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RENÉ PEETERS m.j.p.peeters@kub.nl
Department of Econometrics and Operations Research, Tilburg University, P.O. Box 90153, 5000 LE Tilburg,
The Netherlands

Received March 22, 2000; Revised March 22, 2000

Abstract. Let � be a distance-regular graph with adjacency matrix A. Let I be the identity matrix and J the
all-1 matrix. Let p be a prime. We study the p-rank of the matrices A + bJ − cI for integral b, c and the p-rank
of corresponding matrices of graphs cospectral with �.

Using the minimal polynomial of A and the theory of Smith normal forms we first determine which p-ranks of
A follow directly from the spectrum and which, in general, do not. For the p-ranks that are not determined by the
spectrum (the so-called relevant p-ranks) of A the actual structure of the graph can play a rôle, which means that
these p-ranks can be used to distinguish between cospectral graphs.

We study the relevant p-ranks for some classes of distance-regular graphs and try to characterize distance-regular
graphs by their spectrum and some relevant p-rank.
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1. Introduction

In this paper we will deal with the following problem: Let � be a regular graph with given
spectrum, what can we say about the p-ranks of A − cI (Notation: rkp(A − cI)), or, more
general, A + bJ − cI, where A is the adjacency matrix and b and c integers. Which of
these p-ranks are completely determined by the spectrum and which are not? These p-
ranks that are in general not determined by the spectrum of the graph can be used as an
extra parameter to distinguish between cospectral graphs since for these p-ranks the actual
structure of the graph can play a rôle. We will call these p-ranks the relevant p-ranks
of the graph. If � is cospectral with a distance-regular graph some of these remaining
p-ranks can be determined if we furthermore assume that the graph is indeed distance-
regular. This can only be the case for distance-regular graphs of diameter at least three
since strong regularity follows from the spectrum. The p-ranks of the adjacency matrices
of strongly regular graphs are studied by Brouwer and Van Eijl [3]. They examine which
p-ranks follow directly from the spectrum (parameters) of the strongly regular graph and
calculate the remaining (relevant) p-ranks for many classes of strongly regular graphs such
as triangular graphs, lattice graphs, Paley graphs and the sporadic graphs. In [11] the present
author investigated the characterization of strongly regular graphs by their spectrum and
some relevant p-rank of the graph. Especially so-called “rigidity theorems” for strongly
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Table 1. The relevant p-ranks of all graphs cospectral with the Hamming graph H(3, 3).

|Aut(�)| rk3(A) rk2(A + I )

1 288 13 – 19 1

2 72 14 – 17 1

3 1296 12 – 19 1 H ′(3, 3)

4 1296 14 – 13 1 H (3, 3)

regular graphs, which are characterizations of strongly regular graphs by their parameters
and the minimality of some relevant p-rank, got attention.

In this paper we will concentrate on distance-regular graphs of diameter at least three
and graphs cospectral with these and we want to derive similar results for these graphs as
are obtained for strongly regular graphs. In the next section we will examine which p-ranks
of some regular graph follow from its spectrum, generalizing results from [3]. Our main
tool to determine these p-ranks is the minimal polynomial of the adjacency matrix of the
graph considered as a matrix over IFp. We will first mention some properties of the minimal
polynomial and then show how it determines most of the p-ranks of some regular graph,
given its spectrum. If not all eigenvalues are integral some extra p-ranks can be determined
from the spectrum using the theory of Smith normal forms. In the third section we consider
the Hamming and Doob graphs as our main example. Some more examples are considered
in the last section. We try to determine the relevant p-ranks for these graphs and try to
characterize some of these graphs by their spectrum and the minimality of some relevant
p-rank. We use the results of Haemers and Spence [8], who determined all graphs cospectral
with a distance-regular graph with at most 30 vertices, as illustrative examples. This paper
is based on the author’s Ph.D. thesis [10].

Example 1.1 The Hamming graph H(3, 3) on 27 vertices has spectrum 61, 36, 012, −38.
Given a graph with this spectrum, � say, with adjacency matrix A, all p-ranks of A − cI
(c integral) are determined by the spectrum, except possibly for rk3(A) and rk2(A + I ).
According to Haemers and Spence [8] there are four graphs with this spectrum. One of
these is the graph H ′(3, 3) which is the graph defined on the 27 lines (3-cliques) of the
Hamming graph H(3, 3), where two lines are defined to be adjacent if they intersect. The
relevant p-ranks of the four graphs cospectral with H(3, 3) are shown in Table 1.

Notice that H(3, 3) and H ′(3, 3) have the largest automorphism group and can both be
characterized by their spectrum and the minimality of some relevant p-rank. H(3, 3) has
the smallest 2-rank (of A + I ) and H ′(3, 3) has the smallest 3-rank.

2. Preliminaries

2.1. The minimal polynomial

Let F be any field and A an n × n-matrix over F . A polynomial f (x) ∈ F[x] is called
an annihilating polynomial of A if f (A) = O . The minimal polynomial of A is the unique
monic annihilating polynomial of A that has minimal degree. The characteristic polynomial
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of A is the polynomial det(xI − A). Let ϕ0(x) be the minimal polynomial of A and let c ∈ F ,
then equivalent are:

1. rk(A − cI) < n,
2. c is a root of det(xI − A),
3. c is a root of ϕ0(x).

Let ϕ0(x) = (x − λ1)
h1 . . . (x − λn)

hn ϕ1(x), where ϕ1(x) has no roots in F and let
det(xI − A) = (x − λ1)

m1 . . . (x − λn)
mn f (x) where f (x) has no roots in F , then ϕ1(x)

divides f (x) and there exists a regular v × v-matrix S such that

S−1AS = diag(A1, . . . , An, B)

where Ai is an mi × mi -matrix such that (Ai − λi I ) is nilpotent with index hi and B is
an (n − ∑

mi ) × (n − ∑
mi )-matrix that has no eigenvalues in F . Now rk((A − λi I )hi ) =

n − mi and

n − mi + hi − 1 ≤ rk(A − λi I ) ≤ n − mi

hi

so λi is a simple root of ϕ0(x) if and only if rk(A − λi I ) = n − mi .
Furthermore, ker((A − λi I )hi ) + 〈(A − λi I )hi 〉 = Fn and ker((A − λi I )hi ) ∩ 〈(A − λi I )hi 〉

= {0}.
For a matrix M ∈ Fm×n we write 〈M〉 for the row space of M over F and ker(M) for

the kernel of M over F . If F = IFp we use the notation 〈M〉p and kerp(M); also if M is
integral.

In this paper we will only consider the minimal polynomial of the adjacency matrix of
a graph considered as a matrix over IR or IFp. Dealing with this situation, we have the
following lemma:

Lemma 2.1 (cf. [5]) Let A be an integral n × n-matrix, then the minimal polynomial of
A over IR, ϕ0(x) say, has integral coefficients.

So if we consider A as a matrix over IFp, ϕ0(x) (mod p) is an annihilating polynomial of
A and the minimal polynomial of A modulo p divides ϕ0(x) (mod p).

2.2. Distance-regular graphs

A connected graph � is called distance-regular if it is regular of valency k, and if for any
two points γ, δ ∈ � at (graph) distance i , there are precisely ci neighbors of δ at distance
i − 1 from γ and bi neighbors of δ at distance i + 1 from γ . The sequence

ι(�) = {b0, b1, . . . , bd−1; c1, c2, . . . , cd},
where d is the diameter of �, is called the intersection array of �; the numbers ci , bi and
ai , where

ai = k − bi − ci
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is the number of neighbors of δ at distance i from γ , are called the intersection numbers of
�. By definition we have that

b0 = k, bd = c0 = 0, c1 = 1.

For a graph � we can define the i-th distance matrix Ai (�) (or just Ai ) of � as the
v × v zero-one matrix with (Ai )xy = 1 if and only if x and y are at distance i in �. The
adjacency matrix A of � is the matrix A1. The eigenvalues of a graph are the eigenvalues
of its adjacency matrix. One easily checks that the matrices Ai satisfy the relations

A0 = I, A1 = A,

AAi = ci+1 Ai+1 + ai Ai + bi−1 Ai−1 (i = 1, 2, . . . , d), (1)

A0 + A1 + · · · + Ad = J.

It follows that the matrices Ai can be written as polynomials in A of degree i ,

Ai = vi (A), (2)

where the polynomials vi are defined recursively by

v0(x) = 1, v1(x) = x,

ci+1vi+1(x) = (x − ai )vi (x) − bi−1vi−1(x) (i = 1, 2, . . . , d − 1).

Since the d + 1 matrices Ai are linearly independent the minimal polynomial of A (over
IR) has degree at least d + 1, so A has at least d + 1 eigenvalues. By (1) and (2) we find that

Ai A j =
d∑

t=0

pt
i j At

for certain numbers pt
i j . By comparison of the xy-entries we see that for vertices x and y at

distance t , the number pt
i j equals the number of vertices z with d(x, z) = i and d(y, z) = j

for i, j, t = 0, 1, . . . , d . In particular the pt
i j are non-negative integers. It follows that the

Ai generate a d + 1-dimensional commutative algebra A of symmetric matrices, called
the Bose-Mesner algebra of the distance-regular graph. We denote with Ap the modular
Bose-Mesner algebra, that is the algebra generated by the Ai over IFp.

Since the matrices Ai commute, they can be diagonalized simultaneously over the com-
plex numbers. Therefore A is semi-simple and has a unique basis of minimal idempotents
E0 = 1

v
J, E1, E2, . . . , Ed . Now the matrix of eigenvalues P is defined by:

A j =
d∑

i=0

Pi j Ei .

Let vi be the valency of Ai (so vi = P0i ) and let mi be the multiplicity of the i-th eigenvalue
(so mi = rk(Ei )).
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The intersection matrix of � is the tridiagonal matrix

L1 =




a0 b0

c1 a1 b1

c2 a2 b2

c3 · ·
· · ·

· · bd−1

cd ad




.

Similarly the intersection matrices L0, L1, . . . , Ld can be defined by

(Li )k j = pk
i j .

Multiplication by A defines a linear map onA (Ap). With respect to the basis {A0, A1, . . . ,

Ad} of A this linear map has matrix L1. More generally, let f (x) be a polynomial, then mul-
tiplication by f (A) defines a linear map on A with matrix f (L1). It follows that f (A) = O
if and only if f (L1) = O and in fact f (A) = O if and only if the first column of f (L1) is
all-zero, so A and L1 have the same minimal polynomial, over IR as well as over IFp and
in fact the same is true for Ai and Li in general. Since the minimal polynomial of A over
IR has rank at least d + 1 which is the order of L1, the minimal polynomial over IR of A
and L1 must be det(xI − L1). So A and L1 have the same d + 1 eigenvalues which can be
calculated from the intersection array only. Also the multiplicities of these eigenvalues can
be calculated from the intersection array only (cf. [2] Theorem 4.1.4).

Let P1 be the matrix got from the matrix of eigenvalues P by deleting its first row and
column. Since the sum of the columns of P is equal to the vector (v, 0, . . . , 0)T we have
det P = v det P1. Now

|detP1|2 = vd−1
d∏

i=0

vi

mi
.

It can be proven that the right side here is an integer. It is known as the Frame quotient
(cf. [2]).

For determining the minimal polynomial of the adjacency matrix of a distance-regular
graph over IFp, we have the following lemma.

Lemma 2.2 Let A be the adjacency matrix of a distance-regular graph with intersection
matrix L1 and let p be a prime, then, when calculating modulo p, A and L1 have the
same minimal polynomial. Let e := min{d + 1, i | ci ≡ 0 (mod p), i > 0} and L the e × e-
submatrix of L1 consisting of the first e rows and columns, then this minimal polynomial is
equal to det(xI − L).
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Proof: Let f (x) be a polynomial with integral coefficients, then f (A) ≡ O (mod p) if
and only if f (L1) ≡ O (mod p). In fact f (A) ≡ O (mod p) if and only if the first column
of f (L1) (mod p) is all-zero. Let

L1 (mod p) =
(

L M

O L ′

)
, then f (L1) (mod p) =

(
f (L) M ′

O f (L ′)

)

for each polynomial f (x). Since the matrices L0 = I, L1, L2, . . . , Le−1 are clearly linearly
independent, the minimal polynomial of L over IFp has degree at least e, so it must be
equal to det(xI − L) (mod p). ✷

For determining p-ranks of integral matrices from Bose-Mesner algebras the following
theorem by Godsil [6] is useful and is in fact a much more general tool than the lemma
above.

Theorem 2.3 (Godsil) Let F be a finite field of characteristic p that contains the eigen-
values of all adjacency matrices of an association scheme. Then the Bose-Mesner algebra
of this association scheme over F is semisimple if and only if p does not devide |det P|2 =
vd+1 ∏d

i=0
vi
mi

.

Corollary 2.4 Let A be the Bose-Mesner algebra of an association scheme and let p be
a prime not dividing |det P|2. Then the minimal polynomial of any matrix in Ap does not
contain multiple roots.

So for any integral matrix M from the Bose-Mesner algebra of an association scheme the
only p-ranks of M that are not necessarily determined by the characteristic polynomial of
M are those for which p divides |det P|2.

2.3. p-Ranks of integral matrices with given spectrum

In this section we consider the following problem: Given the spectrum of a symmetric
integral matrix, M say, of order v and with constant row sum (think of M = A + bJ for
some integer b and A the adjacency matrix of some regular graph with prescribed spectrum).
Which p-ranks of M − cI (for integral c) are determined by the spectrum of M and which
are not (in general)?

First of all, if 1 �∈ 〈M〉p and 1 ∈ 〈M + bJ〉p for some b �= 0, then 1 ∈ 〈M + bJ〉p for all
b �= 0 (mod p). Thus, either rkp(M + bJ) is independent of b, or there is precisely one
value of b for which this rank is one lower than for all other values. If p does not divide v,
we are in the latter case.

Since the spectrum of M is known, also its minimal polynomial over IR, ϕ0(x) say,
is known as well as its characteristic polynomial. Most p-ranks of the matrices M − cI
follow from the properties of the minimal polynomial of M over IFp. More precisely, let
θ0, θ1, . . . , θn−1 be the n distinct eigenvalues of M with θ0 equal to the row sum of M having
multiplicity equal to 1. If c is not a multiple root of

∏n−1
i=1 (x − θi ) (mod p) then the p-rank
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of M − cI is determined by the spectrum of M as is shown in the next lemma. Since the
proof is technical and straightforward (see [10]) it is omitted.

Lemma 2.5 Let M be a symmetric integral matrix of order v with constant row sum
θ0 and n distinct eigenvalues θ0, θ1, . . . , θn−1 with m0 = 1. Let f (x) = ∏n−1

i=1 (x − θi ) and
ϕ0(x) = (x − θ0) f (x), which are both polynomials with integral coefficients. Let c be an
integer and p a prime number.

If c is not a root of f (x) (mod p), then

rkp(M − cI) = v if p does not divide θ0 − c,

v − 1 if p divides θ0 − c.

If c is a simple root of f (x) (mod p), and the characteristic polynomial of M modulo p
contains mc factors (x − c) then

rkp(M − cI) = v − mc if p does not divide θ0 − c,

v − mc if p divides both θ0 − c and
1

v
f (θ0),

v − mc + 1 if p divides θ0 − c but not
1

v
f (θ0).

Corollary 2.6 Let M be a symmetric, integral v ×v-matrix with constant row sum θ0 and
n distinct integral eigenvalues θ

m0=1
0 , θ

m1
1 , θ

m2
2 , . . . , θ

mn−1
n−1 , where the exponents denote the

multiplicities and
∑n−1

i=0 mi =, v. The only p-ranks of matrices M − cI ( for integral c) that
are not necessarily determined by the spectrum are:

rkp(M − θi I ) for p | (θ j − θi ) with i �= j ∈ {1, 2, . . . , n − 1}

Corollary 2.7 Let M be a symmetric integral v×v-matrix with constant row sum θ0 and n
distinct eigenvalues θ

m0=1
0 , θ

m1
1 , . . . , θ

mn−3
n−3 , θn−2 = 1

2 (a + √
b)mn−2 , θn−1 = 1

2 (a − √
b)mn−2

with integral θ1, . . . , θn−3, a, b, 1
4 (a2 − b). Let p be a prime and f (x) = ∏n−1

i=1 (x − θi ) =∏n−3
i=1 (x − θi )(x2 − ax + 1

4 (a2 − b)). Then all p-ranks of M − cI ( for integral c) are
determined by the spectrum of M , except possibly if modulo p f (x) contains at least two
factors (x − c). So the p-ranks that do not follow from the minimal polynomial of M are:

rkp(M − θi I ) with p | (θi − θ j )

for i �= j ∈ {1, 2, . . . , n − 3}
rkp(M − θi I ) with p | (θi − θn−2)(θi − θn−1)

for i ∈ {1, 2, . . . , n − 3}
rk2(M − θn−2θn−1 I ) if θn−2 + θn−1 is even

rkp

(
M − 1

2
(θn−2 + θn−1)I

)
for odd p | (θn−2 − θn−1)

2
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Sometimes we can reduce this set of undecided p-ranks using the theory of Smith normal
forms. More precisely we will use the following lemma (cf. [3]):

Lemma 2.8 Let M be a non-singular integral matrix of order n and suppose pk‖det M
(that means pk divides det M but pk+1 does not). Then rkp(M) ≥ n − k.

Lemma 2.9 Let M be a matrix as in Corollary 2.7. Let p be a prime that divides (θn−2 −
θn−1)

2 precisely once and let A := M − 1
2 (θn−2 + θn−1)I . If none of θ1, θ2, . . . , θn−3 is a

solution of x2 − ax + 1
4 (a2 − b) then

if θ0 �≡ 1
2 (θn−2 + θn−1) (mod p) then rkp(A) = v − mn−2;

if θ0 ≡ 1
2 (θn−2 + θn−1) (mod p) and p does not divide v then rkp(A) = v − mn−2 − 1;

if θ0 ≡ 1
2 (θn−2 + θn−1) (mod p) and p does divide v then rkp(A) = v − mn−2 − 1 if

1
v

∏n−1
i=1 (θ0 − θi ) ≡ 0 (mod p) and rkp(A) = v − mn−2 otherwise.

Proof: If θ0 �≡ 1
2 (θn−2 + θn−1) (mod p) then pmn−2‖det(A) (so rkp(A) ≥ v − mn−2) and

rkp((A)2) = v − 2mn−2 (so rkp(A) ≤ v − mn−2) and hence rkp(A) = v − mn−2.
If θ0 ≡ 1

2 (θn−2 + θn−1) then rkp(A) is equal to either v − mn−2 or v − mn−2 − 1. If
furthermore v �≡ 0 (mod p) then rkp(A) = v − mn−2 − 1 (Indeed 1 �∈ 〈A〉p and 1 ∈ 〈A +
J 〉p.).

Now suppose that v ≡ 0 (mod p) and θ0 ≡ 1
2 (θn−2 + θn−1), then we still have to prove

that

rkp(A) = v − mn−2 − 1 if
1

v

n−1∏
i=1

(θ0 − θi ) ≡ 0 (mod p)

v − mn−2 otherwise.

Indeed,
∏n−3

i=1 (M − θi I ) has p-rank 1 + 2mn−2. If A has p-rank v − mn−2 then rkp(A2) =
v − 2mn−2, so

∏n−1
i=1 (M − θi I ) = 1

v

∏n−1
i=1 (θ0 − θi )J �≡ O (mod p). If 1

v

∏n−1
i=1 (θ0 − θi ) �≡ 0

(mod p) then 1 ∈ 〈A2〉p and if (θ0 − θn−2)(θ0 − θn−1) contains precisely e factors p, also v

contains precisely e factors p. Let x and y be two vectors such that A2 yT = 1T and x A = 1.
Then x1T = x A2 yT = 0, so there exists a vector x such that x A = 1 and x1T = 0. It follows
that A has the same p-rank as the (v + 1) × (v + 1)-matrix B defined by

B :=
(

θ0 − 1
2 (θn−2 + θn−1) 1

1T A

)

We have that p divides v precisely once since (θ0 − θn−2)(θ0 − θn−1) = (θ0 − 1
2 (θn−2 +

θn−1))
2 − (θn−2−θn−1)

2

4 . If ηi = θi − 1
2 (θn−2 +θn−1) for i = 0, 1, . . . , n −1 are the eigenvalues

of A, then B has spectrum:

(η0 + √
v)1, (η0 − √

v)1, η
m1
1 , . . . , η

mn−1
n−1
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It follows that det(B) contains mn−2 + 1 factors p (1 factor from (η0 + √
v)(η0 − √

v) =
η2

0 − v and mn−2 factors from (ηn−2ηn−1)
mn−2 since ηn−2ηn−1 = − (θn−2−θn−1)

2

4 ) so rkp(A) =
rkp(B) ≥ v − mn−2. It follows that rkp(A) = v − mn−2. ✷

So if M is a matrix as in Corollary 2.7 we are left with the following p-ranks:

rkp(M − θi I ) with p | (θi − θ j )

for i �= j ∈ {1, 2, . . . , n − 3}
rkp(M − θi I ) with p | (θi − θn−2)(θi − θn−1)

for i ∈ {1, 2, . . . , n − 3}
rk2(M − θn−2θn−1 I ) if θn−2 + θn−1 is even

rkp

(
M − 1

2
(θn−2 + θn−1)I

)
for odd p2 | (θn−2 − θn−1)

2

Example 2.1 According to Haemers and Spence [8] there are ten graphs on 24 vertices
with spectrum 71,

√
7

8
, −17, −√

7
8
. One of these, the so-called Klein graph, is distance-

regular with intersection array {7, 4, 1; 1, 2, 7}. The p-ranks that are still open in this case
are rk2(A + I ) and rk3(A + I ). Table 2 denotes the ranks we find for the ten graphs with
the mentioned spectrum (The number after the value for the rank is the unique b0 such that
rkp(A − cI + b0 J ) = rkp(A − cI + bJ) − 1 for all b �= b0, or ‘−’ in case rkp(A − cI + bJ)

is independent of b).
Notice that 7 divides (θ1 − θ3)

2 = 28 but 72 = 49 does not divide 28, so for all 10
graphs cospectral with the Klein graph rk7(A) can be determined using the last lemma.
We have θ0 ≡ 1

2 (
√

7 + (−√
7)) (mod 7) and 7 does not divide v = 24, so rk7(A) =

24 − 8 − 1 = 15.
Since |det P|2 = 28 ∗ 34 ∗ 7 Godsil’s theorem does not reduce the set of relevant p-ranks

for the Klein graph.

Table 2. The relevant p-ranks of all graphs cospectral with the Klein graph.

|Aut(�)| rk2(A + I ) rk3(A + I )

1 2 14 – 16 –

2 12 14 – 16 –

3 3 15 1 16 –

4 2 13 1 16 –

5 16 12 – 16 –

6 8 11 1 16 –

7 6 13 1 16 –

8 6 15 1 16 –

9 42 15 1 16 –

10 336 9 1 16 – Klein graph
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3. Hamming and Doob graphs

3.1. Definitions

The Kronecker product of two matrices A and B is the matrix with blocks ai j B and is
denoted by A ⊗ B. By an easy exercise (A ⊗ P)(B ⊗ Q) = AB ⊗ PQ where A and B res-
pectively P and Q have fitting sizes.

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with adjacency matrices A1 and A2

respectively. The direct product of G1 and G2 is the graph with vertex set V1 × V2 and
two vertices (v1, w1) and (v2, w2) are adjacent if and only if ((v1 = v2)∧ (w1, w2) ∈ E2) or
((w1 = w2)∧ (v1, v2) ∈ E1). So by definition the direct product of G1 and G2 has adjacency
matrix I ⊗ A1 + A2 ⊗ I . Usually this is called the Kronecker sum of A1 and A2 (notation:
A1 ⊕ A2). If {λi } and {µ j } are the eigenvalues of A1 and A2 respectively, then {λi + µ j }
are the eigenvalues of A1 ⊕ A2.

Let X be a finite set of cardinality q ≥ 2. The Hamming graph � (with diameter d on X )
has vertex set Xd , the cartesian product of d copies of X ; two vertices of � are adjacent
whenever they differ in precisely one coordinate. An equivalent definition is that a Hamming
graph is the direct product of d copies of a complete graph on q vertices. Because only d
and q will be relevant here, we denote � as well as its adjacency matrix by H(d, q).

Hamming graphs are distance-regular with diameter d and parameters b j = (d − j)
(q − 1), c j = j and a j = j (q−2) for 0 ≤ j ≤ d. As distance-regular graphs they are uniquely
determined by their parameters, except when q = 4. In this case the Doob graphs, which we
will denote here by D(n, m) and which are defined as the direct product of a Hamming graph
H(n, 4) with m copies of a Shrikhande graph, are distance-regular with the same parame-
ters as H(n + 2m, 4). There are no other exceptions, see [2] Section 9.2. Hamming graphs
have eigenvalues θ j = q(d − j) − d with multiplicities f j = (

d
j )(q − 1) j ( j = 0, 1, . . . , d).

Because the eigenvalues of a distance-regular graph are determined by its parameters the
Doob graph D(n, m) has the same eigenvalues as H(n + 2m, 4).

3.2. The p-ranks

In this section we will determine the p-ranks of matrices A − cI for integral c where A
is the adjacency matrix of a Pseudo Hamming graph, that is a distance-regular graph with
the same parameters as some Hamming graph H(d, q). It turns out that almost all of these
p-ranks follow from the minimal polynomial of A, considered as matrix over IFp. In order
to determine the remaining p-ranks we have to use the structure of the considered Hamming
or Doob graph.

Theorem 3.1 Let A be the adjacency matrix of a distance-regular graph with the same
parameters as the Hamming graph H(d, q), then

Ap − A ≡ O (mod p) if p� | q

Ap + dI ≡ O (mod p) if p | q
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Proof: Let L1 be the intersection matrix of the distance-regular graph then by Lemma 2.2
A and L1 have the same minimal polynomial, so the theorem is trivial if d < p since then
the characteristic polynomial of L1 divides x p − x if p� | q and x p + d if p | q. If d ≥ p
then cp ≡ 0 (mod p), so A has minimal polynomial ϕ0(x) of degree p. If p | q then all
eigenvalues are equal to −d modulo p, so ϕ0(x) = (x +d)p = x p +d. If p� | q then modulo
p the first p eigenvalues of L1 are all different, so ϕ0(x) contains a factor x − c for each
c ∈ IFp which implies that ϕ0(x) = x p − x . ✷

More precisely, the minimal polynomial ϕ0(x) of A over IFp is

ϕ0(x) =




d∏
i=0

(x − θi ) if p� | q and d < p

x p − x if p� | q and d ≥ p

(x + d)d if p | q and d < p

x p + d if p | q and d ≥ p

Since each element of IFp is a simple root of x p −x , almost all p-ranks of Pseudo Hamming
graphs follow from the eigenvalues and the intersection numbers. In particular we have:

Corollary 3.2 Let A be the adjacency matrix of a distance regular graph with the same
parameters as a Hamming graph H(d, q). Let c be an integer and p a prime, then

rkp(A − cI) = qd −
∑

θi −c≡0 (mod p)

fi if p� | q

rkp(A − cI) = qd if p | q and c + d �≡ 0 (mod p)

rkp((A + dI)e) ≤ p − e

p
qd for 0 ≤ e ≤ p if p | q

So using the minimal polynomial of A over IFp we can determine all p-ranks except

rkp(A + dI) for p | q.

This result also follows directly from Godsil’s theorem since for a Hamming graph
H(d, q) we have |detP|2 = qd(d+1).

According to Corollary 3.2 for p not dividing q the p-rank of H(d, q) − cI, considering
its spectrum, is as small as possible for any integral c. So if A is the adjacency matrix of
some graph cospectral with the Hamming graph H(d, q) and p is a prime not dividing q,
then rkp(A−cI) ≥ rkp(H(d, q)−cI) for any c. If d = 3 and q is odd we can also show the
converse, namely that the distance-regularity follows from the minimality of some 2-rank:

Theorem 3.3 Let for some odd q, � be a graph with the same spectrum as H(3, q) and let
A be its adjacency matix. If rk2(A + I ) = 1 + 3(q − 1)2, then � is isomorphic to H(3, q).

Proof: It follows from the spectrum that � is regular of degree 3(q − 1) and that two
adjacent vertices have the right number (q − 2) common neighbors (see [7]). Furthermore
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rk2(A) = 3(q − 1) + (q − 1)3, so modulo 2 � has minimal polynomial x2 + x . So A2 ≡ A
(mod 2) and two vertices at distance 2 have at least 2 common neighbors, implying that
each vertex has at most 3(q −1)2 vertices at distance 2. It is proved in Haemers [7] that each
vertex has at least this many vertices at distance 2 and that if equality holds for each vertex,
the graph is distance-regular. Since H(3, q) is the unique distance-regular graph with this
spectrum, the result follows. ✷

This theorem also proves the characterisation of H(3, 3) by its spectrum and the mini-
mality of the 2-rank of A + I that we saw in Example 1.1.

We will now determine the p-rank of the matrix H(d, q) + dI for every prime number p
dividing q and the corresponding 2-rank for the Doob graphs. Using the fact that these graphs
are direct products of complete graphs and/or Shrikhande graphs, a recurrence relation can
be derived for the considered p-rank. We will denote the matrix H(d, q) + dI by B(d, q),
the adjacency matrix of the Doob graph D(n, m) by D(n, m) and we define r d to be the
vector of length p with the k-th coefficient equal to rkp B(d, q)k−1. For two integral matrices
M and N , the expression M ∼p N will mean that, considered as matrices over IFp, M and
N have the same rank.

Theorem 3.4 Let p be a prime dividing q, then

r d = Qdr 0

where

r 0 = (1, 0, 0, . . . , 0)T and Q =




q 0 0 · · · · · · 0

1 q − 2 1 0 · · · 0

0 1 q − 2 1
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . .

. . .
. . . 1

0 · · · · · · 0 1 q − 2




If p = 2, then

r d =
(

qd

1
2 (qd − (q − 2)d)

)
(3)

If p = 3, then

r d =




qd

2
3 qd − 1

2 (q − 1)d − 1
6 (q − 3)d

1
3 qd − 1

2 (q − 1)d + 1
6 (q − 3)d


 (4)

rk2(D(n, m) + nI) = 1

2
(4n+2m − 2n+2m)
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Proof: Let p be a prime dividing q, let M be an integral matrix and l �≡ 0 (mod p) an
integer, then it follows from a straightforward reduction (cf. [10]) that

(Iq ⊗ Mk) + l(Jq ⊗ Mk−1) ∼p diag(Mk−1, (Mk)q−2, Mk+1). (5)

Because B(d, q) = H(d, q) + dI, we have the following recurrence relation for B(d, q):

B(d, q) = Iq ⊗ B(d − 1, q) + Jq ⊗ I

from which we derive that

B(d, q)k ≡ Iq ⊗ B(d − 1, q)k + k Jq ⊗ B(d − 1, q)k−1 (mod p) (6)

if p | q . Now B(0, q) = (0), so by induction B(d, q)p ≡ 0 (mod p). From (5) and (6) we
get the following recurrence relation for the p-rank of powers of the matrix B(d, q):

rkp B(d, q)k = rkp B(d − 1, q)k−1 + (q − 2)rkp B(d − 1, q)k + rkp B(d − 1, q)k+1

for k = 1, . . . , p − 1 and with p | q. Together with the obvious relations

rkp B(0, q)k = 0 for k > 0

rkp B(d, q)p = 0 for d ≥ 0

rkp B(d, q)0 = qd for d ≥ 0

these determine the p-ranks of the powers of B(d, q) completely. The above relations can
be rewritten as

r d = Qr d−1

with

r 0 = (1, 0, 0, . . . , 0)T and Q =




q 0 0 · · · · · · 0

1 q − 2 1 0 · · · 0

0 1 q − 2 1
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . .

. . .
. . . 1

0 · · · · · · 0 1 q − 2




So

r d = Qdr 0
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For p �= 2, 3 this will be the most useful expression we get for the p-rank of H(d, q) + dI
and its powers. For p = 2, 3 we can derive explicit formulas for the p-ranks we are looking
for by diagonalizing the matrix Q. Namely if p = 2 then

Q =
(

q 0

1 q − 2

)
=

(
2 0

1 1

)(
q 0

0 q − 2

)(
2 0

1 1

)−1

and if p = 3 then

Q =




q 0 0

1 q − 2 1

0 1 q − 2


 =




3 0 0

2 1 1

1 1 −1







q 0 0

0 q − 1 0

0 0 q − 3







3 0 0

2 1 1

1 1 −1




−1

yielding (3) and (4).
Let Sh be the adjacency matrix of the Shrikhande graph and M an integral s × s-matrix,

then

(I16 ⊗ M) + (Sh ⊗ Is) ∼2 diag((Is)
6, (M)4, (M2)6) (7)

The proof is again a straightforward reduction and is omitted here. The recursion formula
can also be obtained by using (5) and the fact that the matrix Sh is obtained from H(2, 4)

by permuting the rows.
Let Sh(m) denote the adjacency matrix of the direct product of m copies of a Shrikhande

graph, then it satisfies the following recurrence relation:

Sh(m) = I16 ⊗ Sh(m − 1) + Sh ⊗ I16m−1 .

So by induction Sh(m)2 ≡ 0 (mod 2). Using (7) we get that

rk2Sh(m) = 6 · 16m−1 + 4 · rk2Sh(m − 1),

which yields:

rk2Sh(m) = 1

2
(16m − 4m) = rk2 B(2m, 4). (8)

Now by induction on n (or m) using (5) and (8) (or (7) and (3)) it follows that

rk2(D(n, m) + nI) = 1

2
(4n+2m − 2n+2m). ✷

Remark 3.1 Note that

rk2(D(n, m) + nI) = 1

2
(4n+2m − 2n+2m) = rk2(H(n + 2m, 4) + nI).



ON THE p-RANKS OF THE ADJACENCY MATRICES 141

So each p-rank of a Doob graph is the same as the one for the Hamming graph with the
same parameters as this Doob graph.

Remark 3.2 It follows from the recurrence relations for B(d, q) and D(n, m) that for p
dividing q we have 1 ∈ 〈H(d, q)+dI〉p and 1 ∈ 〈D(n, m)+nI〉2, so rkp(H(d, q) + dI + bJ)

and rk2(D(n, m) + nI + bJ) (for integral b) are independent of b.

Remark 3.3 It is possible to find for every p and k ∈ {1, 2, . . . , p − 1} coefficients
α1, α2, . . . , αp depending on p and k only, such that

rkp B(d, q)k = α1qd + α2(q − 2 + x1)
d + · · · + αp(q − 2 + x p−1)

d

with x1, x2, . . . , x p−1 zero’s of the polynomial Sp−1(x) defined by Sn(x) = det(Sn + xIn),
where Sn is the n × n matrix with one’s on the codiagonals and zero’s elsewhere. One can
prove that the roots xi lie symmetric with respect to 0 and |xi | < 2 for i = 1, 2, . . . , n.

4. Some other distance-regular graphs

4.1. Johnson graphs

The Johnson graph J (n, k) is the graph with vertex set the k-subsets of a set with n
elements, two vertices being adjacent if they have an intersection of size k − 1. The John-
son graph J (n, k) has (

n
k ) vertices, diameter d = min{k, n − k} and is distance-regular

with intersection numbers ai = (n − 2i)i , bi = (k − i)(n − k − i), ci = i2. It has
eigenvalues θi = k(n − k) − i(n + 1 − i) = k(n − k) − ( n+1

2 )2 + (i − n+1
2 )2 with multiplici-

ties fi = (
n
i )−(

n
i−1 ) (0 ≤ i ≤ d).

Let p be a prime and let A be the adjacency matrix of a distance-regular graph with the
same parameters as J (n, k). Then by Lemma 2.2, A modulo p has minimal polynomial

(x + k)2 if p = 2 and n even,

x(x + 1) if p = 2 and n odd,
d∏

i=0

(x − θi ) (mod p) if p is odd and p > d,

p−1∏
i=0

(
x − k(n − k) +

(
n + 1

2

)2

− i2

)
if p is odd and p ≤ d.

So we have

rkp((A − cI)2) =
∑

θi �≡c (mod p)

fi
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for all prime numbers p and integral c, and in fact

rkp(A − cI) =
∑

θi �≡c (mod p)

fi

for all prime numbers p and integers c, except possibly for

rk2(A + k I ) if n is even,

rkp

(
A −

(
k(n − k)−

(
n + 1

2

)2

+ c

)
I

)
with p odd and c is a
non-zero square (mod p).

Concerning these cases we can determine only a few more p-ranks. From now on we will
denote the adjacency matrix of J (n, k) by J (n, k) as well. If n is even then rk2(J (n, k) +
kI) = rk2(J (n − 1, k) + kI) since the sum of all rows of J (n, k) + kI corresponding to the
k-subsets that contain some fixed k − 1-set is equal to the zero vector modulo 2. From this
we get the following values for the 2-ranks of J (n, k) which were also found by R. Riebeek
(personal communication):

rk2(J (n, k) + kI) =
(

n − 2

k − 1

)
if n is even,

(
n − 1

k − 1

)
if n is odd,

rk2(J (n, k) + (k + 1)I ) =
(

n

k

)
if n is even,

(
n − 1

k

)
if n is odd.

Some other results follow from the work of Wilson (see [12]) who, for given integers
t, k and n, determined the p-ranks of the (

n
t ) by (

n
k ) matrix Nt,k(n) (or simply Nt,k) of 0’s

and 1’s, the rows of which are indexed by the t-subsets T of an n-set X , whose columns
are indexed by the k-subsets K of the same set X , and where the entry Nt,k(T, K ) in row
T and column K is 1 if T ⊆ K and is 0 otherwise. He proved the following theorem:

Theorem 4.1 (Wilson) (cf. [12]) For t ≤ min{k, n − k}, the rank of Nt,k modulo a prime
p is

∑ (
n

i

)
−

(
n

i − 1

)

where the sum is extended over those indices i such that p does not divide the binomial
coefficient(

k − i

t − i

)
.



ON THE p-RANKS OF THE ADJACENCY MATRICES 143

Now by definition J (n, k) + kI = N T
k−1,k Nk−1,k . By Wilson’s theorem

rkp(Nk−1,k) =
k−1∑
i=0

i �≡k (mod p)

(
n

i

)
−

(
n

i − 1

)
,

so for instance rkp(Nk−1,k) = (
n

k−1 ) if p > k, rkp(Np−1,p) = (
n

p−1 ) − 1 and rk3(N3,4) =
(

n
3 ) − (n−1) from which, after considering the kernel of Nk−1,k , the following results follow:

rkp(J (n, k) + kI) =
(

n

k − 1

)
if p > k,

rkp(J (n, p) + pI ) =
(

n

p − 1

)
− 2 if p divides

(
n

p − 1

)
,

(
n

p − 1

)
− 1 if p does not divide

(
n

p − 1

)
,

rk3(J (n, 4) + 4I ) =
(

n

3

)
− 2(n − 1) + 1 if n ≡ 0 (mod 3),

(
n

3

)
− (n − 1) if n ≡ 1 (mod 3),

(
n

3

)
− 2(n − 1) if n ≡ 2 (mod 3).

We omit the proof because these results cover only a few of the remaining cases and its
proof is technical and straightforward. Determining all relevant p-ranks for the Johnson
graphs seems to be a difficult problem.

4.2. GQ minus a spread

Let GQ(s, t) be a generalized quadrangle with point set P and line set L. A spread is a
collection of lines partitioning the point set. Let S be a spread of GQ(s, t), then (cf. [2] Sec-
tion 12.5 or [1]) the collinearity graph � of (P,L\S) is distance-regular of diameter 3, with
v = (s +1)(st +1) vertices, spectrum st1, −1st=m2 , sst(st+1)/(s+t)=m1 , −t s2(st+1)/(s+t)=m3 and
intersection array {st, s(t−1), 1; 1, t−1, st}, an antipodal (s+1)-cover of the complete graph
Kst+1. More generally, given a strongly regular graph � with parameters (v, k, λ, µ) =
((s + 1)(st + 1), s(t + 1), s − 1, t + 1) such that there is a partition S of its point set into
(s +1)-cliques, the partial graph � obtained by deleting the edges contained in the members
of S is distance-regular of diameter 3 with intersection array as given above. Conversely,
any graph � with these parameters arises in this way.

Let G be a graph with the same spectrum as � and let A be its adjacency matrix, then
the only p-ranks that are not necessarily determined by the spectrum are

rkp(A + I ) for p | (s + 1) or p | (t − 1)

rkp(A + tI) for p | (s + t)

If furthermore G is distance-regular we can say more.
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Theorem 4.2 Let � be a distance-regular graph with adjacency matrix A, intersection
array {st, s(t − 1), 1; 1, t − 1, st} and spectrum st1, sm1 , −1m2 , −tm3 . Let S be the partition
of the point set into the st+1 antipodal (s+1)-tuples and let � be the strongly regular graph
with adjacency matrix B, parameters (v, k, λ, µ) = ((s +1)(st +1), s(t +1), s −1, t +1)

and spectrum s(t + 1)1, (s − 1)m1+m2 , −(t + 1)m3 obtained from � by adding the edges
between antipodal pairs of vertices.
If p divides t − 1, but not s + 1, then

rkp(A + I ) = 1 + m1.

If p divides s + 1, but not t − 1, then

rkp(A + I ) = 1 + m2 + m3.

If p divides s + t, but not s + 1, then

rkp(A + tI) = rkp(B + (t + 1)I ) + st − ε,

where ε = 1 if p divides t and ε = 0 otherwise.

Proof: Let p be a prime dividing t − 1, then since � is distance-regular it follows from
Lemma 2.2 that (x + 1)(x − s) is the minimal polynomial of A over IFp, so if p does not
divide s + 1, then rkp(A + I ) = 1 + m1 and rkp(A − sI) = m2 + m3.

Let p be a prime dividing s + 1, but not t − 1. Denote the st + 1 antipodal (s + 1)-tuples
of � as well as their characteristic vectors by l1, l2, . . . , lst+1 and let S (= Ist+1 ⊗ Js+1) be
the matrix for which Si j = 1 if i = j or if i and j are antipodal in � and Si j = 0 otherwise,
then B + I = A + S and

〈A + I 〉p + 〈l1, . . . , lst+1〉p = 〈B + 2I 〉p + 〈l1, . . . , lst+1〉p.

Claim 1

li ∈ 〈A + I 〉p for i = 1, 2, . . . , st + 1

Summing all rows of A + I gives (st + 1)1 ≡ (1 − t)1 (mod p), so the all-one vector is
in 〈A + I 〉p. Since � is strongly regular with the given spectrum, we have (B + 2I )(B+
(t + 1)I ) ≡ (t + 1)J (mod p). Furthermore we have that S(B + 2I ) ≡ J (mod p) and
S2 ≡ O (mod p), so (A + tI)(A + I ) = (B + (t + 1)I − S)(B + 2I − S) = (B + (t + 1)I )
(B +2I )− S(2B + (t +3)I )+ S2 ≡ (t +1)J −2J − (t −1)S = (t −1)(J − S) (mod p),
so 1 − li and hence li is in 〈A + I 〉p.

Claim 2

〈B + 2I 〉p ∩ 〈l1, . . . , lst+1〉p = 〈1〉p

Note that 〈l1, . . . , lst+1〉p = 〈1, l1 − l2, . . . , l1 − lst+1〉p since 1 + ∑st+1
i=1 (l1 − li ) = 1 −∑

li + (st + 1)l1 ≡ (1 − t)l1 (mod p). Now li (B + 2I ) = 1, so li − l j ∈ kerp(B + 2I ) for
all i, j = 1, 2, . . . , st + 1. Since B (over IFp) has minimal polynomial (x + t + 1)2(x + 2)

we have kerp(B + 2I ) ∩ 〈B + 2I 〉p = {0} and the claim follows.
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Now

rkp(A + I ) = dim(〈A + I 〉p + 〈l1, . . . , lst+1〉p) = dim(〈B + 2I 〉p

+ 〈l1, . . . , lst+1〉p) = rkp(B + 2I ) + st = 1 + m2 + m3.

Let p be a prime dividing s + t but not s + 1, then again

〈A + tI〉p + 〈l1, . . . , lst+1〉p = 〈B + (t + 1)I 〉p + 〈l1, . . . , lst+1〉p (9)

Since li (A + tI) = 1 + (t − 1)li the left hand side of (9) has dimension rkp(A + tI) or
rkp(A + tI) + 1 depending on whether 1 ∈ 〈A + tI〉p or not. Summing the rows of A + tI
yields (s + 1)t1, so 1 ∈ 〈A + tI〉p if p� | t . If on the other hand p | t , then 〈A + tI〉p ⊂ 1⊥,
but 11T = (s + 1)(st + 1) ≡ (s + 1) �≡ 0 (mod p), so 1 �∈ 〈A + tI〉p.

For each li we have that li (B + (t + 1)I ) = 1, so li − l j ∈ kerp(B + (t + 1)I ) for any
two (s + 1)-tuples of S. Let χ := ∑st+1

i=1 αi li be a vector from 〈l1, . . . lst+1〉p and suppose
that χ ∈ 〈B + (t + 1)I 〉p. Then, since li − l j ∈ kerp(B + (t + 1)I ) and B is symmetric,
we must have that liχ

T is constant for all li . Now liχ
T = αi (s + 1) and p does not divide

s + 1, so χ ∈ 〈1〉p. Since 1 ∈ 〈B + (t + 1)I 〉p the dimension of the right hand side of (9) is
equal to rkp(B + (t + 1)I ) + st . ✷

Note that all p-ranks covered bij Theorem 4.2 are determined by the graph � alone and
do not depend on the particular spread S that is deleted from �. So the only p-ranks that
can actually depend on the particular spread that is deleted are

rkp(A + tI) for p dividing s + t as well as t − 1.

The next example illustrates that indeed we can have different p-ranks for graphs obtained
from the same GQ by deleting different spreads.

Example 4.1 Up to isomorphism there are two distance-regular graphs on 27 vertices with
intersection array {8, 6, 1; 1, 3, 8} (cf. [1]). Both are the collinearity graph of the unique
GQ(2, 4) minus a spread. This GQ possesses exactly two non-isomorphic spreads (see [4]).
In the dual GQ(4, 2) one spread corresponds to a ‘plane-ovoid’ and the other to a ‘tripod’.
The considered graphs have spectrum 81, 212, −18, −46, so if A is the adjacency matrix of
a graph � with this spectrum, rk2(A) and rk3(A + I ) are in general not determined by this
spectrum. If � is GQ(2, 4) minus a spread, then rk2(A) = rk2(B + I )+ st −1 = 14, where
B is the adjacency matrix of GQ(2, 4) for which rk2(B + I ) = 7. In [8] all graphs with
spectrum 81, 212, −18, −46 are determined. There are 13 of these. Their ranks are listed in
Table 3.

4.3. Square 2-designs

Any connected bipartite graph � is the incidence graph of a design (X,B). It can be found
in [2] (Section 1.6) that � is a (bipartite) distance-regular graph of diameter 3 if and only if
(X,B) is a square 2-design. If the square 2-design has parameters 2-(w, k, µ), then � has
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Table 3. The relevant p-ranks of all graphs cospectral with GQ(2, 4) minus a spread.

|Aut(�)| rk2(A) rk3(A + I )

1 4 12 0 14 –

2 36 12 0 14 –

3 2 14 0 14 –

4 12 14 0 14 –

5 12 14 0 12 –

6 16 14 0 14 –

7 4 12 0 14 –

8 12 12 0 14 –

9 16 10 0 14 –

10 24 12 0 14 –

11 1296 8 0 14 – �3 of H(3, 3)

12 1296 14 0 10 – GQ(2, 4) minus ‘plane-ovoid’-spread

13 324 14 0 12 – GQ(2, 4) minus ‘tripod’-spread

2w vertices, intersection array {k, k−1, k−µ; 1, µ, k} and spectrum ±k1, ±√
k − µ

w−1
. It

is proved in [7] that any graph with this spectrum is distance-regular and hence the incidence
graph of a square 2-design.

Let � be a graph with spectrum ±k1, ±√
k − µ

w−1
. Let A be its adjacency matrix and

N the incidence matrix of the corresponding square 2-design with parameters 2-(w, k, µ)

(so k(k − 1) = µ(w − 1)), then the following p-ranks are still open:

rkp(A + kI) for p | k2 − k + µ = µw

rk2(A + (k − µ)I )

rkp(A) for odd p for which p2 | (k − µ)

Notice that

A =
(

O N

N T O

)
.

Suppose that p | k2 − k + µ and p� | k then rkp(A + kI) = rkpdiag(Iw, N T N − k2 I ) =
w+ rkp(µJ + (k2 −k +µ)I ) = w+ rkp(µJ ). Similarly, if k −µ is odd then rk2(A + I ) =
w + rk2(µJ ). If 2 ‖ (k − µ) then rk2(N ) = w+1

2 and hence rk2(A) = w + 1 if µ is odd and
rk2(N ) = w−1

2 and hence rk2(A) = w − 1 if µ is even. The p-ranks that remain are:

rkp(A) = 2rkp(N ) for p2 | (k − µ).

The p-ranks rkp(N ) with p2 | (k − µ) are precisely those that are not determined by the
parameters of the design, see [9].
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4.4. Taylor graphs

A distance-regular graph with intersection array {k, µ, 1; 1, µ, k} is called a Taylor graph.
For a Taylor graph the number of vertices at distance 2 and 3 from a point is k and 1
respectively, so � is an antipodal double cover of Kk+1 and has spectrum k1, −1k, λ

m2
2 , λ

m3
3 ,

with λ2 + λ3 = k − 1 − 2µ, λ2λ3 = −k, m2 = −λ3
λ2−λ3

(k + 1), and m3 = λ2
λ2−λ3

(k + 1).
Let A be the adjacency matrix of a graph � with this spectrum, then the following p-ranks

are not necessarily determined by the spectrum:

rkp(A + I ) for p | 2µ

rkp

(
A − 1

2
(k − 1 − 2µ)I

)
for odd p with p2 | (k − 1 − 2µ)2 + 4k.

If � is distance-regular and p | µ, then by Lemma 2.2 (x + 1)(x − k) is the minimal
polynomial of A modulo p, so if p | µ but p� | k + 1, the geometric multiplicities of the
eigenvalues −1 and k are equal to their algebraic multiplicities.

Suppose that � is a Taylor graph, let x be a vertex of � and let Bx be the adjacency matrix
of �(x), the complement of the subgraph of � induced by the neighbors of x . The graph
�(x) is strongly regular with parameters (k, µ, 1

2 (−k − 1 + 3µ), 1
2µ) (so µ is even and k

is odd) and has eigenvalues µ and r, s = − 1
4 (k + 1 − 2µ) ± 1

4

√
(k − 1 − 2µ)2 + 4k. Let

B ′
x :=

(
0 0

0T Bx

)
,

then

A =
(

J − I − B ′
x B ′

x

B ′
x J − I − B ′

x

)

and it follows that the p-ranks of the Taylor graphs that are not yet determined by the
spectrum, can be expressed in terms of the p-ranks of �(x):

Theorem 4.3 Let A and Bx be as before, then for any prime p

rkp(A + I ) = 2 + rkp(Bx ).

If p is an odd prime for which p2 | (k − 1 − 2µ)2 + 4k and p does not divide µ, then

rkp

(
A − 1

2
(k − 1 − 2µ)I

)
= k + ε + rkp

(
Bx + 1

4
(k + 1 − 2µ)I

)

where ε = 0 if p | k and ε = 1 otherwise.
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Note that rkp(Bx ) is not necessarily determined by its spectrum if p divides both 1
2µ and

1
2 (k + 1), since (x − r)(x − s) ≡ x2 (mod p) in these cases. For an odd prime p with
p2 | (k − 1 − 2µ)2 + 4k the rank rkp(Bx + 1

4 (k + 1 − 2µ)I )) is in general not determined
by the spectrum of Bx .

Proof: The first identity follows straightforwardly from the fact that 1 �∈ 〈B ′
x 〉p. Now

suppose we are in the second case, so p is odd, p2 divides (k − 1 − 2µ)2 + 4k and p does
not divide µ. Then

A − 1

2
(k − 1 − 2µ)I

∼p

(
2J − 2B ′

x − (k + 1 − 2µ)I 2B ′
x

2B ′
x 2J − 2B ′

x − (k + 1 − 2µ)I

)

∼p

(
2J − (k + 1 − 2µ)I 2B ′

x

2J − (k + 1 − 2µ)I 2J − 2B ′
x − (k + 1 − 2µ)I

)

∼p

(
2J − (k + 1 − 2µ)I 2B ′

x

O 2J − 4B ′
x − (k + 1 − 2µ)I

)

∼p

(
2J − (k + 1 − 2µ)I O

O 2J − 4B ′
x − (k + 1 − 2µ)I

)
.

So

rkp

(
A − 1

2
(k − 1 − 2µ)I

)
= rkp(2J − (k + 1 − 2µ)I )

+ rkp(2J − 4B ′
x − (k + 1 − 2µ)I ).

Since p does not divide (k + 1 − 2µ) (this would imply that p divides µ, a contradiction)
rkp(2J − (k + 1 − 2µ)I ) is equal to either k + 1 or k. We are in the second case if and only
if p | (k + 1 + 2µ), which is the case if and only if p | k.

In order to prove that

rkp(2J − 4B ′
x − (k + 1 − 2µ)I ) = rkp

(
Bx + 1

4
(k + 1 − 2µ)I

)

we consider the cases p | k and p � | k separately. If p � | k then also p � | (k − 1 − 2µ) and it is
straightforward to show that (−(k − 1 − 2µ) | 21) ∈ 〈(21T | 2J − 4Bx − (k + 1 − 2µ)I )〉p

and 1 ∈ 〈4Bx + (k + 1 − 2µ)I 〉p and the result follows.
If p | k then also p | (1 + 2µ). One can show that 1 ∈ 〈Bx + 1

4 (k + 1 − 2µ)I 〉p and
1 ∈ 〈Bx + 1

4 (k + 1 − 2µ)I − 1
2 J 〉p (which finishes the proof) by considering a partition of

Bx induced by a partition of �(x) consisting of three parts: a vertex, the neighbors of that
vertex and the vertices at distance two. For both matrices we add up the rows in each of the
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three parts which gives three vectors for each matrix. When calculating modulo p, the all-1
vector is clearly contained in the span of these three vectors in both cases. ✷

Example 4.2 The Johnson graph J (6, 3) is the unique distance-regular graph on 20 ver-
tices with intersection array {9, 4, 1; 1, 4, 9}. So J (6, 3) is a Taylor graph and has spectrum
91, 35, −19, −35. The relevant p-ranks are rk2(A + I ) and rk3(A). The neighbor graph of
any vertex of J (6, 3) is the Paley graph P(9) which is self-complementary. So for J (6, 3)

we have rk2(A + I ) = 2 + 4 = 6 and rk3(A) = 9 + 0 + 4 = 13. According to Haemers
and Spence [8] there are nine graphs with the same spectrum as J (6, 3) with the following
ranks:

|Aut(�)| rk2(A + I ) rk3(A)

1 1440 6 – 13 0 J (6, 3)

2 96 8 – 13 0

3 32 8 – 13 0

4 16 10 – 13 0

5 48 10 – 13 0

6 12 10 – 13 0

7 5 9 1 14 0

8 2 10 – 14 0

9 4 10 – 14 0
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