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Abstract. A t-cover of a quadric Q is a set C of t-dimensional subspaces contained in Q such that every point
of Q is contained in at least one element of C.

We consider (n − 1)-covers of the hyperbolic quadric Q+(2n + 1, q). We show that such a cover must have at
least qn+1 + 2q + 1 elements, give an example of this size for even q and describe what covers of this size should
look like.
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1. Introduction

Let Q be a quadric. A spread in Q is a set S of generators of Q such that each point of Q
is contained in exactly one element of S.

If Q = Q+(2n + 1, q) is the hyperbolic quadric in PG(2n + 1, q), then it is known that
Q+(4n + 1, q) does not have a spread, while Q+(4n + 3, q), q even, does have a spread.
The existence of a spread in Q+(4n + 3, q), q odd, is still open [8].

If no spreads exist, the natural question arises what are the sets of generators on Q being
closest to a spread. This leads more generally to the following definitions:

Definition 1.1

(a) A t-cover of a quadric Q is a set C of t-dimensional subspaces contained in Q such that
each point of Q is contained in at least one element of C. If t = 1, we speak also of a
line cover; if t = 2, we speak of a plane cover.
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(b) A partial t-spread is a set S of t-dimensional subspaces contained in Q such that each
point of Q is contained in at most one element of S.

In [4], the authors determined the 2-covers of the Klein quadric Q+(5, q) having minimum
size. A lower bound for the size of a 1-cover of the Klein quadric was given, as well as
examples reaching that bound. Similarly, large partial 1-spreads on the Klein quadric were
constructed.

In this article, we continue the study started in [4] by studying the smallest (n −1)-covers
of Q+(2n+1, q). We show that the smallest possible cardinality for a minimal (n−1)-cover
of Q+(2n + 1, q) is qn+1 + 2q + 1, and give examples of that size for q even.

We prove a theorem stating what an (n − 1)-cover of Q+(2n + 1, q) of that size qn+1 +
2q + 1 should look like. To achieve this, we need results on minihypers in projective
spaces [6].

Definition 1.2 Let F be a set of points of PG (t, q) and let w be a mapping from F into
Z+, where t ≥ 2 and where Z+ denotes the set of all non-negative integers. Let H denote
the set of all hyperplanes of PG (t, q).

If F and w satisfy the conditions

∑
P∈F

w(P) = f and min

{ ∑
P∈F∩H

w(P)

∥∥∥∥∥H ∈ H
}

= m,

for given integers f ≥ 1 and m ≥ 0, then (F, w) is called an { f, m; t, q}-minihyper. In the
special case w(P) = 1 for all P ∈ F , we denote the minihyper simply by F .

The article concludes with an upper bound for the size of a maximal partial (n − 1)-spread
of Q+(2n + 1, q). For q even, partial (n − 1)-spreads of Q+(2n + 1, q) of size q2n+1 + 1
are constructed.

These results contribute to the study of blocking sets, spreads and covers in polar spaces,
as discussed by Metsch [10]. For a table containing the known results on the existence and
non-existence of spreads in polar spaces, we refer to [10, Table 2]. We would like to mention
the following recent results on line covers of H (3, q2) and Q(4, q).

Since the generalized quadrangle H (3, q2) arising from the non-singular Hermitian vari-
ety in PG (3, q2) is the dual of the quadrangle arising from the non-singular elliptic quadric
in PG (5, q), a cover of H (3, q2) is the dual of a blocking set in Q−(5, q), that is, a set
of points of Q−(5, q) intersecting every line of Q−(5, q). In [9], Metsch proved that the
smallest blocking sets of Q−(5, q) are equal to the set of points of Q−(5, q) in a tangent
cone of Q−(5, q), different from the vertex of the tangent cone. Hence, dualizing this result,
the smallest covers of H (3, q2) are equal to the set of lines of H (3, q2) intersecting a given
line of H (3, q2) in exactly one point.

For covers of the parabolic quadric Q(4, q) in PG (4, q), Eisfeld et al. [5] proved that a
cover C of Q(4, q), q odd, contains more than q2 + 1 + (q − 1)/3 lines, and a cover of
Q(4, q), q even, q ≥ 32, of cardinality q2 + 1 + r , where 0 < r ≤ √

q, always contains a
spread of Q(4, q).
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The analogous question for covers of projective spaces has already been answered
(cf. [1, 3]). The lower bound on the size of a cover of a given projective space was found by
Beutelspacher [1]; the description of the covers of minimal size was given by Eisfeld [3].

Theorem 1.3 Let S be a t-cover of P = PG(d, q), where d ≥ t ≥ 0. Let d = k(t + 1) + r
with k, r ∈ IN0 and r ≤ t .
(a) |S| ≥ qr+1 · qk(t+1)−1

qt+1−1 + 1.

(b) If equality holds in (a), then there is a subspace U of dimension t − r − 1, such that
every point of P\U is contained in exactly one element of S, whereas every point of U
is contained in exactly qr+1 + 1 elements of S.

In this article, let θi = (qi+1 − 1)/(q − 1).

2. The lower bound

Let Q = Q+(2n + 1, q) be embedded in P = PG(2n + 1, q). If we have an (n − 1)-cover C
of Q, we define the excess of a point P ∈ Q to be the number of elements of C through P
minus one. The excess of a point of P \Q is defined as zero. Since C is a cover, all excesses
are non-negative.

The excess of any point set of P is defined as the sum of the excesses of its points. A
point with positive excess is called an excess point.

Theorem 2.1 Let C be an (n −1)-cover of Q = Q+(2n +1, q). Then |C| ≥ qn+1 +2q +1.

Proof: Since Q has exactly (qn+1 − 1)(qn + 1)/(q − 1) points (see e.g. [7]), the (n − 1)
-cover C must have at least (qn+1−1)(qn+1)

qn−1 = qn+1 + 2q − 1 + 2 q−1
qn−1 elements.

Suppose that C has qn+1 + 2q + ε elements. Then the total excess of Q is

(qn+1 + 2q + ε)
qn − 1

q − 1
− (qn+1 − 1)(qn + 1)

q − 1
= (ε + 1)

qn − 1

q − 1
− 2.

Consider a subspace U of P that has dimension n + 2. The subspace U intersects each
element of C in a non-empty subspace, that is, in 1 (mod q) points. Furthermore, it intersects
Q in a quadric, and so in 1 (mod q) points. Hence the excess of U is qn+1 + 2q + ε − 1 ≡
ε − 1 (mod q).

Suppose that ε = 0. Then the excess of any (n + 2)-dimensional subspace is congruent to
q − 1 (mod q), hence it is at least q − 1. In particular, the set of excess points must intersect
each (n + 2)-dimensional subspace. By the Theorem of Bose and Burton [2], this means
that there are at least (qn − 1)/(q − 1) excess points with equality if and only if the excess
points are just the points of an (n − 1)-dimensional subspace of P . This contradicts the fact
that the total excess is qn−1

q−1 − 2.
Hence ε ≥ 1, and the theorem is proved.

Example 2.2 Suppose that q is even. Then there exists a spread S of the parabolic quadric
Q(2n + 2, q) (see e.g. [10, Section 6]).
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Let Q = Q+(2n + 1, q) be a hyperplane section of Q(2n + 2, q). Then a counting
argument shows that Q contains exactly two elements of S and intersects the other elements
of S in (n − 1)-dimensional subspaces. These form a partial spread C0 of Q+(2n + 1, q)
covering all points except the points of two disjoint n-dimensional subspaces U1, U2. Let
Wi be an (n − 2)-dimensional subspace of Ui (i = 1, 2). If we add to C0 the q + 1 (n − 1)-
dimensional subspaces in Ui through Wi , we get an (n − 1)-cover C. The excess points of C
are the points of W1 and W2, each having excess q. From this we see that |C| = qn+1+2q+1.
In the following section we shall see that all covers of this size look like this example.

3. A characterization

In [3], the structure of excess points of minimum covers of projective spaces was determined
(See Introduction). In this section, we do the same for minimum (n −1)-covers of Q+(2n +
1, q), using similar methods.

From now on, let Q = Q+(2n + 1, q), q ≥ 3, be embedded into P = PG(2n + 1, q),
and let C be an (n − 1)-cover of Q with |C| = qn+1 + 2q + 1.

Lemma 3.1 Let U, V be subspaces of P such that U is a hyperplane of V . Then there
exist integers a, a′, b, b′ with dim V − n − 2 ≤ b ≤ a ≤ n − 1 and a − 1 ≤ a′ ≤ a and
b − 1 ≤ b′ ≤ b such that
(a) the excess of V is q qa−1

q−1 + q qb−1
q−1 .

(b) the excess of U is q qa′ −1
q−1 + q qb′ −1

q−1 .

Proof: The proof is by backward induction on dim V .
At first we consider the case dim V = 2n + 1, that is, V = P . In this case, the excess of V
is the total excess of Q, that is, 2q qn−1−1

q−1 , which yields (a).
Let U be a hyperplane of P . Then U intersects Q either in a parabolic quadric with

(q2n − 1)/(q − 1) points or in a cone over a hyperbolic quadric, containing 1 + q(qn − 1)
(qn−1 + 1)/(q − 1) = (q2n − 1)/(q − 1) + qn points. Hence U contains (q2n − 1)/(q − 1)
(mod qn) points of Q. On the other hand, U contains (qn−1 − 1)/(q − 1) (mod qn−1) points
of any element of C. Hence the excess of a hyperplane U is congruent to

(qn+1 + 2q + 1)
qn−1 − 1

q − 1
− q2n − 1

q − 1
≡ 2q

qn−2 − 1

q − 1
(mod qn−1).

As the excess must be a non-negative number being at most equal to the total excess, it must
be either 2q qn−1−1

q−1 or q qn−1−1
q−1 + q qn−2−1

q−1 or 2q qn−2−1
q−1 , from which (b) follows.

Now let dim V < 2n + 1, and we assume that the assertion holds for bigger values of
dim V . In particular, the induction hypothesis yields (a). Furthermore, for any subspace
W ⊇ V with dim W = dim V + 1 we know from the induction hypothesis that the excess
of W is q qã−1

q−1 + q qb̃−1
q−1 with a ≤ ã ≤ a + 1 and b ≤ b̃ ≤ b + 1.

Consider the q + 1 subspaces Vi with U ≤ Vi ≤ W and dim Vi = dim V (one of
them being V ). By the induction hypothesis, each Vi has an excess q qai −1

q−1 + q qbi −1
q−1 with

ã − 1 ≤ ai ≤ ã and b̃ − 1 ≤ bi ≤ b̃. Let α be the number of ai equal to ã, and let β be the
number of bi equal to b̃. Let x be the excess of U . Counting the sum of the excesses in two
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ways, we get

(q + 1)

(
q

qã−1 − 1

q − 1
+ q

qb̃−1 − 1

q − 1

)
+ αq

qã − qã−1

q − 1
+ βq

qb̃ − qb̃−1

q − 1

= q
qã − 1

q − 1
+ q

qb̃ − 1

q − 1
+ qx .

Hence

x = q
qã−2 − 1

q − 1
+ q

qb̃−2 − 1

q − 1
+ αqã−1 + βqb̃−1. (∗)

Clearly, x cannot be bigger than the minimum of the excesses of the Vi . We discuss the
possible values of α and β.

• α = β = 0. Then all ai , including a, are equal to ã − 1. That is, a = ã − 1 and similarly
b = b̃ − 1. By (∗), (b) is fulfilled with a′ = ã − 2 and b′ = b̃ − 2.

• α = 1, β = 0. Then a ∈ {ã − 1, ã} and b = b̃ − 1. By (∗), a′ = ã − 1 and b′ = b̃ − 2,
and (b) holds.

• α = 0, β = 1. This case works as the previous case.
• α = β = 1. Then a ∈ {ã − 1, ã} and b ∈ {b̃ − 1, b̃}. By (∗), (b) holds with a′ = ã − 1

and b′ = b̃ − 1.
• α = 2, β = 0, ã = b̃. This case is identical with the previous case.
• ã = b̃, α + β > 2. By (∗), the excess x of U is bigger than 2q qã−1−1

q−1 . Hence also the
excesses of the Vi are bigger than this value. Hence the excess of Vi is q qã−1

q−1 + q qbi −1
q−1 ,

that is, we can assume that α = q + 1. This yields

x = q
qã − 1

q − 1
+ q

qb̃−2 − 1

q − 1
+ βqb̃−1.

– If β = 0, then b = b̃ − 1, and (b) holds with b′ = b̃ − 2.
– If β = 1, then b ∈ {b̃ − 1, b̃}, and (b) holds with b′ = b̃ − 1.
– If β ≥ 2, then the excess of U is bigger than q qã−1

q−1 + q qã−1−1
q−1 , which means that also

the excesses of the Vi must be bigger than this value. Consequently, bi = b̃, β = q +1,
and (b) holds with b′ = b = b̃.

• ã > b̃, α ≥ 2. Then the excess of each Vi must be at least x > q qã−1−1
q−1 +q qb̃−1−1

q−1 , whence
α + β ≥ q + 1.

– α ≥ 3. Then αqã−1 > qã−1 + (q + 1)qb̃−1, that is, the excess of U (and hence of Vi ) is

bigger than q qã−1−1
q−1 + q qb̃−1

q−1 . Hence α = q +1, and so x = q qã−1
q−1 +q qb̃−2−1

q−1 +βqb̃−1.
Now (b) follows as in the previous case, distinguishing between the cases β = 0,
β = 1 and β ≥ 2 ⇒ β = q + 1.

– α = 2, ã > b̃ + 1. Then again αqã−1 > qã−1 + (q + 1)qb̃−1, from which we get
α = q + 1 as above, which is a contradiction.
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– α = 2, ã = b̃ + 1. Because of β ≥ q − 1 and q ≥ 3, we have αqã−1 + βqb̃−1 >

qã−1 + (q + 1)qb̃−1, which again gives α = q + 1, being a contradiction.

• ã > b̃, α = 0, β ≥ 2. We show that this case can be avoided choosing W in an intelligent
way.

Count the incidences (s, W ∗), where s is an excess point outside of V and W ∗ = 〈s, V 〉.
Starting from s, we see that there are q qn−1−qa

q−1 + q qn−1−qb

q−1 such incidences. Let d = dim V .
The number of (d + 1)-dimensional subspaces W ∗ containing V is q2n+1−d−1

q−1 . Each of these
W ∗ contributes 0, q · qa , q · qb or q · (qa + qb) incidences. The average contribution of
a W ∗ is qa+1 qn−1−a−1

q2n+1−d−1 + qb+1 qn−1−b−1
q2n+1−d−1 .

– Suppose that a > b. Because of b ≥ d − n − 2, we have n − 1 − a < 2n + 1 − d.
Hence the average contribution of W ∗ is smaller than qa +qb+1. This means that there
must exist a W ∗ contributing either 0 or q · qb, which means that ã = a. This avoids
the current case.

– If a = b, then there exists a choice of W ∗ with ã = b̃, avoiding the current case. For
otherwise all W ∗ would contribute q · qa to the number of incidences (s, W ∗), whence
2qa+1 qn−1−a−1

q2n+1−d−1 = qa+1, which gives a contradiction.

• ã > b̃, α = 1, β ≥ 2. As in the caseα ≥ 3, we see thatα + β ≥ q + 1, that is,β ∈ {q, q + 1}.
– β = q + 1. Then (b) holds with a′ = ã − 1 and b′ = b = b̃.
– β = q . Then x = q qã−1−1

q−1 + q qb̃−1
q−1 − qb̃−1. This is a value that cannot be written in the

form q qa′ −1
q−1 + q qb′ −1

q−1 .
Let V ′ be one of the Vi with an excess of q qã−1−1

q−1 + q qb̃−1
q−1 . Doing the same argument

with V ′ in place of V , we must get the same (exceptional) value of x , that is, we must
fall again into the case ã > b̃, α = 1 with the same parameters. However, as in the case
α = 0, we see that it is possible to choose W ∗ such that ã∗ = b̃∗ (leading immediately
to a different case) or ã∗ = a = ã − 1 (leading possibly to the same case, but with a
different parameter ã). This yields a contradiction.

This discussion concludes the proof.

In the case dim V = 0, Lemma 3.1 shows that the excess points of the cover have excess
congruent to 0 (mod q). If we now divide the excess of every excess point by q, then we
remain with a set of 2(qn−1 − 1)/(q − 1) points intersecting every hyperplane in at least
2(qn−2 − 1)/(q − 1) points. Hence, the excess points form a weighted {2(qn−1 −1)/(q −1),
2(qn−2 − 1)/(q − 1); 2n + 1, q}-minihyper F .

For n = 2, this means that F is either a point with multiplicity two or two points with
multiplicity one (see also [4, Theorem 3.1]). Assume n ≥ 3.

If all the points in this minihyper have weight one, then Hamada has proved that this set
is the union of two disjoint subspaces PG(n −2, q) [6, Theorem 4.1]. It is however possible
that some of the points have weight bigger than one. We will now show that, in general,
this set is the union of two subspaces �1 and �2 of dimension n − 2, where the points of
�1 ∩ �2 have weight two and where the remaining points of �1 ∪ �2 have weight one.
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Lemma 3.2 Let F be the {2(qn−1 −1)/(q −1), 2(qn−2 −1)/(q −1); 2n +1, q}-minihyper
of excess points of C. Then the points of F have weight one or two.

Proof: Consider a subspace � of dimension n + 2 skew to F . There are θn−2 spaces 


of dimension n + 3 passing through �. By Lemma 3.1, each one of them must have at least
two points in common with F ; so must have exactly two points in common with F . This
shows that no points of F have excess bigger than two.

Lemma 3.3 Let F be the {2(qn−1 −1)/(q −1), 2(qn−2 −1)/(q −1); 2n +1, q}-minihyper
of excess points of C. If F contains a point P with weight two, then F consists of a union
of lines through P.

Proof: Suppose that a line l through P contains x ≥ 3 points of F . Then there are
2θn−2 − x points left. Suppose that there is a point R ∈ l \F . Then R lies in q2n hyperplanes
not containing l.

A point S ∈ (F \ l) lies in q2n−1 hyperplanes through RS not containing l. This shows
that the average number of points of F in these hyperplanes is (2θn−2 − x)q2n−1/q2n =
2θn−3 + (2 − x)/q < 2θn−3. This means that there is a hyperplane through R containing
less than 2θn−3 points of F .

This is false; so l ⊂ F .

The following lemma follows from Lemma 3.1 if we now use the known fact that every
point of F has an excess which is a multiple of q.

Lemma 3.4 Let F be the {2(qn−1 −1)/(q −1), 2(qn−2 −1)/(q −1); 2n +1, q}-minihyper
of excess points of C. Then a t-dimensional subspace, n + 4 ≤ t ≤ 2n, intersects F in a
{(qa−1)/(q−1) + (qb−1)/(q−1), (qa−1−1)/(q−1) + (qb−1−1)/(q−1); t, q}-minihyper,
with t − n − 2 ≤ b ≤ a ≤ n − 1.

Lemma 3.5 Let F be the {2(qn−1 −1)/(q −1), 2(qn−2 −1)/(q −1); 2n + 1, q}-minihyper
of excess points of C. Then the set of points of F with weight two is a subspace of PG
(2n + 1, q).

Proof: Let l be a line containing two points P1 and P2 of F having weight two. Let P3 be
a point of F on l with weight one. By induction, we will find a subspace �n+4 of dimension
n + 4 through l intersecting F in a {2(q + 1), 2; n + 4, q}-minihyper.

Let x be the sum of the weights of the points of l ∩F . Then counting the incidences of the
points ofF \l with the hyperplanes through l, we get as sum of these incidences, the number

(2θn−2 − x) θ2n−2.

This implies that the average of the incidences over all hyperplanes through l is equal to
x + (2θn−2 − x) θ2n−2/θ2n−1, which is equal to

x + 2

q − 1

(
qn−2 − q2n−1 + qn−1 − 1 − qn−2

q2n − 1

)
− x

(
q2n−1 − 1

q2n − 1

)
.
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Since x ≤ 2q + 1, there is a hyperplane through l having at most

2

q − 1

(
qn−2 − q2n−1 + qn−1 − 1 − qn−2

q2n − 1

)
− 2 + 2q + 1

points ofF . Since each hyperplane must have at least 2θn−3 points ofF , by using Lemma 3.4,
there must be a hyperplane through l intersecting F in a {2θn−3, 2θn−4; 2n, q}-minihyper.

By induction, there is a subspace PG (n + 4, q) through l intersecting F in a {2(q + 1), 2;
n + 4, q}-minihyper. For, suppose there is a (2n + 1 − i)-dimensional subspace �2n+1−i

through l, n − i − 2 ≥ 2, intersecting F into a {2(qn−1−i − 1)/(q − 1), 2(qn−i−2 − 1)/
(q − 1); 2n + 1 − i, q}-minihyper. Now the average number of points of F in a hyperplane
of �2n+1−i through l is equal to x + (2(qn−1−i − 1)/(q − 1) − x)(q2n−i−1 − 1)/(q2n−i − 1).
According to Lemma 3.4, any hyperplane not intersectingF in a minihyper with the desired
parameters must intersectF in at least (qn−i−1−1)/(q−1)+1 ≥ 2(qn−i−2−1)/(q−1)+2q
points. The average number given is smaller than this number, hence there must be a hy-
perplane in �2n+1−i intersecting F as desired.

By induction, this implies that l lies in an (n + 4)-dimensional subspace H sharing a
{2q + 2, 2; n + 4, q}-minihyper with F .

Now, by assumption, l contains at most 2q + 1 points of F , so there is a point R of
F lying in this subspace, but not lying on l. Then the three lines P1 P2, R P1, R P2 are all
contained in F ; but then F shares more than 2q + 2 elements with H .

So, all points of P1 P2 have weight two.
This argument now implies that the points of F of weight two form a subspace.

Theorem 3.6 LetF be the {2(qn−1−1)/(q−1), 2(qn−2−1)/(q−1); 2n + 1, q}-minihyper
of excess points of C, where F has a u-dimensional subspace � of points having weight
two. Then F consists of two (n −2)-dimensional subspaces intersecting in this subspace �.

Proof: If u = −1, then the theorem follows from [6, Theorem 4.1]. So, assume u ≥ 0.
Consider the quotient geometry of � represented by an (2n − u)-dimensional space �′

skew to �.
The minihyper F consists of subspaces of dimension u + 1 passing through �, so in �′,

F defines a set F ′ of size 2θn−u−3.
Consider a hyperplane �′′ of �′ and suppose it shares x points with F ′. Then 〈�, �′′〉

shares xqu+1 + 2θu points with F . Since every hyperplane shares at least 2θn−3 points with
F , necessarily x ≥ 2θn−u−4.

So, F ′ is a {2θn−u−3, 2θn−u−4; 2n − u, q}-minihyper only having points of weight one.
So, by [6, Theorem 4.1], F ′ is the union of two disjoint subspaces of dimension n − u − 3.
This proves the theorem.

The preceding results now imply the following description of the set of excess points of
an (n − 1)-cover, of size qn+1 + 2q + 1, of Q = Q+(2n + 1, q), q ≥ 3. This corollary is
also valid for n = 2 [4].

Corollary 3.7 Let C be an (n − 1)-cover of Q = Q+(2n + 1, q), q ≥ 3, with |C| =
qn+1 + 2q + 1. Then there are two (n − 2)-dimensional subspaces U1, U2 (possibly
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coinciding) on Q such that all points of U1 ∩ U2 have excess 2q, all points of (U1 ∪ U2)\
(U1 ∩ U2) have excess q, and all points of Q\(U1 ∪ U2) have excess 0.

Remark 3.8 Theorem 3.6 is also valid for arbitrary {2 (qn−1 − 1)/(q − 1), 2 (qn−2 − 1)/
(q − 1); 2n + 1, q}-minihypers of PG (2n + 1, q), q ≥ 3. The proof that the points of such
a minihyper have weight one or two follows from using [6, Theorem 2.5] in combination
with the proof of Lemma 3.2.

4. Partial (n − 1)-Spreads of Q++(2n+ 1, q)

The construction made in Example 2.2 also shows that the hyperbolic quadric Q+(2n+1, q),
q even, has partial (n − 1)-spreads of size qn+1 + 1. The question is whether larger partial
(n − 1)-spreads are possible. This question is studied in the following theorem. In this
theorem, a hole of S is a point of Q+(2n + 1, q) not lying on an element of S.

Theorem 4.1 Let S be a partial (n − 1)-spread of Q+(2n + 1, q). Then |S| ≤ q3 + q for
n = 2 and |S| ≤ qn+1 + q − 1 for n > 2.

Proof: Let S be a partial (n − 1)-spread of size qn+1 + q of Q = Q+(2n + 1, q). For
n = 2, [4, Theorem 3.6] shows that this is the maximal possible cardinality of a line spread
of Q+(5, q). Assume now that n > 2. A partial (n − 1)-spread of Q+(2n + 1, q) of size
qn+1 + q has qn + 1 holes.

Let U be a hyperplane of P . Then U intersects Q either in a parabolic quadric with
(q2n − 1)/(q − 1) points or in a cone over a hyperbolic quadric, containing 1 + q(qn − 1)
(qn−1 + 1)/(q − 1) = (q2n − 1)/(q − 1) + qn points. Suppose every element of S intersects
U in an (n−2)-dimensional subspace. Since S has size qn+1 + q, then U would have qn + 1
holes in the first case and 2qn + 1 holes in the second case. If however an element of S is
completely contained in U , the number of holes reduces by qn−1. So, the number of holes
in a hyperplane is always 1 (mod qn−1).

Suppose that xi is the number of holes in the hyperplane πi , i = 1, . . . , θ2n+1, of PG
(2n + 1, q). Then

θ2n+1∑
i=1

1 = q2n+2 − 1

q − 1
,

θ2n+1∑
i=1

xi = (qn + 1)
q2n+1 − 1

q − 1
,

θ2n+1∑
i=1

xi (xi − 1) = (qn + 1)qn q2n − 1

q − 1
,

θ2n+1∑
i=1

xi (xi − 1)(xi − 2) ≥ (qn + 1)qn(qn − 1)
q2n−1 − 1

q − 1
.
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Now

0 ≥
θ2n+1∑
i=1

(xi − 1)(xi − qn−1 − 1)(xi − qn − 1)

=
θ2n+1∑
i=1

xi (xi − 1)(xi − 2) − (qn−1 + qn)
θ2n+1∑
i=1

xi (xi − 1)

+ (qn−1 + 1)(qn + 1)
θ2n+1∑
i=1

(xi − 1).

Now replacing
∑θ2n+1

i=1 xi (xi −1)(xi −2) by the lower bound stated above gives the inequality
0 > q2n+1(qn + 1)(qn−2 − 1). This is false.
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