≤i1<···<ir ≤n

( ∏
l /∈{i1,...,ir }

σ(αl)

) (∑
τ∈Sr

(
sgn(τ )σiτ(1)

(
αi1

) · · · σiτ(r)

(
αir

)))

We have shown (−1)r sgn(τ ) to depend on j . By Claim 2.5, all terms having an even
number of cycle-types are positive and all terms having an odd number of cycle-types are
negative.

Notice also, in expressing Dn grouped by cycle-types, that given a collection of j disjoint
cycle-types, c1, . . . , c j , for ci = (xi1 , . . . , xir ) we can write c1, . . . , c j as

(
x11 · · · x1r

)(
x21 · · · x2s

) · · · (x j1 · · · x jt

)
.
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There is a corresponding term

(−1) j

(∏
l /∈C

σ(αl)

)
σx12

(
αx11

) · · · σx11

(
αx1r

)
σx22

(
αx21

) · · · σx j1

(
αx jt

)
that can be located in the original determinant by taking

{i1, . . . , ir } = C,

the labels in c1, . . . , c j .
Since all terms in Dn are of this form and all terms of this form appear in Dn with no

repeats, we have a one-to-one correspondence. Thus, in Claim 2.4, when grouping all terms
with j cycle-types, we also get all possible combinations of j disjoint cycle-types. That is,

Dn =
n∏

i=1

σ(αi ) +
n∑

j=1

(−1) j
∑




(∏
l /∈C

σ(αl)

)
σ(c1)σ (c2) · · · σ(c j )

where 
 sums over all possible collections of j disjoint cycle-types and C is the set of labels
represented in these j cycle-types. ✷

Having thus expressed Dn , the goal is to provide a constructive proof that the number of
successful shaded sorted-permutations is(∏

(σ (αi ) − 1)!)
)

Dn.

To do this, we will be using not only labeled rooted trees, but other geometric figures, as
well, defined in the next section.

3. Algorithms for building and recording

3.1. Building arbors from sorted permutations

3.1.1. Making calls. We will say that a parent node calls its children. Given a shaded
L-sorted permutation of inventory α, each letter has a child type, k = (k1, . . . , kn). The
child-type, then, denotes calls to be made. Once a letter is reached, calls are made in
increasing order with i-children called before j-children whenever i < j . In building trees,
these calls go to the first unused letter of the appropriate label, where “unused” means it
has neither been called nor made calls. In building wreaths (to be defined), these calls go
to the first uncalled letter of the appropriate label (even if that letter has made calls).

Algorithm 3.1 f = Building an initial forest from a sorted permutation.



80 LAMPE

Let w be an L-sorted permutation of inventory α = (α1, . . . , αn), satisfying the formulas
σ(αi ) ≥ ∑n

j=1 σi (α j ) for 1 ≤ i ≤ n. We build a forest, S, as follows: Determine the
number of roots in S of each label, using Eq. (2),

pi = σ(αi ) −
n∑

j=1

σi (α j ).

If there are no roots, then S is empty. Otherwise, start with the lowest root-label, where
1 < 2 < · · · < n. When drawing a node, first label the node. Then, draw its labeled edges
(as in 2.2) as emanating up from the node, without drawing in the children’s nodes. Once a
node is drawn, it is crossed out of w and is not available to be drawn again.

Rule 1: Using the leftmost available letter in w of the appropriate label, draw the root. Call
its lowest child.
Rule 2: Once a node is drawn, call its lowest child first. Draw this above its parent on the
left, and label it. The edge is directed from the node to its child.
Rule 3: If a child is a leaf, go to the leaf’s nearest ancestor with calls still to be made. Call
its next child, drawing it to the right of previously called children.
Rule 4: Continue this process until there are no remaining calls to be made. We have built
one tree.
Rule 5: If there are roots remaining, go to the lowest remaining root, select the leftmost
available letter in the appropriate label-group, and repeat Rules 1 through 4, drawing the
new tree to the right of previously built trees. Continue until, for each i , there are pi trees
of root-label i .

We never run out of nodes in this process because of the inequalitiesσ(αi ) ≥ ∑n
j=1 σi (α j ).

As a simple example, consider the word w = (1000, 1000)(2101, 2000)(3110). The root-type
of w’s forest is (0,1,0), and the forest built is:

Note that, at this point, we may or may not have used all the letters in the given sorted
permutation. (For example, consider the forest built when we rearrange w to become w′ =
(1000, 1000)(2000, 2101)(3110).) We call the resulting forest the initial forest, S, of w. If S uses
all the letters in w, we define w to be a success. Otherwise, we declare w to be a failure. It
is the failures we wish to study further. To do this, we need more machinery, enabling us to
continue building with the letters that remain after the initial forest is built.

3.1.2. Machinery for wreaths. A loop consists of the nodes and edges of a directed path
in a directed graph beginning at one node and returning to that same node. We identify two
loops if they consist of the same set of nodes and edges in the same relative order. A wreath,
W , is a directed, connected graph in which there is one loop and each node has precisely
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one edge directed into it. The edges are directed from parent to child, as in a tree. In what
follows, wreaths as well as trees are labeled.

3.2 The wreath’s loop will have a lowest label, and in the wreaths we will be considering,
that label will appear in the loop only once.

Given a wreath, W , the closed directed path is called the direct loop, DLW . This can be
envisioned as a vertical path, starting with the unique lowest-labeled node on the bottom.
The top direct loop node calls the bottom one, and their connecting edge runs counter-
clockwise. The unique lowest-labeled node is called the wreath root, ρ. It coincides with
the bottom node in the vertical representation of the direct loop.

Just as we called an ordered collection of trees a forest, a bramble, B, is an ordered
collection of wreaths such that all i-rooted wreaths come before j-rooted wreaths when-
ever i < j . An arbor, A, is an ordered pair (S, B) consisting of a forest, S, and a bram-
ble, B. A branch is a minimally connected subgraph of a tree or wreath in which each
node has all its descendents present. It has a branch root, that node with no ancestors
present. The branch, then, consists of the branch root and all descendants of the branch
root.

Within an arbor, the ith root-label group of trees (or wreaths) is the ordered collection of
trees (or wreaths) of root-label i .

Algorithm 3.3 f̄ = Building an arbor from a sorted permutation.

Let w be a failing L-sorted permutation satisfying the formulas

σ(αi ) ≥
n∑

j=1

σi (α j ) 1 ≤ i ≤ n.

Because it is failing, there are letters not used in the initial forest. For each label i , we start
with σ(αi ) i-letters. In S, we use pi of these letters as roots and ni (w) of them as children, for
some ni (w) ≥ 0. This leaves σ ′(αi ) = σ(αi )− pi −ni (w) i-letters. Also, in S, we start with∑n

j=1 σi (α j ) calls to i-letters. We use ni (w) of these calls, leaving
∑n

j=1 σi (α j ) − ni (w).
Subtracting pi + ni (w) from both sides of Eq. (2) leaves σ ′(αi ) = ∑n

j=1 σi (α j ) − ni (w).
Thus, the number of calls remaining to a given label group equals the number of letters of
that label remaining. In other words, there are no roots left. We will form wreaths with the
leftover letters, using the following rules.

Rule 1: Given w, use f (as in Algorithm 3.1) to build the initial forest, S. If all letters are
used, then the bramble is empty. Otherwise, go to Rule 2.
Rule 2: We begin this step with a forest, S′, initially empty. We call S′ a holding forest, as
it will be used to hold trees which will later be moved. Reading the sorted permutation, w,
left-to-right, start with the first letter that is not yet used. Draw and label it as a node in S′.
Call its lowest child, which will be the leftmost letter of the appropriate label which is not
in the initial forest and has not been called (see Section 3.1.1). It is drawn above the first
node, on the left, with the edge directed away from the first node.
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Rule 3: Each node called calls its lowest child first, just as in trees. Continue as in Rules 2
and 3 of f , making calls as directed in Section 3.1.1 until we form a tree or we repeat the
first node.
Rule 4a: If we have formed a tree with root-label i , then we move on to the next letter in
w which has neither been called nor made calls, draw it to the right of the i-rooted group
in S′, and repeat the process, returning to Rule 2. Notice that the next call to j for j ≤ i
goes to the leftmost j-rooted tree in S′, as it has not yet been called, and places this tree as
a branch above the letter making the call.
Rule 4b: If the first node has been repeated, then we have a direct loop. This is drawn with
the first node (now the wreath root) at the base. Edges are directed up to children. The
call back to the wreath root bends counterclockwise to form the loop, enclosing the nodes
that have already been drawn but are not on the direct loop. Once the first node has been
repeated, we say the wreath is closed and we move this component out of S′ and into B,
placing it rightmost in its root-label group. Go to Rule 5.
Rule 5: To complete the wreath, we need to finish making the calls outside the direct loop.
First, identify the direct loop. Writing this loop vertically, we begin with the top node in the
direct loop (that node which calls the wreath root) and make its remaining calls, moving left
to right, finishing each branch before moving on to the next. Notice that these calls will be
drawn outside the loop. Next, we move down the direct loop and make the next loop-node’s
remaining calls, and so on until all direct loop nodes have made their calls. (This process
is consistent with the algorithm for building a tree, if we regard the call back to the wreath
root as a leaf of its parent node.) We have now built one wreath.
Rule 6: If there are still letters remaining, repeat the process until all letters have been used,
putting new wreaths on the right to form a bramble. Notice, by the argument preceding
Rule 1, the holding forest, S′, will again be empty when we finish.

3.4 (Observations about Algorithm 3.3) We don’t run out of letters because of the relation
between the number of letters of each label and the number of times letters of that label are
called. The lowest label in the direct loop of a wreath is that of the wreath root. This is because
any calls to labels lower than that of the wreath root are made to trees already formed. The
root-label is never repeated in the direct loop, although it may appear in branches of the
wreath other than the direct loop. Also, the bramble formed is in nondecreasing root order.
These are all direct results of Algorithm 3.3.

3.2. Recording arbors as sorted permutations

To record an arbor, we proceed one connected component at a time. In what follows, a tree-
geodesic is a directed path emanating from the root and ending in a leaf. A wreath-geodesic
is a directed path containing precisely one direct loop node, z. Note, then, the path emanates
from z. We also say the path is a z-geodesic.

Algorithm 3.5 g1 = Recording a tree as a sorted permutation.

Procedure for recording: letters are recorded from right to left in their appropriate label
groups. Once a letter is recorded, its node is deleted from the graph, but the labeled edge
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emanating from its parent node, called an incomplete edge, remains. Thus, we delete the
recorded letter’s node and its outgoing edges.

Rule 1: Given a tree, go up the rightmost geodesic and record the leaf.
Rule 2: Once a node, x , is recorded, go up the rightmost remaining geodesic, ignoring
incomplete edges, and record the last node still present.
Rule 3: Repeat Rule 2 until all nodes in the tree have been recorded. Note that the root is
the last node recorded.

This procedure for recording a tree as a sorted permutation was known previously. See
Wilf [8], for a similar algorithm.

In what follows, we need to denote the label of a node, x , which we will do by writing �(x).

Algorithm 3.6 g2 = recording a wreath as a sorted permutation.

We will be dealing with a pair (S′, W ) where S′ is a holding forest and W is a wreath.
We begin with S′ empty. As the recording process proceeds, this empty forest will become
a holding place for trees which will be removed from the wreaths. These trees are recorded
in the final step.

Rule 1: Let ρ be the wreath root. Note the root-label of the wreath, �(ρ).
Before we state Rule 2, note that the recording of a wreath will involve two procedures,

“removing” and “recording.” The following procedures, and their criteria, are needed before
we can discuss the remaining rules.

Procedure for removal. This procedure applies to the removal of non-direct loop nodes.
If the branch of a node, x , is to be removed from W , we first delete x and all its descendents
from W . We then put this branch, x and its descendents, leftmost in the �(x) root-label
group of the holding forest, S′.

Procedure for recording. If a node, x , is to be recorded, all descendents, with the exception
of the wreath root, will have been removed or recorded. Write its letter leftmost in the �(x)

label-group of w. Then, delete x and all its outgoing edges from W . The incoming edge
remains.

Criterion for removing an outer node. A node, x , and its branch outside the direct loop
of W are removed if �(x) < �(ρ).

Criteria for recording an outer node. A node x , outside the direct loop of W , is recorded
if all descendents of x have been removed or recorded (or never existed), and �(x) ≥
�(ρ).

Criterion for removing an S′ node. A node, x , and its branch inside the direct loop of W
are removed if �(x) ≤ �(ρ).

Criteria for recording an S′ node. A node x inside the direct loop of W is recorded if all
descendents of x have been removed or recorded (or never existed), and �(x) > �(ρ).

Criterion for proceeding. We proceed to the rightmost child of x if x is neither removed
nor recorded.
Rule 2: If ρ has no outer children, go to Rule 5. If ρ does have outer children, proceed up
the rightmost ρ-geodesic.
Rule 3: At each node x , either remove x and its branch, record x , or proceed to the rightmost
child of x , according to the above criteria. If we proceed, repeat this rule. If we record or



84 LAMPE

remove, go to x’s parent, x ′, and redefine the rightmost ρ-geodesic. Starting with x ′, repeat
this rule.

Continue until all outer children of ρ have been recorded. (Note: none of the outer children
of ρ will be removed, since their labels are greater than or equal to �(ρ).) Then, go to Rule 4.
Rule 4: Move up the direct loop to the next direct loop node, z. Repeat Rules 2, 3, and 4
using z instead of ρ, except when referring to �(ρ), which remains fixed. Continue until all
of W ’s outer nodes have been removed or recorded. Then, go to Rule 5.
Rule 5: Once all the outer children are recorded, open the loop (without recording any
nodes), and move what is now a tree to the rightmost spot in S′.
Rule 6: What remains are the removed branches, now trees in S′, whose roots have labels
less than or equal to �(ρ). Notice that these branches are trees, but we will not record them
using the algorithm for recording trees. Instead, go to the rightmost tree. Note the root-label
and proceed up the rightmost geodesic, ignoring incomplete edges. At each node, remove,
record, or proceed according to the criteria above. After removing or recording, redefine
the rightmost geodesic, and repeat the process. Record or remove all nodes, and then record
the root. Go left to the next tree. Continue until all trees are recorded. This is a finite process
since we always record the root.

3.2.1. Recording an arbor. To record an arbor A = (S, B), we begin with the rightmost
wreath of B, and follow Algorithm g2 up to, but not including Rule 6. Before recording the
rightmost remaining wreath in B, note its root-label, x . Go to S′ and follow the procedure
of Rule 6 until there are no trees having root-label greater than or equal to x remaining.
If branches were removed during this process, so long as their root-label is less than x ,
they stay in S′ for now. We then record the rightmost remaining wreath, adding to the
forest, S′, by putting new trees on the left. Again, we only follow Rule 6 until there are no
trees remaining having root-label greater than or equal to that of the next wreath. Continue
recording the wreaths and pieces of the holding forest, until all wreaths have been recorded.
Then record the remaining constructed forest following Rule 6 of g2. At this point, all the
nodes of B have been recorded. We will refer to the process of recording the bramble as g̃2.
Next, record the rightmost tree of S following Algorithm g1, and record each tree until all
the nodes of S have been recorded.

3.3. Lemma about building and recording

The goal of this section is to show that building and recording are inverse procedures.
Define WL to be the set of L-sorted permutations, and define Aα to be the set of arbors

with inventory α. Let f̄ : WL → Aα as in Algorithm 3.3. Using the notation of Section 3.2.1,
let ḡ = (g̃2, g1) : Aα → WL by first recording the bramble according to g̃2, and then record-
ing the initial forest using g1. Note that, at any stage of f̄ or ḡ’s procedures, we have a
triple, (w, S′, A). In this triple, the sorted-permutation, w, the holding forest, S′, and the
arbor, A = (S, B), are all in various stages of composition or decomposition. Thus, we can
view f̄ and ḡ as acting on such a triple at each step of the process.

Claim 3.7 f̄ and ḡ are inverse maps.
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Proof: Let (w, S′, A) be any triple operated on by f̄ , resulting in (w̄, S̄′, Ā). To show that
ḡ ◦ f̄ (w) = w, we will show that ḡ acting on (w̄, S̄′, Ā) results in (w, S′, A).

We first define the operations of f̄ and ḡ. There are six ways f̄ can operate on (w, S′, A):

(i) f̄ draws a node, x , on a tree in A
(ii) f̄ draws a node, x , on a tree in S′ (Note: we are given the word, w, so it is possible to

determine the root-type of S, and thus distinguish between (i) and (ii).)
(iii) f̄ draws a node, x , on a closed wreath
(iv) f̄ moves a tree of S′, having root x , to an outside branch of a wreath
(v) f̄ moves a tree of S′, having root x , onto another tree in S′.

(vi) f̄ closes a loop on a tree of S′ and moves the new wreath into A.

Similarly, there are five operations for ḡ:

(i) ḡ records a node from a tree in Ā
(ii) ḡ records a node from a tree in S̄′

(iii) ḡ records a node from an outside branch of a wreath
(iv) ḡ removes a branch outside a wreath and places it in S̄′

(v) ḡ removes a branch from a tree in S̄′

(vi) ḡ opens a loop on a wreath in Ā and moves the new tree into S̄′.

We will proceed one operation at a time. If, acting on (w, S′, A), f̄ performed operation
(i), x is the rightmost node drawn in the rightmost geodesic extending from the root of the
rightmost tree in what is now Ā. Further, S′, and therefore S̄′, must be empty, as must be
the bramble. Thus, we can identify the operation ḡ performs as coming from g1. Rule 2 of
g1 tells us to record the same x as drawn by f̄ .

Next, suppose f̄ performed operation (ii). Again, x is drawn on the rightmost geodesic in
S′, now renamed S̄′. Letting ρ be the root of the tree, we know all ancestors of x , excluding
the root, have label greater than the label of ρ. We also know the rightmost wreath has root-
label less than or equal to �(ρ). Thus, by Section 3.2.1 Rule 6, g̃2 travels up this rightmost
geodesic to x , and records it.

We now turn to operation (iii). By Rule 4 of f̄ , x is placed on the rightmost geodesic
emanating from the highest direct loop node having incomplete branches. Turning to g2

at this point, since the wreath is closed, Rules 2, 3, and 4 of g2 tell us the next operation
occurs on the rightmost geodesic emanating from the lowest direct loop node having outside
children remaining. Thus, we have identified the same geodesic. Since f̄ drew x , it also
drew all the ancestors of x in this geodesic, as opposed to moving trees to form branches.
Let the wreath root be ρ. Therefore, all such ancestors have label greater than or equal to
�(ρ). According to g2’s procedures, then, we continue up the geodesic until reaching x .
Since, at this stage, x has no descendents and �(x) ≥ �(ρ), g2 records x .

If operation (iv) was performed by f̄ , again let ρ be the root. Then we know �(x) < �(ρ)

and x is now a node in the rightmost geodesic emanating from the lowest direct loop node
having children in place. Further, all ancestors of x in this geodesic have labels greater than
or equal to �(ρ). So, g2 proceeds up this same geodesic. Upon reaching x , g2 removes x
and its branch and places it back in S′, leftmost in its root-label group.
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We next consider operation (v) of f̄ . Here, �(x) ≤ �(ρ), and x is in the rightmost
geodesic of that tree. All ancestors of x , excluding the root, must have label greater than
�(ρ). Therefore, g2 travels up this geodesic until reaching x , at which time x and its branch
are removed and placed in S′ as a tree leftmost in its root-label group.

Finally, we turn to operation (vi) of f̄ . Since f̄ moved the new wreath into Ā, all entries
in S̄′ will have root color less than that of the new wreath. Thus ḡ will operate on the new
wreath. By Rule 5 of ḡ, since there are no outer children, the wreath is opened and placed
in S′.

We have shown that ḡ ◦ f̄ (w) = w. The proof for f̄ ◦ ḡ proceeds in a similar
manner. ✷

4. The map Φ

4.1 For W , a wreath, we can identify an associated cycle, cW , as follows. Write the direct
loop vertically. Proceed from bottom to top until a label has been repeated. Remove from the
direct loop all nodes from the first occurrence of the repeated label, up to, but not including,
the second occurrence. Rewrite the direct loop without the removed nodes, so the second
occurrence is now in the place formerly occupied by the first occurrence, and repeat this
process until all labels are distinct in the direct loop. What remains is called the associated
cycle. Note that the associated cycle contains W ’s wreath root, as its label is never repeated
in DLw (see 3.4).

Lemma 4.2 Let W be a wreath with associated cycle cW = (b1, . . . , bl). Then, if b′ is the
node following bi−1 in DLW , then �(b′) = �(bi ).

Proof: Since cW = (b1, . . . , bl), then b′ was removed in 4.1. Since bi−1 was not removed,
then �(b′) was repeated. If �(b′) was first repeated at bi , we are done. Otherwise, it was
repeated before bi , as bi was not removed. Say �(b′) was first repeated at b′′. Once the nodes
from b′ up to but not including b′′ are removed, we begin again. We know b′′ was removed
in 4.1, since b′′ �= bi . By similar arguments, �(b′′) = �(b′) is repeated no later than bi and
we remove a sequence of nodes beginning at b′′. There are a finite number of nodes between
bi−1 and bi to remove, therefore, at some point the first repeated label must be at bi . Thus,
�(b′) = �(bi ). ✷

4.3 Given an L-sorted permutation, w, � associates a set of disjoint cycles to w in such
a way that w succeeds precisely when this set is empty. The steps to �’s algorithm are as
follows:

Step 1: Form A = f̄ (w). If A = (S, B) is a forest, that is, if B is empty, define �(w) = ∅
and stop. Else, proceed to Step 2.
Step 2: Go to the rightmost wreath, W . Identify cW as in 4.1. Record this cycle in the image
of �.
Step 3: Move left in the arbor until reaching the first wreath, Ŵ , with a new, hence lower,
root-label. If there is no such wreath, �(w) is the set of recorded cycles. If cŴ is disjoint
from the direct loop of every wreath in B to the right of Ŵ , record cŴ in the image of �.
Repeat this Step until there are no new wreaths to consider.
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Notice that not all wreaths are eligible to contribute to the image of �; only the rightmost
wreath of each root-label is considered. (Step 3 also makes it useless to consider the other
wreaths, as their roots prevent them from being disjoint from the next direct loop).

The result of this algorithm is that, given a sorted permutation, � draws the arbor and
associates to that arbor a set of pairwise disjoint cycles. Note that �(w) = ∅ if and only if
the arbor associated to w has no wreaths, i.e. w is a success.

5. The map Ψ

5.1. Prelude to �

5.1.1. Construction definitions. Given a shaded collection of letters, L , let c be a cycle
from it. Let L̄ = L − Lc, where Lc is as in Section 2.1. An L̄-sorted permutation, w̄, is a
sorted permutation of L̄ . We say w̄ is complementary to c in L . Note that L̄ has root-type
p̄ = (p1, . . . , pn) with pi ≥ pi for all i . (See Eq. (2).)

In Section 5.3 below, we begin with a cycle and a complementary L̄-sorted permutation,
and we construct a wreath with the given cycle as the direct loop. This wreath is called the
constructed wreath and is denoted W . Its wreath root is denoted ρ̄, and is the node of lowest
label in the given cycle.

We say a wreath, W , belongs to a cycle, c, if that cycle is associated to the wreath (see 4.1).

Notation 5.1 For two arbors, A1, A2, we write A1 · A2 as the arbor whose ith root-label
group of trees is the ith root-label group of trees from A1 followed by the ith root-label
group of trees from A2. The ith root-label group of wreaths is similarly constructed.

Given a shaded collection of letters, L , and a cycle, c, from it, we list all L̄-sorted
permutations. There are∏n

i=1(σ (αi )!)∏
l∈c σ(αl)

L̄-sorted permutations.

5.2. Splicing and unsplicing

Notation 5.2 Recall, the cycle associated to wreath W is cW and the direct loop is DLW .
Also, for any collections of nodes a and b, we say a ∩ b = ∅ if a and b have no labels in
common. If they do have a label in common, we say a ∩ b �= ∅. This is consistent with the
notation from Section 2.1.

Let

X L = {(B, W ) | B a bramble, W a wreath not in B with DLW = cW , L = L B ∪ LW }
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where L B and LW are the sets of letters in B and W , respectively. Let

YL = {(B, W ) | B a bramble, W ∈ B, cW ∩ DLW ′ = ∅ for W ′ right of W, L = L B}.

5.2.1. Algorithm for splicing, ζ. We define ζ : X L → YL via the following steps.

Step 1: Let (B, W ) ∈ X L . Write B = B1, . . . , Bn , where B j is all wreaths with root-label
j . Suppose W has root-label i . Starting with Bn and finishing with Bi+1 we proceed with a
general root-label group B j as follows.
Step 2: Suppose B j = W1, . . . , Wr is a bramble where all wreath roots have label j > i .
Consider the sequence W1, . . . , Wr , W , where W is the given wreath with root-label i .
Step 3: Start with Wr . If DLWr ∩ cW = ∅, move Wr to the immediate right of W and repeat
this step with Wr−1. Continue until some wreath, Wk , has DLWk ∩cW �= ∅ or until all wreaths
have scooted past W , preserving their relative order. If DLWk ∩ cW �= ∅, go to Step 4. If all
wreaths scoot, go to Step 6.
Step 4: Identify the first cycle node in cW , starting with ρW , whose label appears in DLWk .
Call it bi . Let bi−1 be the previous cycle node in W . We know that bi−1 and bi are different
labels since all cycle nodes have distinct labels. Let b′ be that node following bi−1 in DLW .
Now, b′ may not be bi , but note that b′ and bi have the same label, by Lemma 4.2. We call
b′ the splicing node. Next, go to the first DLWk node of this label, call it x . Detach x from
its parent node, x ′, and splice Wk into W so that bi−1, x, . . . , x ′, b′ is now in DLW . Note
that we no longer have DLW = cW , but the associated cycle of W has not changed (see
Lemma 5.3 below). Go to Step 5.
Step 5: Now, we splice all other wreaths Wl in B j with l < k as follows (note this process
may differ from Step 4): If cW has a node at or before bi meeting DLWl , reset k = l and
go to Step 4. Otherwise, splice in between bi−1 and bi before ρk , the first node of label j
between bi−1 and bi . If l > 1, reset k = l and repeat Step 5.
Step 6: Return to Step 1, replacing the original W with the altered W if necessary, and repeat
the process for the next root-label group. Continue until reaching and processing Bi+1.

Let W
′

be the result of splicing wreaths into W , and B ′
j be the sub-bramble of B j

consisting of those wreaths that scooted past W in Step 3. Also, let Bi · W
′
be defined as in

Notation 5.1. Set

B ′ = (B1, . . . , Bi · W
′
, B ′

i+1, . . . , B ′
n).

Then, define ζ(B, W ) = (B ′, W
′
) ∈ YL .

Lemma 5.3 Let W and W be wreaths such that DLW ∩ cW �= ∅. Then, splicing W into
W does not change the associated cycle of W .

Proof: By Step 4 of ζ , after splicing W into W to form W
′
, the new direct loop looks

like

ρW
′ = b1, . . . , b2, . . . , bi−1, x, . . . , x ′, b′, . . . , bi , . . . , bl
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where, before splicing, cW = (b1, . . . , bl). The b j are necessarily distinct labels. By 4.1, to
determine W

′
’s associated cycle, we start with ρW

′ and continue along the direct loop until
a label is repeated.

Suppose first that x is the first node whose label is repeated. By construction, this happens
no later than b′. If it occurs at b′, we remove all of W ’s direct loop nodes and the proof is
complete. If it occurs at x2 before b′, we remove from x up to, but not including x2. Then,
x2’s label is repeated, again no later than at b′. Thus, as in Lemma 4.2 the nodes from x2 up
to but not including b′ will be removed after a finite number of steps.

If x is not the first node whose label is repeated, then by virtue of (B, W ) being in X L , we
are dealing with an earlier wreath (or wreaths) that was spliced in before bi−1. The above
paragraph says that this earlier wreath will be removed without interfering with W ’s cycle
nodes, and then W will also be removed. Hence cW = cW

′ . ✷

5.2.2. Algorithm for unsplicing, µ. For a set L , µ : YL �→ X L is defined as follows.

Step 1: Let (B, W
′
) ∈ YL . Identify the associated cycle of the given wreath, W

′
, as cW

′ =
(b1, . . . , bl). Say W

′
has root-label i . That is, �(b1) = i .

Step 2: Starting with label i + 1 and ending with label n, for a general label j > i , proceed
as follows.
Step 3: Call the block of direct loop nodes in between, but not including, cycle nodes bk

and bk+1 as Blk . Scan the blocks in increasing order, looking for j-labeled nodes. If none
are found, declare B̃ j = ∅ and go to Step 6. Otherwise, at the first occurrence, say in block
Blk , name as s1 the first node of Blk in W

′
. Note that s1, of label s, has the same label as

bk+1 (according to Lemma 4.2). Moving up DLW
′ , name as s2, . . . , sn all nodes with label

s in Blk . Name bk+1 as sn+1. Next, name the first appearance of a j-labeled node in Blk , ρ1.
Name the other nodes with this label in Blk as ρ2, . . . , ρm , moving up DLW

′ . Notice that, if
j = s, then sx = ρx for all 1 ≤ x ≤ n.
Step 4: Consider the sequence of nodes s1, . . . , s2, . . . , ŝr where sr is the first s-node fol-
lowing ρ1 and the ˆ means we do not include this node in the sequence. If ρ1 is the only
j-labeled node in this sequence, remove the nodes s1, . . . , ŝr , rotate them clockwise until
ρ1 is the root, and place this new wreath, called γ , immediately to the left of W

′
. On the

other hand, if ρ1 is not the only j-labeled node in this sequence, remove only the nodes in
the consecutive subsequence ρ1, . . . , ρ̂2 and place this wreath, γ , immediately to the left of
W

′
. Go to Step 5.

Step 5: Redraw W
′

without γ ’s nodes. Repeat Steps 3 and 4 until all j-labeled nodes are
removed from the blocks of W

′
. Note that we do not remove any nodes of the associated

cycle. Thus, we form a sub-bramble, B̃ j . Go to Step 6.
Step 6: Now, look to the right of W

′
in B, to the sub-bramble B j . Move these wreaths,

preserving their order, left of W
′
and form B ′

j = B̃ j · B j (See Notation 5.1). Go to Step 7.
Step 7: If j �= n, replace j with j + 1 and return to Step 3. If j = n, we are done. Here,
we observe that the blocks of W

′
now contain no nodes having label greater than i . Since i

is the lowest label appearing, and the root is the only node having that label, all blocks are
now empty. This results in W

′
having been altered to a wreath whose direct loop equals its

associated cycle. We call this new wreath W .
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Let Bi equal Bi without W
′
. Then, letting B ′ = B1, . . . , Bi−1, Bi , B ′

i+1, . . . , B ′
n , we have

µ : (B, W
′
) = µ(B1, . . . , Bn, W

′
) = (B ′, W ) ∈ X L .

Claim 5.4 µ ◦ ζ = IdX L and ζ ◦ µ = IdYL .

Proof: First µ ◦ ζ : Let (B, W ) ∈ X L . Let B = W1, . . . , Ws, and let W have root ρ̄ with
label i . Suppose at some stage of ζ we have

W1, . . . , Wr , W
′
, Wh1 , . . . , Wht ,

and the root, ρr of Wr has label j > i . The proof will consist of showing that, after ζ

operates on Wr , if we turn to µ, the first thing µ does is undo that operation. There are three
possible operations ζ may perform on Wr .

Case 1 The wreath Wr is scooted by ζ to the right of W
′
. By Step 3 of ζ , this means that

DLWr ∩ cW
′ = ∅. Further, by Step 5 of ζ , no other wreaths of root-label j have spliced in.

Therefore, all blocks of DLW
′ contain only nodes of higher label than j (recall, the root of

W
′

has label i , and this is the lowest label in the direct loop and appears only at the root).
Thus, Step 6 of µ moves Wr back to the left of W

′
.

Case 2 ζ splices Wr into W
′

at a cycle node. Then, with the notation of Step 3 of µ,
s1 ∈ Wr and there is an s-node after the wreath root ρr no later than the next j-labeled
node. By Step 4 of µ, Wr is removed intact and placed where it started, immediately to the
left of W

′
.

Case 3 ζ splices Wr into W
′

at the root of a previously spliced wreath. By Step 5 of ζ ,
this means ρr is in the sequence s1, . . . , s2, . . . , ŝr . Further, s1 /∈ Wr , and therefore another
j-node appears in the sequence s1, . . . , s2, . . . , ŝr . Step 4 of µ splices out the nodes from
ρr up to but not including the next j-node, which are precisely the nodes of Wr .

Now, to ζ ◦ µ: Let (B, W
′
) ∈ YL . Again, we suppose that at some stage of µ we reach

the sequence

W1, . . . , Wr , W
′
, Wh1 , . . . , Wht .

We will show that the next operation performed by µ is undone if we turn at that time to ζ .
Again, we have three cases.

Case 1 By Step 6 of µ, the wreath Wh1 is unscooted by µ. This is done only after all other
wreaths of that root-label have been unspliced from W

′
. Because (B, W

′
) ∈ YL , we know

that DLWh1
∩ cW

′ = ∅. Thus, at this point, ζ would scoot Wh1 past W
′
, as desired.

Case 2 The sequence of nodes s1, . . . , ŝr is unspliced by µ from Blk . By Step 4 of µ,
this means we have removed one wreath, W , whose direct loop has an s-node. Thus, ζ
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will splice that wreath back into W
′

because s ∈ DLW ∩ cW
′ . Further, since we identified

cW
′ = (b1, . . . , bl) in Step 1 of µ, before µ did any operations, then DLW ∩ {b1, . . . , bk} =

∅. Indeed, if DLW ∩ {bh} �= ∅ for some 1 ≤ h ≤ k, then bh /∈ cW
′ by definition of as-

sociated cycle (see 4.1). Thus, ζ will splice W back into the same block, Blk , from which
it came. Lastly, by the way x is defined in Step 4 of ζ , W will splice back in the same
order.

Case 3 The sequence of nodes ρ1, . . . , ρ̂2 is unspliced by µ from Blk and �(ρ1) �= s.
Therefore, ρ2 ∈ BLk (instead of being a cycle node). Thus, by Step 5 of ζ , the removed
wreath, W must splice back into W

′
. For reasoning similar to Case 2, it will splice into the

same block. Because s is not a label in DLW , W will splice back in as ρ1, . . . , ρ̂2. ✷

5.3. The map � defined

For c a cycle from L and w̄ an L̄-sorted permutation (see Section 5.1.1), � acts on an
ordered pair (w̄, c) to give an arbor A.

Step 1: Draw c as an incomplete wreath—a direct loop with all other branches empty.
Assign the title of wreath root, ρ̄, to the unique letter of lowest label appearing in c.
This direct loop may have calls remaining to be made. Referring to 2.2 for notation,
let

δ j =
{

1 if some i k ∈ c has �(i k) = j

0 if no i k ∈ c has �(i k) = j

Let r = (r1, r2, . . . , rn) satisfy r j = ∑
i k∈c k j − δ j . Thus, r j is the number of j-labeled

children of loop nodes that need to be filled in.
Step 2: Form an arbor from w̄, A′ = (S′, B ′). Notice that the root-type of w̄ is p + r , where
p is the root-type of L (see Eq. (2) ).
Step 3: Complete the direct loop into a wreath in the following order. When a call is made
to a label i , it goes to the leftmost i-rooted tree in A′, and the entire tree becomes a branch
in the constructed wreath. First, complete any calls by ρ̄ to branches that are inside the
direct loop, preceding the direct loop branch of ρ̄. This is done left to right. Then, move
up the loop, making all inside calls. Once this is done, proceed to the top node in c’s direct
loop, and make it’s outside calls left to right. Moving down the direct loop, continue until
all outside calls are made. Notice that, graphically, we are moving bottom to top on the
inside calls and then top to bottom on the outside calls, just as in the algorithm for building
a wreath. Thus, we have constructed our wreath, W .
Step 4: An arbor, A′′ = (S′′, B ′′) remains from A′, with B ′′ = B ′, and we have a wreath W .
Next, put the wreath roots in order by splicing. We define �(w̄, c) = (S′′, ζ(B ′′, W )).

Note Step 4 of � assures us that the wreath constructed with the given cycle c is the
rightmost wreath in its root-label group, and that c does not intersect the direct loops of
those wreaths to the right.
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6. Lemmas about Φ and Ψ

In this section, we show an inverse relationship between � and �. In some lemmas that
follow, we will need to extend the definitions of µ and ζ . We will call these extensions µ̄

and ζ̄ . Again, the shaded set, L , is fixed. Using the vocabulary of Section 5.1.1, let

X L = {(A′, c) | c a cycle, A′ an arbor complementary to c}

and, for ḡ as defined for Claim 3.7,

YL = {(A, W ) | A an L–arbor, W ∈ A, cW ∈ �(ḡ(A))}.

For A′ complementary to c in L , let Ā = �(ḡ(A′), c) and W be the wreath belonging to
c in Ā (again, see Section 5.1.1). Define

ζ̄ : X L → YL by ζ̄ (A′, c) = ( Ā, W ).

In order to define µ̄ : YL → X L , we begin with (A, W ) ∈ YL . Suppose A = (S, B). Let
c be the associated cycle of W and A′ be the arbor obtained by the following method: First,
find µ(B, W ). Call the resulting bramble B ′. Then, disassemble the branches of W in the
reverse order described in Step 3 of �. As each branch is removed, it is placed as a tree on
the left of its root-label group in S, forming a new forest, S′. Let A′ = (S′, B ′). Then define

µ̄(A, W ) = (A′, c).

Notice that ζ̄ and µ̄ are again inverse procedures.

Lemma 6.1 c ∈ �(w) if and only if there is a sorted permutation, w̄, complementary
to c, such that w = �(w̄, c)

Proof: ⇐ : This is purely by design.
⇒ : Let c ∈ �(w). Let W be the wreath in A = f̄ (w) belonging to c (see Section 5.1.1).

Then (A, W ) ∈ YL and

(A, W ) = ζ̄ ◦ µ̄(A, W ) = ζ̄ (A′, c) = (�(ḡ(A′), c), W ).

Thus, ḡ(A′) is the complementary sorted permutation sought. ✷

This establishes a relationship between � and � that will allow us to count the failing
L-sorted permutations. To do this, we need two more lemmas.

Lemma 6.2 Given c1, c2 disjoint L-cycles, with �(ρc1) < �(ρc2), let A = �(w̄2, c2) where
w̄2 is complementary to c2 in L. Then, for w = ḡ(A),

c1 ∈ �(w) ⇔ c1 ∈ �(w̄2)
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Proof: ⇒ : Suppose c1 ∈ �(w) . We know that c1 is associated to the rightmost wreath,
W1, of its root-label group in A = f̄ (w) and therefore in f̄ (w̄2). Also, c1 is disjoint from all
direct loop nodes to the right of W1 in A. Since �(ρc1) < �(ρc2), in applying � to (w̄2, c2),
W1 is not disturbed. While the wreaths in f̄ (w̄2) may differ from those in A (since A is
formed using splicing), the direct loop nodes of those wreaths to the right of W1 in w̄2

are a subset of those nodes in A, and therefore c1 is disjoint from them as well. Hence,
c1 ∈ �(w̄2).

⇐ : If c1 ∈ �(w̄2), and �(ρc1) < �(ρc2), then in �(w̄2, c2), W1 plays no role in the
splicing step, ζ , and splicing introduces no direct loop nodes that intersect c1. Hence c1 ∈
�(w̄). ✷

Lemma 6.3 For fixed c the map w̄ �→ �(w̄, c) from the set of L̄-sorted permutations to
the set of L-arbors, A, such that c ∈ �(ḡ(A)) is bijective.

Proof: Surjectivity: This is by Lemma 6.1.
Injectivity: w̄ can be recovered from w = ḡ(�(w̄, c)) by (w̄, c) = µ̄( f̄ (w), Wc), where

Wc is the wreath in f̄ (w) belonging to c. ✷

7. The Raney coefficients revisited

We are given a collection of letters, L , having inventory α, such that σ(αi ) > 0 for all i
and, as defined in Eq. (2), pi ≥ 0 for all labels i .

Theorem 7.1 The number of forests having inventory α is

R(α) = M̃(α)Dn

Since the forests are in one-to-one correspondence with successful sorted permutations,
this is equivalent to showing that the number of sorted permutations that fail is

(M̃(α))

n∏
i=1

σ(αi ) − M̃(α)Dn,

since (M̃(α))
∏n

i=1 σ(αi ) is the total number of sorted permutations.
Recall that, in Eq. (6), we reduced this to proving that the number of failing shaded

L-sorted permutations is(
n∏

i=1

(σ (αi )!)

)
−

(
n∏

i=1

((σ (αi ) − 1)!)

)
Dn.

Thus, we will prove Theorem 7.1 by showing that � constructs the failing sorted permuta-
tions in a way that we can count. Proof of this theorem follows Claim 7.4.

Given a cycle and a list of all complementary sorted permutations, � gives pairwise
distinct sorted permutations, according to Lemma 6.3. However, this fails to be true if we
let the cycle vary. In fact, there will be repeats.
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Notation 7.2 Let �(∗, c) = {w | w = �(w̄, c) for some complementary w̄}.
Then, for the total count, we need to count the number of sorted permutations in �(∗, c)

for each c, and then account for those counted more than once.
Recall the notation from Section 2: Let c̄ be a cycle-type. Say c̄ = (x1, x2, . . . , xs).

Denote by σ(c̄) = σx2(αx1)σx3(αx2) · · · σx1(αxs ), the number of cycles of type c̄.

Claim 7.3 Given c̄, the cardinality of the set

{(w̄, c) | c is of type c̄ and w̄ complementary to c}
is

n∏
l=1

((σ (αl) − 1)!)
∏
i /∈c

σ(αi )σ (c̄)

Proof: Given a cycle c of type c̄, we get∏n
l=1(σ (αl)!)∏

i∈c σ(αi )

L̄-sorted permutations, each of which leads to a (w̄, c) pair. There are σ(c̄) cycles of
cycle-type c̄. This yields a total of∏n

l=1(σ (αl)!)∏
i∈c σ(αi )

σ (c̄) =
n∏

l=1

((σ (αl) − 1)!)
∏
i /∈c

σ(αi )σ (c̄)

(w̄, c) pairs. ✷

Recall again some notation from Section 2: for a set of pairwise disjoint cycle-types
c1, . . . , cs , we let C be the set of labels appearing in c1 ∪ · · · ∪ cs . Also, let

Vc j = {w | w = �(w̄, c j ) for c j of type c j and w̄ complementary to c j }.
Claim 7.4 (i) For cycles c1, . . . , cs of disjoint cycle-types c1, . . . , cs respectively, and for
L̄ = L − ∪s

i=1Lci , there are

n∏
l=1

((σ (αi ) − 1)!)
∏
i /∈C

σ(αi )

L̄-sorted permutations.
(ii) For disjoint cycle-types c1, . . . , cs there are

n∏
l=1

((σ (αi ) − 1)!)
∏
i /∈C

σ(αi )

s∏
i=1

σ(ci )

distinct L-sorted permutations in ∩s
j=1Vc j .
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Proof: Part (i) of the lemma is obvious.
For part (ii), we extend our definition of �. Let c1, . . . , cs be disjoint cycles arranged

in increasing root order. For w̄ complementary to c1 ∪ · · · ∪ cs , let �(w̄, c1, . . . , cs) =
�(�(w̄, c1), c2, . . . , cs), noting that w̄′ = �(w̄, c1) is complementary to c2 ∪ · · · ∪ cs .
Notice that � is still injective for fixed c1, . . . , cs . Indeed, by induction on s, the base case
is Lemma 6.3. Assuming it has been proven up to s − 1, then the induction step is also an
immediate result of Lemma 6.3.

Subclaim Using Notation 7.2, w ∈ ∩s
i=1�(∗, ci ) ⇔ there is an L̄-sorted permutation, w̄,

with L̄ = L − ∪s
i=1 Lci , such that w = �(w̄, c1, . . . , cs).

Proof of Subclaim: ⇒ : We proceed by induction on s. The base case s = 1 has been
done in Lemma 6.1. Arrange c1, . . . , cs in increasing root order. Suppose we have the result
for c2, . . . , cs . Then c1 is a cycle disjoint from ci , i > 1, such that �(ρc1) < �(ρci ). Let

w ∈ ∩s
i=1�(∗, ci ) ⊂ ∩s

i=2�(∗, ci ).

Then, by the induction assumption, there is an L̃-sorted permutation, w̃, with L̃ = L −
∪s

i=2Lci , such that w = �(w̃, c2, . . . , cs). Also, we know that there is a sorted permutation
w̄1 complementary to c1 such that w = �(w̄1, c1). Therefore, c1 ∈ �(w), and by a proof
identical to that in Lemma 6.2, c1 ∈ �(w̃). Then, by Lemma 6.1, there is a w̃′ complementary
to c1 in L̃ such that w̃ = �(w̃′, c1) and therefore

w = �(�(w̃′, c1), c2, . . . , cs) = �(w̃′, c1, . . . , c2).

⇐: w = �(w̃, c1, . . . , cs). Given ci , we need to recover a sorted permutation, w̄i ,
complementary to ci such that w = �(w̄i , ci ). However, ci ∈ �(w) and therefore, w =
�(w̄i , ci ), for some w̄i , by Lemma 6.1. ✷

This establishes a one-to-one correspondence between L-sorted permutations in ∩Vc j

and tuples (w̄, c1, . . . , cs) with c1, . . . , cs arranged in increasing root order.
Now to Claim 7.4 Part (ii) : For a given set of cycle-types c1, . . . , cs , there are

∏s
i=1 σ(ci )

distinct sets of cycles having these cycle-types. By the first part of this claim, for each
distinct set of cycles, there are

n∏
l=1

((σ (αi ) − 1)!)
∏
i /∈C

σ(αi )

complementary sorted permutations, and therefore, we get a total of

n∏
l=1

((σ (αi ) − 1)!)
∏
i /∈C

σ(αi )

s∏
i=1

σ(ci )

pairs of complentary sorted permutations and cycles, which are in one-to-one correspon-
dence with sorted permutations in ∩Vc j . By the subclaim, then, we are done. ✷
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Proof of Theorem 7.1: We are showing that � constructs(
n∏

i=1

(σ (αi ) − 1)!σ(αi )

)
−

(
n∏

i=1

((σ (αi ) − 1)!)

)
Dn

failing arbors. Using the notation from Claim 2.4, we see that this is equal to(
n∏

i=1

((σ (αi ) − 1)!)

)(
n∑

j=1

(−1) j+1
∑




( ∏
l /∈C

σ(αl)

)
σ(c1)σ (c2) · · · σ(c j )

)
(7)

where 
 sums over all possible collections of j disjoint cycle-types and C denotes the labels
represented in the union of these j cycle-types.

We use an adaptation of a formula known in set-theory (pg 39–40 [3]) For sets A1, . . . , AN

we have∣∣∣∣∣ N⋃
i=1

Ai

∣∣∣∣∣ =
N∑

j=1

(−1) j+1

( ∑
1≤i1<···<i j ≤N

∣∣Ai1 ∩ Ai2 ∩ · · · ∩ Ai j

∣∣) (8)

For our purposes, we enumerate all possible cycle-types, c̄1, c̄2, . . . , c̄N . Let

Ai = Vci . (9)

Then, | ⋃N
i=1 Ai | = | ⋃N

i=1 Vci | counts the number of distinct failing sorted permutations.
Now, we must show that the right hand side of Eq. (8) equals the formula from Eq. (7).
Note first that if ci ∩ c j �= ∅ for ci , c j cycle-types, then |Vci ∩ Vc j | = 0 by definition of �

having disjoint cycles in its image. So,∑
1≤i1<···<i j ≤N

∣∣Vci1
∩ Vci2

∩ · · · ∩ Vci j

∣∣ =
∑

1≤i1<···<i j ≤N
ci j ∩cil =∅, j �=l

∣∣Vci1
∩ Vci2

∩ · · · ∩ Vci j

∣∣
We can condense the index of summation,∑

1≤i1<···<i j ≤N
ci j ∩cil =∅, j �=l

∣∣Vci1
∩ Vci2

∩ · · · ∩ Vci j

∣∣ =
∑

∗

∣∣Vci1
∩ Vci2

∩ · · · ∩ Vci j

∣∣
where ∗ sums over all collections of j disjoint cycle-types ci1 , . . . , ci j . Since all terms are
zero unless the cycle-types are disjoint, we may assume j ≤ n by the pigeonhole principle.
Thus, we may rewrite Eq. (8),

N∑
j=1

(−1) j+1

( ∑
1≤i1<···<i j ≤N

∣∣Vc1 ∩ Vc2 ∩ · · · ∩ Vc j

∣∣)

=
n∑

j=1

(−1) j+1
∑

∗

∣∣Vc1 ∩ Vc2 ∩ · · · ∩ Vc j

∣∣
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Lastly, by Claim 7.4,

∣∣Vc1 ∩ Vc2 ∩ · · · ∩ Vc j

∣∣ =
(

n∏
i=1

((σ (αi ) − 1)!)

)( ∏
k /∈C

σ(αk)

)
σ(c1)σ (c2) · · · σ(c j )

Putting these last two equations together proves the theorem. ✷

8. Conclusion

Thus, we have provided a procedure that counts the successful forests of a given inventory.
By classifying the failures, we have matched, in a term-by-term manner, the failing sorted-
permutations with terms from the counting formula.

Using this procedure in conjunction with a certain class of polynomials discussed by
Wright in [6], we can restate the Jacobian conjecture. Namely, let F = X − H with
Hi = ∑

|k|≥2 ak
i Xk . Then, if j (F) = 1, we have

X p1
1 · · · X pn

n =
∑

q=(q1,...,qn)

ēq
p Fq1

1 · · · Fqn
n

where

ēq
p =

∑
M(α)

n∏
j=1

∏
|k|≥2

(
ak

j

)αk
j

with the sum being indexed by all α having root-type p and leaf-type q, such that qi =
α

(0,...,0)
i and αk

i = 0 whenever |k| = 1.
Notice how this is a much simpler formula than we originally had in Notation 1.1. These

results will be discussed in more detail in a future paper, [4].
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