The Parameters of Bipartite Q-polynomial Distance-Regular Graphs

JOHN S. CAUGHMAN, IV
caughman@mth.pdx.edu

Department of Mathematical Sciences, Portland State University, P.O. Box 751, Portland, OR 97207-0751, USA
Received September 28, 1999; Revised November 26, 2001; Accepted December 6, 2001

Abstract

Let Γ denote a bipartite distance-regular graph with diameter $D \geq 3$ and valency $k \geq 3$. Suppose $\theta_{0}, \theta_{1}, \ldots, \theta_{D}$ is a Q-polynomial ordering of the eigenvalues of Γ. This sequence is known to satisfy the recurrence $\theta_{i-1}-\beta \theta_{i}+\theta_{i+1}=0(0<i<D)$, for some real scalar β. Let q denote a complex scalar such that $q+q^{-1}=\beta$. Bannai and Ito have conjectured that q is real if the diameter D is sufficiently large.

We settle this conjecture in the bipartite case by showing that q is real if the diameter $D \geq 4$. Moreover, if $D=3$, then q is not real if and only if θ_{1} is the second largest eigenvalue and the pair (μ, k) is one of the following: $(1,3),(1,4),(1,5),(1,6),(2,4)$, or $(2,5)$. We observe that each of these pairs has a unique realization by a known bipartite distance-regular graph of diameter 3 .

Keywords: distance-regular graph, bipartite, association scheme, P-polynomial, Q-polynomial

1. Introduction

Let Γ denote a bipartite distance-regular graph with diameter $D \geq 3$ and valency $k \geq 3$ (definitions appear in Sections 2 and 3 below). Suppose $\theta_{0}, \theta_{1}, \ldots, \theta_{D}$ is a Q-polynomial ordering of the eigenvalues of Γ. By [3, p. 241], this eigenvalue sequence satisfies

$$
\begin{equation*}
\theta_{i-1}-\beta \theta_{i}+\theta_{i+1}=0 \quad(1 \leq i \leq D-1), \tag{1}
\end{equation*}
$$

for some real scalar β. Let q denote a complex scalar such that $q+q^{-1}=\beta$. In [1, p. 381] Bannai and Ito conjectured that q is real if the diameter D is sufficiently large.

We settle this conjecture in the bipartite case by showing q is real if $D \geq 4$. Moreover, for the case $D=3$, we describe the conditions under which q fails to be real. Precise statements of these theorems are given below. In future work, we intend to use these results to classify the bipartite Q-polynomial distance-regular graphs.

In stating and proving the present results, it will be convenient to work with the scalar β rather than with q itself. To interpret our results for q, we need only make the following observation.

Lemma 1.1 Let β be any real number and let q denote a complex scalar such that $q+q^{-1}=\beta$. Then the following hold.
(i) Suppose $\beta \leq-2$. Then q is a negative real number.
(ii) Suppose $\beta \geq 2$. Then q is a positive real number.
(iii) Suppose $-2<\beta<2$. Then q is a complex (non real) number with norm $|q|=1$.

Proof: Observe q is a root of the polynomial $x^{2}-\beta x+1$.
We now state our main results, beginning with the case $D \geq 4$.
Theorem 1.2 Let Γ denote a bipartite distance-regular graph with diameter $D \geq 4$ and valency $k \geq 3$. Suppose $\theta_{0}, \theta_{1}, \ldots, \theta_{D}$ is a Q-polynomial ordering of the eigenvalues of Γ, and let β be as in (1). Then the following hold.
(i) Suppose $\theta_{1}<-1$. Then $\beta \leq-2$.
(ii) Suppose $\theta_{1}>-1$. Then $\beta \geq 2$.

We remark that $\theta_{1} \neq-1$ (cf. Lemma 3.2(i)).
We point out that the conditions on θ_{1} in Theorem 1.2(i) and (ii) are in fact sufficient to determine the full ordering of the eigenvalues. For more information on the possible Q-polynomial orderings for a bipartite distance-regular graph, we refer the reader to [4].

Before stating the result for $D=3$ we mention a few basic facts. Let Γ denote any bipartite distance-regular graph with diameter $D=3$, and let λ denote the positive square root of the intersection number b_{2}. Then $k, \lambda,-\lambda$, and $-k$ are the distinct eigenvalues of Γ, and the sequence

$$
\begin{equation*}
k, \lambda,-\lambda,-k \tag{2}
\end{equation*}
$$

is a Q-polynomial ordering [3, p. 432]. If $b_{2}=1$ then Γ has no further Q-polynomial orderings, but if $b_{2}>1$ then Γ has a second Q-polynomial ordering:

$$
\begin{equation*}
k,-\lambda, \lambda,-k . \tag{3}
\end{equation*}
$$

Theorem 1.3 Let Γ denote a bipartite distance-regular graph with diameter $D=3$ and valency $k \geq 3$. Set $\mu:=c_{2}$. Then the following hold.
(i) For the ordering (2), we have $\beta \geq 1$. Furthermore, $\beta<2$ if and only if the pair (μ, k) is one of the following: $(1,3),(1,4),(1,5),(1,6),(2,4)$, or $(2,5)$.
(ii) Suppose $b_{2}>1$. For the ordering (3), we have $\beta \leq-2$.

Remark 1.4 Each of the pairs (μ, k) listed in Theorem 1.3(i) above has a unique realization by a bipartite distance-regular graph of diameter 3 . In particular, the pair $(1,3)$ is uniquely realized by the Heawood graph. For $4 \leq k \leq 6$, the pair $(1, k)$ is uniquely realized by the incidence graph of the (unique) projective plane of order $k-1$. The pair $(2,4)$ is uniquely realized by the distance 3 graph of the Heawood graph, and the pair $(2,5)$ is uniquely realized by the incidence graph of the (unique) $2-(11,5,2)$ design. For these facts and more about these graphs, we refer to the book of Brouwer et al. [3].

2. Distance-regular graphs and the Q-polynomial property

In this article we consider only graphs which are finite, connected, undirected, and without loops or multiple edges. Let $\Gamma=(X, R)$ denote a graph with vertex set X and edge set R. Let ∂ denote the path length distance function for Γ, and recall the diameter of Γ is the scalar
$D:=\max \{\partial(x, y) \mid x, y \in X\} . \Gamma$ is said to be distance-regular, with intersection numbers $b_{i}, c_{i}(0 \leq i \leq D)$, whenever for all integers $i(0 \leq i \leq D)$ and for all $x, y \in X$ with $\partial(x, y)=i$,

$$
\begin{aligned}
b_{i} & =|\{z \in X \mid \partial(x, z)=i+1, \partial(y, z)=1\}|, \\
c_{i} & =|\{z \in X \mid \partial(x, z)=i-1, \partial(y, z)=1\}| .
\end{aligned}
$$

Following convention, we abbreviate $\mu:=c_{2}$ and $k:=b_{0}$. We refer to k as the valency.
Let $\Gamma=(X, R)$ denote any distance-regular with diameter $D \geq 3$. By [3, Proposition 4.1.6], the intersection numbers must satisfy

$$
\begin{equation*}
c_{i} \leq b_{j} \text { whenever } i+j \leq D \tag{4}
\end{equation*}
$$

We now recall the adjacency algebra of Γ. Let \mathbb{R} denote the field of real numbers, and let $\operatorname{Mat}_{X}(\mathbb{R})$ denote the algebra of matrices over \mathbb{R} with rows and columns indexed by X. For $0 \leq i \leq D$, let A_{i} denote the matrix in $\operatorname{Mat}_{X}(\mathbb{R})$ with x, y entry

$$
\left(A_{i}\right)_{x y}=\left\{\begin{array}{ll}
1 & \text { if } \partial(x, y)=i, \tag{5}\\
0 & \text { if } \partial(x, y) \neq i
\end{array} \quad(x, y \in X)\right.
$$

We abbreviate $A=A_{1}$; this is the adjacency matrix for Γ. Let \mathcal{A} denote the subalgebra of $\operatorname{Mat}_{X}(\mathbb{R})$ generated by A. \mathcal{A} is known as the adjacency algebra of Γ. It is well known that A_{0}, \ldots, A_{D} is a basis for \mathcal{A} [2, p. 160]. Also, \mathcal{A} is semisimple; in particular, \mathcal{A} has a basis E_{0}, \ldots, E_{D} consisting of mutually orthogonal primitive idempotents [3, p. 132]. We refer to E_{0}, \ldots, E_{D} as the primitive idempotents of Γ. Observe that for each $i(0 \leq i \leq D)$, there exists a real scalar θ_{i} such that $A E_{i}=\theta_{i} E_{i}$. We refer to $\theta_{0}, \ldots, \theta_{D}$ as the eigenvalues of Γ. Note that $\theta_{0}, \ldots, \theta_{D}$ are distinct, since A generates \mathcal{A}.

We next recall the Q-polynomial property. Let Γ denote any distance-regular graph with diameter $D \geq 3$, and let \mathcal{A} denote the adjacency algebra for Γ. Since \mathcal{A} has a basis A_{0}, \ldots, A_{D} of $0-1$ matrices, we see \mathcal{A} is closed under entry-wise matrix multiplication. Let $\theta_{0}, \ldots, \theta_{D}$ denote an ordering of the eigenvalues of Γ. This ordering is said to be Q polynomial whenever for each integer $i(0 \leq i \leq D)$, the primitive idempotent E_{i} is a polynomial of degree exactly i in E_{1}, in the \mathbb{R}-algebra (\mathcal{A}, \circ), where \circ denotes entry-wise multiplication.

Fix any eigenvalue θ of Γ, and let E denote the associated primitive idempotent. Write $E=|X|^{-1} \sum_{i=0}^{D} \theta_{i}^{*} A_{i}$ for some scalars $\theta_{i}^{*}(0 \leq i \leq D)$. We refer to $\theta_{0}^{*}, \theta_{1}^{*}, \ldots, \theta_{D}^{*}$ as the dual eigenvalue sequence associated with θ. Note θ_{0}^{*} equals the rank of E, and is therefore nonzero [1, p. 62]. If $\theta_{0}, \ldots, \theta_{D}$ is a Q-polynomial ordering of the eigenvalues of Γ, then $\theta_{0}=k$ and the dual eigenvalues associated with θ_{1} are distinct [1, pp. 193, 197].

Lemma 2.1 ([3, p. 237]) Let Γ denote any distance-regular graph with diameter $D \geq 3$. Suppose $\theta_{0}, \theta_{1}, \ldots, \theta_{D}$ is a Q-polynomial ordering of the eigenvalues of Γ, and let $\theta_{0}^{*}, \theta_{1}^{*}, \ldots, \theta_{D}^{*}$ denote the dual eigenvalue sequence associated with θ_{1}. Then there exists a unique $\beta \in \mathbb{R}$ such that
(i) $\theta_{i-1}-\beta \theta_{i}+\theta_{i+1}$ is independent of $i(1 \leq i \leq D-1)$, and
(ii) $\theta_{i-1}^{*}-\beta \theta_{i}^{*}+\theta_{i+1}^{*}$ is independent of $i(1 \leq i \leq D-1)$.

3. Bipartite distance-regular graphs

Recall that a graph $\Gamma=(X, R)$ is bipartite whenever there exists a partition of the vertices $X=X^{+} \cup X^{-}$such that X^{+}and X^{-}contain no edges. Let Γ denote a distance-regular graph with diameter $D \geq 3$, and valency $k \geq 3$. Assume Γ is bipartite. Then it is easily shown that

$$
\begin{equation*}
c_{i}+b_{i}=k \quad(0 \leq i \leq D) \tag{6}
\end{equation*}
$$

Since $b_{D}=0$, it follows that $c_{D}=k$. By [8, p. 399], the valency k is the largest eigenvalue of Γ, and $-k$ is the minimal eigenvalue. We refer to k and $-k$ as the trivial eigenvalues.

Let θ denote any nontrivial eigenvalue for Γ and set $\mu:=c_{2}$. In [5, Theorem 18], Curtin gives the following bound:

$$
\begin{equation*}
\theta^{2}(\mu-1) \leq(k-\mu)(k-2) \tag{7}
\end{equation*}
$$

Furthermore, by [5, Lemma 4], the dual eigenvalue sequence associated with θ satisfies

$$
\begin{equation*}
c_{i} \times \theta_{i-1}^{*}+b_{i} \theta_{i+1}^{*}=\theta \theta_{i}^{*} \quad(0 \leq i \leq D) \tag{8}
\end{equation*}
$$

where $\theta_{-1}^{*}, \theta_{D+1}^{*}$ are indeterminates. When Γ is Q-polynomial, we have the following.
Lemma 3.1 Let Γ denote a bipartite distance-regular graph with diameter $D \geq 3$. Suppose $\theta_{0}, \theta_{1}, \ldots, \theta_{D}$ is a Q-polynomial ordering of the eigenvalues of Γ. Let β be as in Lemma 2.1. Then the following hold.
(i) $[3, p .241]$

$$
\begin{equation*}
\theta_{i-1}-\beta \theta_{i}+\theta_{i+1}=0 \quad(1 \leq i \leq D-1) \tag{9}
\end{equation*}
$$

(ii) $[4$, Theorem 9.6]

$$
\begin{equation*}
\theta_{i}=-\theta_{D-i} \quad(0 \leq i \leq D) \tag{10}
\end{equation*}
$$

Lemma 3.2 Let Γ denote a bipartite distance-regular graph with diameter $D \geq 3$. Suppose $\theta_{0}, \theta_{1}, \ldots, \theta_{D}$ is a Q-polynomial ordering of the eigenvalues of Γ. Let β be as in Lemma 2.1. Then the following hold.
(i) $\theta_{1} \neq-1$, and

$$
\begin{equation*}
\beta=\frac{\theta_{1}^{2}+\mu \theta_{1}+(k-\mu)(k-2)}{(k-\mu)\left(\theta_{1}+1\right)} \tag{11}
\end{equation*}
$$

(ii) $\theta_{1}^{3}\left(b_{2}-b_{3}\right)+\theta_{1}^{2}\left(b_{2}-\mu b_{3}\right)+\theta_{1} b_{2}\left(2 b_{3}-\mu b_{3}-b_{2}\right)+b_{2}^{2}\left(b_{3}-1\right)=0$.

Proof: (i) If $\theta_{1}=-1$ then $\theta_{1}^{*}=\theta_{2}^{*}$ by (8), contradicting the fact that the dual eigenvalues are distinct. Observe that by Lemma 2.1,

$$
\begin{equation*}
\theta_{0}^{*}-\beta \theta_{1}^{*}+\theta_{2}^{*}=\theta_{1}^{*}-\beta \theta_{2}^{*}+\theta_{3}^{*} \tag{13}
\end{equation*}
$$

Divide both sides of (13) by θ_{0}^{*} and eliminate the dual eigenvalues using (8) and simplify to obtain (11).
(ii) First suppose $D=3$. Then $b_{3}=0$, so the left side of (12) becomes $b_{2}\left(\theta_{1}+1\right)\left(\theta_{1}^{2}-b_{2}\right)$, which is 0 since $\theta_{1}^{2}=b_{2}$ (cf., [3, p. 432]). Now assume $D \geq 4$. By Lemma 2.1,

$$
\begin{equation*}
\theta_{0}^{*}-\beta \theta_{1}^{*}+\theta_{2}^{*}=\theta_{2}^{*}-\beta \theta_{3}^{*}+\theta_{4}^{*} \tag{14}
\end{equation*}
$$

Divide both sides of (13) by θ_{0}^{*} and eliminate the dual eigenvalues using (8). Eliminate β using (11). Then simplify, noting that $\left(\theta_{1}^{2}-k^{2}\right)$ is a factor, to obtain Eq. (12).

Lemma 3.3 With the notation and assumptions of Theorem 1.2, the following hold.
(i) [6, Theorem 8.1.3] Suppose $D \geq 5$. Then $\theta_{0}, \theta_{1}, \ldots, \theta_{D}$ are integers.
(ii) Suppose $D=4$. If $\theta_{0}, \theta_{1}, \ldots, \theta_{D}$ are not all integers, then $b_{3}=1$ and

$$
\begin{equation*}
\beta^{2}=\theta_{1}^{2}=k=2 \mu \tag{15}
\end{equation*}
$$

Proof: (ii) Recall that $\theta_{0}=k$. By Lemma 3.1(ii), $\theta_{4}=-k$ and $\theta_{2}=0$. The remaining eigenvalues can be computed directly from the intersection matrix (cf. [2, p. 165]) to obtain

$$
\begin{equation*}
\left\{\theta_{1}, \theta_{3}\right\}=\left\{ \pm \sqrt{c_{2}\left(b_{3}-1\right)+k}\right\} \tag{16}
\end{equation*}
$$

First suppose $b_{3} \neq 1$. Then (12) and (16) imply that θ_{1} is rational, so (16) forces θ_{1} and θ_{3} to be integers, as desired. Now suppose $b_{3}=1$. Then (16) implies $\theta_{1}^{2}=k$. But $\beta=k / \theta_{1}$ by (9) at $i=1$. Substituting these values into (11), we find that $k=2 \mu$, as desired.

4. Proofs of the main results

Proof of Theorem 1.2(i): Let $\theta:=\theta_{1}$. By assumption, $\theta<-1$. So by (11),

$$
\begin{equation*}
\beta+2=\frac{(\theta+k)(\theta+k-\mu)}{(k-\mu)(\theta+1)} \tag{17}
\end{equation*}
$$

We distinguish two cases.
Case $\mu \geq 2$. Consider the expression on the right side of (17). Observe $\theta+k$ is positive, and by assumption, $\theta+1$ is negative. Also, $k-\mu=b_{2}$ is positive. Finally, since $\mu \geq 2$, line (7) implies that $\theta+k-\mu$ is nonnegative. It now follows by (17) that $\beta \leq-2$ as desired. Case $\mu=1$. Again consider the expression on the right side of (17). Since $\mu=1$ and $k>2, \theta$ is an integer by Lemma 3.3, and the numerator of (17) is nonnegative. Also, $k-\mu=b_{2}$ is positive, and by assumption, $\theta+1$ is negative. It now follows by (17) that $\beta \leq-2$ as desired.

Proof of Theorem 1.2(ii): Let $\theta:=\theta_{1}$. By assumption, $\theta>-1$. So by (11),

$$
\begin{equation*}
\beta-2=\frac{(2 \theta-2 k+3 \mu)^{2}+8(k-\mu)(\mu-2)-\mu^{2}}{4(k-\mu)(\theta+1)} \tag{18}
\end{equation*}
$$

We distinguish three cases.
Case $\mu \geq 3$. By (4), $k-\mu=b_{2} \geq \mu$. Therefore, since $\mu \geq 3$,

$$
\begin{equation*}
8(k-\mu)(\mu-2)-\mu^{2} \geq 0 \tag{19}
\end{equation*}
$$

and the numerator in (18) is nonnegative. By our assumptions, the denominator is positive, so it follows that $\beta \geq 2$ as desired.
Case $\mu=2$. By way of contradiction, suppose $\beta<2$. Then by (11), $k-4<\theta<k-2$. Since $\mu=2$, Lemma 3.3 implies θ is an integer, so $\theta=k-3$. So by (9) with $i=1$, and (11) with $\mu=2$ and $\theta=k-3$,

$$
\begin{equation*}
\theta_{2}=k-6-(k-2)^{-1}+(k-2)^{-2} . \tag{20}
\end{equation*}
$$

It follows that $(k-2)^{-1}=1+(k-2)\left(\theta_{2}-k+6\right)$, which is an integer, so $k=3$. Now (20) implies $\theta_{2}=-k=\theta_{D}$, forcing $D=2$, a contradiction.
Case $\mu=1$. By (11), with $\mu=1$,

$$
\begin{equation*}
\beta-2=\frac{\theta^{2}+(3-2 k) \theta+(k-4)(k-1)}{(k-1)(\theta+1)} . \tag{21}
\end{equation*}
$$

The denominator in (21) is positive, so $\beta>2$ whenever the numerator is positive. Now we consider (12). Setting $b_{2}=k-\mu, b_{3}=k-c_{3}$, and $\mu=1$, line (12) becomes

$$
\begin{equation*}
\theta^{3}\left(c_{3}-1\right)+\theta^{2}\left(c_{3}-1\right)-\theta(k-1)\left(c_{3}-1\right)+(k-1)^{2}\left(k-c_{3}-1\right)=0 . \tag{22}
\end{equation*}
$$

Line (22) implies $c_{3} \neq 1$, since $k \geq 3$. Also $k>c_{3}$ since $D \geq 4$, so (22) implies

$$
\begin{equation*}
(k-1)^{2}+(k-1) \theta-\theta^{2}-\theta^{3}=\frac{(k-2)(k-1)^{2}}{c_{3}-1} \geq(k-1)^{2} \tag{23}
\end{equation*}
$$

Since the θ_{i} are distinct, Lemma 3.1(ii) implies $\theta_{1} \neq 0$. So by Lemma 3.3 and our assumptions, θ is a positive integer. Now (23) implies $\theta<\sqrt{k}$. When $k \geq 11$,

$$
\begin{equation*}
\frac{(k-4)(k-1)}{2 k-3}>\sqrt{k}>\theta \tag{24}
\end{equation*}
$$

Line (24) implies the numerator in (21) is positive, so $\beta>2$ as desired. It remains to consider the case $k \leq 10$. Recall θ is a positive integer. The only pairs of integers θ, k with $1 \leq \theta<k \leq 10$ for which $c_{3}-1$ as given in (22) is a positive integer less than $k-1$ are the pairs $(\theta, k)=(2,7)$ and $(\theta, k)=(1,3)$. If $(\theta, k)=(2,7)$, then $\beta=2$ by (11). And if
$(\theta, k)=(1,3)$, then (21) implies $\beta=1$. But (9) implies $\theta_{3}=-k=\theta_{D}$, forcing $D=3$, a contradiction.

Proof of Theorem 1.3(i): By (9), (10) at $i=1$, we find $\beta=k \lambda^{-1}-1$. Since $k \geq 3$ and $\lambda=\sqrt{k-\mu}$, it follows that $\beta \geq 1$. Moreover, when $k \geq 8, \beta$ is apparently greater than 2 . It is readily verified that the only pairs of integers (μ, k) which satisfy $1 \leq \mu<k \leq 7$ and for which $\beta<2$ are $(1,3),(1,4),(1,5),(1,6),(1,7),(2,4)$, and $(2,5)$. As noted in [3, p. 432], the existence of a graph with array $(1,7)$ is equivalent to the existence of a 2-(43, 7, 1) design, which is impossible by the Bruck-Ryser-Chowla Theorem [7, p. 391]. This completes the proof.

Proof of Theorem 1.3(ii): \quad By (9), (10) at $i=1$, we find $\beta=-k \lambda^{-1}-1$, which is clearly less than -2 .

References

1. E. Bannai and T. Ito, Algebraic Combinatorics I: Association Schemes, Benjamin/Cummings, London, 1984.
2. N. Biggs, Algebraic Graph Theory, Cambridge University Press, Cambridge, 1974.
3. A.E. Brouwer, A.M. Cohen, and A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, 1989.
4. J.S. Caughman, IV, "Spectra of bipartite P - and Q-polynomial association schemes," Graphs Combin. 14 (1998), 321-343.
5. B. Curtin, "2-homogeneous bipartite distance-regular graphs," Discrete Math. 187 (1998), 39-70.
6. G. Dickie, "Q-polynomial structures for association schemes and distance-regular graphs," Ph.D. Thesis, University of Wisconsin, 1995.
7. F.S. Roberts, Applied Combinatorics, Prentice-Hall, New Jersey, 1984.
8. J.H. van Lint and R.M. Wilson, A Course in Combinatorics, Cambridge University Press, Cambridge, 1992.
