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Abstract. Let � denote a bipartite distance-regular graph with diameter D ≥ 3 and valency k ≥ 3. Suppose
θ0, θ1, . . . , θD is a Q-polynomial ordering of the eigenvalues of �. This sequence is known to satisfy the recurrence
θi−1 − βθi + θi+1 = 0 (0 < i < D), for some real scalar β. Let q denote a complex scalar such that q + q−1 = β.
Bannai and Ito have conjectured that q is real if the diameter D is sufficiently large.

We settle this conjecture in the bipartite case by showing that q is real if the diameter D ≥ 4. Moreover, if D = 3,
then q is not real if and only if θ1 is the second largest eigenvalue and the pair (µ, k) is one of the following:
(1, 3), (1, 4), (1, 5), (1, 6), (2, 4), or (2, 5). We observe that each of these pairs has a unique realization by a known
bipartite distance-regular graph of diameter 3.
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1. Introduction

Let � denote a bipartite distance-regular graph with diameter D ≥ 3 and valency k ≥ 3
(definitions appear in Sections 2 and 3 below). Suppose θ0, θ1, . . . , θD is a Q-polynomial
ordering of the eigenvalues of �. By [3, p. 241], this eigenvalue sequence satisfies

θi−1 − βθi + θi+1 = 0 (1 ≤ i ≤ D − 1), (1)

for some real scalar β. Let q denote a complex scalar such that q + q−1 = β. In [1, p. 381]
Bannai and Ito conjectured that q is real if the diameter D is sufficiently large.

We settle this conjecture in the bipartite case by showing q is real if D ≥ 4. Moreover, for
the case D = 3, we describe the conditions under which q fails to be real. Precise statements
of these theorems are given below. In future work, we intend to use these results to classify
the bipartite Q-polynomial distance-regular graphs.

In stating and proving the present results, it will be convenient to work with the scalar
β rather than with q itself. To interpret our results for q, we need only make the following
observation.

Lemma 1.1 Let β be any real number and let q denote a complex scalar such that
q + q−1 = β. Then the following hold.

(i) Suppose β ≤ −2. Then q is a negative real number.
(ii) Suppose β ≥ 2. Then q is a positive real number.

(iii) Suppose −2 < β < 2. Then q is a complex (non real) number with norm |q| = 1.
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Proof: Observe q is a root of the polynomial x2 − βx + 1.

We now state our main results, beginning with the case D ≥ 4.

Theorem 1.2 Let � denote a bipartite distance-regular graph with diameter D ≥ 4 and
valency k ≥ 3. Suppose θ0, θ1, . . . , θD is a Q-polynomial ordering of the eigenvalues of �,

and let β be as in (1). Then the following hold.
(i) Suppose θ1 < −1. Then β ≤ −2.

(ii) Suppose θ1 > −1. Then β ≥ 2.
We remark that θ1 �= −1 (cf. Lemma 3.2(i)).

We point out that the conditions on θ1 in Theorem 1.2(i) and (ii) are in fact sufficient
to determine the full ordering of the eigenvalues. For more information on the possible
Q-polynomial orderings for a bipartite distance-regular graph, we refer the reader to [4].

Before stating the result for D = 3 we mention a few basic facts. Let � denote any bipartite
distance-regular graph with diameter D = 3, and let λ denote the positive square root of the
intersection number b2. Then k, λ, −λ, and −k are the distinct eigenvalues of �, and the
sequence

k, λ, −λ, −k (2)

is a Q-polynomial ordering [3, p. 432]. If b2 = 1 then � has no further Q-polynomial
orderings, but if b2 > 1 then � has a second Q-polynomial ordering:

k, −λ, λ, −k. (3)

Theorem 1.3 Let � denote a bipartite distance-regular graph with diameter D = 3 and
valency k ≥ 3. Set µ := c2. Then the following hold.
(i) For the ordering (2), we have β ≥ 1. Furthermore, β < 2 if and only if the pair (µ, k)

is one of the following: (1, 3), (1, 4), (1, 5), (1, 6), (2, 4), or (2, 5).
(ii) Suppose b2 > 1. For the ordering (3), we have β ≤ −2.

Remark 1.4 Each of the pairs (µ, k) listed in Theorem 1.3(i) above has a unique realization
by a bipartite distance-regular graph of diameter 3. In particular, the pair (1, 3) is uniquely
realized by the Heawood graph. For 4 ≤ k ≤ 6, the pair (1, k) is uniquely realized by the
incidence graph of the (unique) projective plane of order k − 1. The pair (2, 4) is uniquely
realized by the distance 3 graph of the Heawood graph, and the pair (2, 5) is uniquely
realized by the incidence graph of the (unique) 2-(11, 5, 2) design. For these facts and more
about these graphs, we refer to the book of Brouwer et al. [3].

2. Distance-regular graphs and the Q-polynomial property

In this article we consider only graphs which are finite, connected, undirected, and without
loops or multiple edges. Let � = (X, R) denote a graph with vertex set X and edge set R.
Let ∂ denote the path length distance function for �, and recall the diameter of � is the scalar
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D := max{∂(x, y) | x, y ∈ X}. � is said to be distance-regular, with intersection numbers
bi , ci (0 ≤ i ≤ D), whenever for all integers i(0 ≤ i ≤ D) and for all x, y ∈ X with ∂(x, y) = i ,

bi = |{z ∈ X | ∂(x, z) = i + 1, ∂(y, z) = 1}|,
ci = |{z ∈ X | ∂(x, z) = i − 1, ∂(y, z) = 1}|.

Following convention, we abbreviate µ := c2 and k := b0. We refer to k as the valency.
Let � = (X, R) denote any distance-regular with diameter D ≥ 3. By [3, Proposition

4.1.6], the intersection numbers must satisfy

ci ≤ b j whenever i + j ≤ D. (4)

We now recall the adjacency algebra of �. Let R denote the field of real numbers, and let
MatX (R) denote the algebra of matrices over R with rows and columns indexed by X . For
0 ≤ i ≤ D, let Ai denote the matrix in MatX (R) with x, y entry

(Ai )xy =
{

1 if ∂(x, y) = i,

0 if ∂(x, y) �= i
(x, y ∈ X ). (5)

We abbreviate A = A1; this is the adjacency matrix for �. Let A denote the subalgebra of
MatX (R) generated by A. A is known as the adjacency algebra of �. It is well known that
A0, . . . , AD is a basis for A [2, p. 160]. Also, A is semisimple; in particular, A has a basis
E0, . . . , ED consisting of mutually orthogonal primitive idempotents [3, p. 132]. We refer
to E0, . . . , ED as the primitive idempotents of �. Observe that for each i (0 ≤ i ≤ D), there
exists a real scalar θi such that AEi = θi Ei . We refer to θ0, . . . , θD as the eigenvalues of �.
Note that θ0, . . . , θD are distinct, since A generates A.

We next recall the Q-polynomial property. Let � denote any distance-regular graph
with diameter D ≥ 3, and let A denote the adjacency algebra for �. Since A has a basis
A0, . . . , AD of 0–1 matrices, we see A is closed under entry-wise matrix multiplication.
Let θ0, . . . , θD denote an ordering of the eigenvalues of �. This ordering is said to be Q-
polynomial whenever for each integer i (0 ≤ i ≤ D), the primitive idempotent Ei is a
polynomial of degree exactly i in E1, in the R-algebra (A, ◦), where ◦ denotes entry-wise
multiplication.

Fix any eigenvalue θ of �, and let E denote the associated primitive idempotent. Write
E = |X |−1 ∑D

i=0 θ∗
i Ai for some scalars θ∗

i (0 ≤ i ≤ D). We refer to θ∗
0 , θ∗

1 , . . . , θ∗
D as the

dual eigenvalue sequence associated with θ . Note θ∗
0 equals the rank of E , and is therefore

nonzero [1, p. 62]. If θ0, . . . , θD is a Q-polynomial ordering of the eigenvalues of �, then
θ0 = k and the dual eigenvalues associated with θ1 are distinct [1, pp. 193, 197].

Lemma 2.1 ([3, p. 237]) Let � denote any distance-regular graph with diameter D ≥ 3.
Suppose θ0, θ1, . . . , θD is a Q-polynomial ordering of the eigenvalues of �, and let
θ∗

0 , θ∗
1 , . . . , θ∗

D denote the dual eigenvalue sequence associated with θ1. Then there exists a
unique β ∈ R such that
(i) θi−1 − βθi + θi+1 is independent of i (1 ≤ i ≤ D − 1), and

(ii) θ∗
i−1 − βθ∗

i + θ∗
i+1 is independent of i (1 ≤ i ≤ D − 1).
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3. Bipartite distance-regular graphs

Recall that a graph � = (X, R) is bipartite whenever there exists a partition of the vertices
X = X+ ∪ X− such that X+ and X− contain no edges. Let � denote a distance-regular
graph with diameter D ≥ 3, and valency k ≥ 3. Assume � is bipartite. Then it is easily
shown that

ci + bi = k (0 ≤ i ≤ D). (6)

Since bD = 0, it follows that cD = k. By [8, p. 399], the valency k is the largest eigenvalue
of �, and −k is the minimal eigenvalue. We refer to k and −k as the trivial eigenvalues.

Let θ denote any nontrivial eigenvalue for � and set µ := c2. In [5, Theorem 18], Curtin
gives the following bound:

θ2(µ − 1) ≤ (k − µ)(k − 2). (7)

Furthermore, by [5, Lemma 4], the dual eigenvalue sequence associated with θ satisfies

ci × θ∗
i−1 + biθ

∗
i+1 = θθ∗

i (0 ≤ i ≤ D), (8)

where θ∗
−1, θ

∗
D+1 are indeterminates. When � is Q-polynomial, we have the following.

Lemma 3.1 Let � denote a bipartite distance-regular graph with diameter D ≥ 3. Suppose
θ0, θ1, . . . , θD is a Q-polynomial ordering of the eigenvalues of �. Let β be as in Lemma 2.1.
Then the following hold.
(i) [3, p. 241]

θi−1 − βθi + θi+1 = 0 (1 ≤ i ≤ D − 1). (9)

(ii) [4, Theorem 9.6]

θi = −θD−i (0 ≤ i ≤ D). (10)

Lemma 3.2 Let � denote a bipartite distance-regular graph with diameter D ≥ 3. Sup-
pose θ0, θ1, . . . , θD is a Q-polynomial ordering of the eigenvalues of �. Let β be as in
Lemma 2.1. Then the following hold.
(i) θ1 �= −1, and

β = θ2
1 + µθ1 + (k − µ)(k − 2)

(k − µ)(θ1 + 1)
. (11)

(ii) θ3
1 (b2 − b3) + θ2

1 (b2 − µb3) + θ1b2(2b3 − µb3 − b2) + b2
2(b3 − 1) = 0. (12)
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Proof: (i) If θ1 = −1 then θ∗
1 = θ∗

2 by (8), contradicting the fact that the dual eigenvalues
are distinct. Observe that by Lemma 2.1,

θ∗
0 − βθ∗

1 + θ∗
2 = θ∗

1 − βθ∗
2 + θ∗

3 . (13)

Divide both sides of (13) by θ∗
0 and eliminate the dual eigenvalues using (8) and simplify

to obtain (11).
(ii) First suppose D = 3. Then b3 = 0, so the left side of (12) becomes b2(θ1 + 1)(θ2

1 − b2),
which is 0 since θ2

1 = b2 (cf., [3, p. 432]). Now assume D ≥ 4. By Lemma 2.1,

θ∗
0 − βθ∗

1 + θ∗
2 = θ∗

2 − βθ∗
3 + θ∗

4 . (14)

Divide both sides of (13) by θ∗
0 and eliminate the dual eigenvalues using (8). Eliminate β

using (11). Then simplify, noting that (θ2
1 − k2) is a factor, to obtain Eq. (12).

Lemma 3.3 With the notation and assumptions of Theorem 1.2, the following hold.
(i) [6, Theorem 8.1.3] Suppose D ≥ 5. Then θ0, θ1, . . . , θD are integers.

(ii) Suppose D = 4. If θ0, θ1, . . . , θD are not all integers, then b3 = 1 and

β2 = θ2
1 = k = 2µ. (15)

Proof: (ii) Recall that θ0 = k. By Lemma 3.1(ii), θ4 = −k and θ2 = 0. The remaining
eigenvalues can be computed directly from the intersection matrix (cf. [2, p. 165]) to obtain

{θ1, θ3} = {±
√

c2(b3 − 1) + k}. (16)

First suppose b3 �= 1. Then (12) and (16) imply that θ1 is rational, so (16) forces θ1 and θ3

to be integers, as desired. Now suppose b3 = 1. Then (16) implies θ2
1 = k. But β = k/θ1

by (9) at i = 1. Substituting these values into (11), we find that k = 2µ, as desired.

4. Proofs of the main results

Proof of Theorem 1.2(i): Let θ := θ1. By assumption, θ < −1. So by (11),

β + 2 = (θ + k)(θ + k − µ)

(k − µ)(θ + 1)
. (17)

We distinguish two cases.
Case µ ≥ 2. Consider the expression on the right side of (17). Observe θ + k is positive,
and by assumption, θ +1 is negative. Also, k −µ = b2 is positive. Finally, since µ ≥ 2, line
(7) implies that θ + k − µ is nonnegative. It now follows by (17) that β ≤ −2 as desired.
Case µ = 1. Again consider the expression on the right side of (17). Since µ = 1 and
k > 2, θ is an integer by Lemma 3.3, and the numerator of (17) is nonnegative. Also,
k − µ = b2 is positive, and by assumption, θ + 1 is negative. It now follows by (17) that
β ≤ −2 as desired.
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Proof of Theorem 1.2(ii): Let θ := θ1. By assumption, θ > −1. So by (11),

β − 2 = (2θ − 2k + 3µ)2 + 8(k − µ)(µ − 2) − µ2

4(k − µ)(θ + 1)
. (18)

We distinguish three cases.
Case µ ≥ 3. By (4), k − µ = b2 ≥ µ. Therefore, since µ ≥ 3,

8(k − µ)(µ − 2) − µ2 ≥ 0, (19)

and the numerator in (18) is nonnegative. By our assumptions, the denominator is positive,
so it follows that β ≥ 2 as desired.
Case µ = 2. By way of contradiction, suppose β < 2. Then by (11), k − 4 < θ < k − 2.
Since µ = 2, Lemma 3.3 implies θ is an integer, so θ = k − 3. So by (9) with i = 1, and
(11) with µ = 2 and θ = k − 3,

θ2 = k − 6 − (k − 2)−1 + (k − 2)−2. (20)

It follows that (k − 2)−1 = 1 + (k − 2)(θ2 − k + 6), which is an integer, so k = 3. Now (20)
implies θ2 = −k = θD , forcing D = 2, a contradiction.
Case µ = 1. By (11), with µ = 1,

β − 2 = θ2 + (3 − 2k)θ + (k − 4)(k − 1)

(k − 1)(θ + 1)
. (21)

The denominator in (21) is positive, so β > 2 whenever the numerator is positive. Now we
consider (12). Setting b2 = k − µ, b3 = k − c3, and µ = 1, line (12) becomes

θ3(c3 − 1) + θ2(c3 − 1) − θ (k − 1)(c3 − 1) + (k − 1)2(k − c3 − 1) = 0. (22)

Line (22) implies c3 �= 1, since k ≥ 3. Also k > c3 since D ≥ 4, so (22) implies

(k − 1)2 + (k − 1)θ − θ2 − θ3 = (k − 2)(k − 1)2

c3 − 1
≥ (k − 1)2. (23)

Since the θi are distinct, Lemma 3.1(ii) implies θ1 �= 0. So by Lemma 3.3 and our assump-
tions, θ is a positive integer. Now (23) implies θ <

√
k. When k ≥ 11,

(k − 4)(k − 1)

2k − 3
>

√
k > θ. (24)

Line (24) implies the numerator in (21) is positive, so β > 2 as desired. It remains to
consider the case k ≤ 10. Recall θ is a positive integer. The only pairs of integers θ, k with
1 ≤ θ < k ≤ 10 for which c3 − 1 as given in (22) is a positive integer less than k − 1 are
the pairs (θ, k) = (2, 7) and (θ, k) = (1, 3). If (θ, k) = (2, 7), then β = 2 by (11). And if
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(θ, k) = (1, 3), then (21) implies β = 1. But (9) implies θ3 = −k = θD , forcing D = 3, a
contradiction.

Proof of Theorem 1.3(i): By (9), (10) at i = 1, we find β = kλ−1 − 1. Since k ≥ 3 and
λ = √

k − µ, it follows that β ≥ 1. Moreover, when k ≥ 8, β is apparently greater than 2.
It is readily verified that the only pairs of integers (µ, k) which satisfy 1 ≤ µ < k ≤ 7 and
for which β < 2 are (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (2, 4), and (2, 5). As noted in [3,
p. 432], the existence of a graph with array (1, 7) is equivalent to the existence of a 2-(43,
7, 1) design, which is impossible by the Bruck-Ryser-Chowla Theorem [7, p. 391]. This
completes the proof.

Proof of Theorem 1.3(ii): By (9), (10) at i = 1, we find β = −kλ−1 −1, which is clearly
less than −2.
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