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Abstract. We obtain the decomposition of the tensor spacesl⊗k
n as a module forsln , find an explicit formula for the

multiplicities of its irreducible summands, and (when n ≥ 2k) describe the centralizer algebra C = Endsln (sl⊗k
n )

and its representations. The multiplicities of the irreducible summands are derangement numbers in several
important instances, and the dimension of C is given by the number of derangements of a set of 2k elements.
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Introduction

Weyl’s celebrated theorem on complete reducibility says that a finite-dimensional module
X for a finite-dimensional simple complex Lie algebra g is a direct sum of irreducible
g-modules. However, to determine an explicit expression for the multiplicities of the irre-
ducible g-summands of X often is a very challenging task. In this note we assume g = sln ,
the simple Lie algebra of n × n matrices of trace 0 over C, and view sln as a g-module
under the adjoint action x · y = [x, y]. We take X to be the k-fold tensor power of sln .
Using combinatorial methods and results developed in [2], we establish an explicit descrip-
tion of the irreducible g-summands of sl⊗k

n (Theorem 1.16) and determine an expression
for their multiplicities (Theorem 2.2). As a consequence of our formula, we obtain the
following results, expressed in terms of the number Dk of derangements of {1, . . . , k}:
For n ≥ 2k, the dimension of the space of g-invariants in sl⊗k

n is Dk ; the multiplic-
ity of sln in sl⊗k

n is Dk+1; and the dimension of the centralizer algebra C = Endg(sl⊗k
n )

is D2k .
In Section 3, we identify the centralizer algebra C with a certain subalgebra of the

walled Brauer algebra Bk,k(n). This subalgebra has a basis indexed by derangements of
{1, . . . , 2k}. We then give a description (for n ≥ 2k) of the irreducible modules for C, and
obtain the “double centralizer” decomposition of the tensor space sl⊗k

n as a bimodule for
C × g.
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1. The tensor product realization

The general linear Lie algebra gln = sln ⊕ CI of all n × n complex matrices acts on sln

via the adjoint action, and the identity matrix I acts trivially. Hence, there is no harm in
assuming that g is gln rather than sln acting on sl⊗k

n in what follows; the results are exactly
the same. This enables us to label the irreducible summands by pairs of partitions and to
apply known results on the decomposition of tensor products for gln .

Let h denote the Cartan subalgebra of g = gln of diagonal matrices, and let εi : h → C be
the projection of a diagonal matrix onto its (i, i)-entry. The irreducible finite-dimensional
g-modules are labeled by their highest weight, which is an integral linear combination∑n

i=1 κiεi with κ1 ≥ κ2 ≥ · · · ≥ κn . By letting λ = (λ1 ≥ λ2 ≥ · · ·) denote the sequence
of positive κi and µ = (µ1 ≥ µ2 ≥ · · ·) be the partition determined by the negative κi , we
may associate to each highest weight a pair of partitions (λ, µ). For example, for g = gl12

the highest weight

3ε1 + 2ε2 + 2ε3 + 2ε4 + ε5 − 4ε10 − 5ε11 − 5ε12

is identified with the pair of partitions λ = (3, 2, 2, 2, 1) � 10 and µ = (5, 5, 4) � 14.
Therefore, the set of highest weights for g-modules is in bijection with the set of pairs of
partitions such that the total number of nonzero parts does not exceed n.

Let V = C
n be the natural representation of g = gln on n × 1 matrices by ma-

trix multiplication. The dual module V ∗ may be identified with 1 × n matrices, where
the g-action is by right multiplication by the negative of an element x ∈ g. The matrix
product

V ⊗ V ∗ → gln = sln ⊕ CI, u ⊗ w∗ �→ uw∗ (1.1)

is a g-module isomorphism which allows us to identify gln with V ⊗ V ∗.
Let {v1, . . . , vn} denote the standard basis of V , where vi is the matrix having 1 in the

i th row and 0 everywhere else. Assume {v∗
1 , . . . , v

∗
n} is the dual basis in V ∗, so that v∗

i has
1 in its i th column and 0 elsewhere. The contraction mapping c : V ⊗ V ∗ → V ⊗ V ∗ is
defined using the trace by

c(u ⊗ w∗) = tr(uw∗)
n∑


=1

v
 ⊗ v∗

 . (1.2)

Under the isomorphism in (1.1), v
 ⊗v∗

 is mapped to the matrix unit E
,
 ∈ gln . Therefore,

we may identify the image of c with CI , and the kernel of c with sln .
As c2 = nc, the mapping p = (1/n)c is an idempotent. It is the projection onto the trivial

summand CI , and id − p is the projection onto sln . These idempotents are orthogonal,

p(id − p) = 0 = (id − p)p,

and satisfy id = (id − p) + p. (Here id is the identity map on V ⊗ V ∗.)
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In order to identify sl⊗k
n with a summand of

M = V ⊗k ⊗ (V ∗)⊗k ∼= (V ⊗ V ∗)⊗k ∼= gl
⊗k
n , (1.3)

we define the contraction map ci, j to be the contraction c applied to the i th factor of V ⊗k

and the j th factor of (V ∗)⊗k according to

ci, j (u1 ⊗ · · · ⊗ uk ⊗ w∗
1 ⊗ · · · ⊗ w∗

k )

= tr(uiw
∗
j )

n∑

=1

u1 ⊗ · · · v
 ⊗ · · · ⊗ vk ⊗ w∗
1 ⊗ · · · ⊗ v∗


 · · · ⊗ w∗
k ,

where v
 is placed in the i th slot of V ⊗k and v∗

 in the j th slot of (V ∗)⊗k . As before,

c2
i, j = nci, j , so that

pi = 1

n
ci,i (1.4)

is an idempotent.

Proposition 1.5 ker p1 ∩ ker p2 ∩ · · · ∩ ker pk = (id − p1)(id − p2) · · · (id − pk)M.

Proof: The idempotents pi commute and satisfy pi (id − pi ) = 0. For J a subset of
{1, . . . , k}, let pJ = ∏

j∈J p j . Set q j = id − p j and qJ = ∏
j∈J q j . Then

M =
⊕

J⊆{1,...,k}
pJ c qJ M,

where J c = {1, . . . , k}\J . This can be argued by induction on k. Note that the sum is direct
because for any fixed choice of subset J ′, the idempotent pJ ′c qJ ′ acts as the identity on
pJ ′c qJ ′ M and annihilates the remaining terms pJ c qJ M with J �= J ′. Whenever j ∈ J c,
then pJ c qJ M is not contained in ker p j . Therefore, from the decomposition of M above, it
is easy to see that ker p1 ∩ ker p2 ∩ · · · ∩ ker pk = (id − p1)(id − p2) . . . (id − pk)M .

Henceforth, let

e = (id − p1)(id − p2) . . . (id − pk) (1.6)

so that

eM ∼= sl
⊗k
n . (1.7)

The centralizer algebra Endg(M) of transformations commuting with the action ofg = gln

on M = V ⊗k ⊗ (V ∗)⊗k was investigated in [2], where it was shown to be a homomorphic
image of a certain algebra Bk,k(n) of diagrams with walls. A diagram in Bk,k(n) consists
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of two rows of vertices with 2k vertices in each row. There is a wall separating the first k
vertices on the left in each row from the k vertices on the right. Each vertex is connected
to precisely one edge but with the requirement that horizontal edges must cross the wall,
but vertical edges cannot cross. The product d1d2 of two diagrams d1 and d2 is obtained by
placing d1 above d2, identifying the bottom row of d1 with the top row of d2, and following
the resulting paths. Cycles in the middle are deleted, but there is a scalar factor, which is
n to the number of middle cycles. For example, in B5,5(n) we would have the following
product,

The group Sk × Sk acts on M , where the first copy of the symmetric group Sk acts on
the first k factors and the second copy on the next k factors by place permutation. These
actions commute with the g-action, and so afford transformations in Endg(M). There is
a representation φ : Bk,k(n) → Endg(M) of the algebra Bk,k(n) on M which commutes
with the g-action. Under this representation, the diagrams in Bk,k(n) having no horizontal
edges are mapped to the place permutations coming from Sk × Sk . The identity element
in Bk,k(n) is just the diagram with each node in the top row connected to the one directly
below it in the second row, and it maps to the identity transformation in Endg(M). Under φ,
a diagram such as the one pictured below is mapped to a contraction mapping (in this case
to c3,1).

(1.8)

It is shown in [2] that the algebra Endg(M) is generated by Sk × Sk and the contraction
maps ci, j , and the above mapping φ is an isomorphism if n ≥ 2k. Moreover [2] describes
the projection maps onto the irreducible summands of M in the following way.

Suppose for some integer r satisfying 0 ≤ r ≤ k that s = {s1, . . . , sk−r } and t =
{t1, . . . , tk−r } are ordered subsets of {1, . . . , k} of cardinality k −r , and define the following
product

cs,t
def= cs1,t1 · · · csk−r ,tk−r (1.9)
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of the contraction maps csi ,ti . Then cs,t belongs to the centralizer algebra Endg(M). There
is a corresponding product of diagrams in Bk,k(n) like the one displayed in (1.8), which φ

maps onto cs,t .
Assume λ = (λ1 ≥ λ2 ≥ · · ·) is a partition of r . Associated to λ is its Young frame

or Ferrers diagram having λi boxes in the i th row. A standard tableau is a filling of the
boxes in the diagram of λ in such a way that the entries increase from left to right across
each row and down each column. Let T be a standard tableau of shape λ with entries in
sc = {1, . . . , k}\{s1, . . . , sk−r }. Associated to T is its Young symmetrizer

yT =
( ∑

ρ∈RT

ρ

)( ∑
γ∈CT

sgn(γ )γ

)
, (1.10)

where the first sum ranges over the row group of T , which consists of all permutations in
Sk that transform each entry of T to an entry in the same row, and the second sum is over
the column group of T of permutations that move each entry of T to an entry in the same
column. For example,

y = (id + (1 5))(id − (1 4)),

which belongs to the group algebra CSk of the symmetric group Sk . The map yT is an
essential idempotent, that is, there is an integer m so that y2

T = myT .
Similarly, assume for some partition µ � r that T ∗ is a standard tableau of shape µ with

entries chosen from t c = {1, . . . , k}\{t1, . . . , tk−r }. The mapping

yT yT ∗cs,t (1.11)

is an essential idempotent in Endg(M). (Note that here we are supposing that yT acts on
the factors in V ⊗k and yT ∗ on the factors in (V ∗)⊗k by place permutations, and that id
is the identity map on V ⊗k or (V ∗)⊗k , respectively.) Moreover, yT yT ∗cs,t M is isomorphic
to the irreducible g-module L(λ, µ) having highest weight given by the partitions λ and µ.
The collection of all maps yT yT ∗cs,t as r = 0, 1, . . . , k; s, t range over all possible choices
of ordered subsets of cardinality k − r in {1, . . . , k}; λ and µ range over all partitions of r ;
and T (resp. T ∗) ranges over all standard tableaux of shape λ (resp. µ) with entries in sc

(resp. in t c), give all the projections onto the irreducible summands of M (this can be found
in [2]).

Now for the idempotent e in (1.6) we may apply the standard result,

Endg

(
sl

⊗k
n

) ∼= Endg(eM) = eEndg(M)e | eM , (1.12)

(see for example, [4, Lemma 26.7] or [1, Proposition 1.1]).

Lemma 1.13 Assume y = yT yT ∗cs,t . If cs,t contains one of the contraction maps c j, j for
some j = 1, . . . , k, then ey = 0 = ye.
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Proof: The mappings yT , yT ∗ , csi ,ti , i = 1, . . . , k − r , all commute with one another as
they operate on different tensor factors. If one of the contraction maps in y equals c j, j = np j ,
then moving it to the far right produces a product p j e = p j (id − p j )

∏

�= j (id − p
) = 0 in

ye, so ye = 0. The argument for ey is similar.

In [2, Definition 2.4] (compare also [6]) a certain simple tensor xT,T ∗,s,t = u1 ⊗ · · · ⊗
uk ⊗ w∗

1 ⊗ · · · w∗
k of M is constructed via the algorithm

u p =
{
v1 if p ∈ s

v j if p ∈ sc and p is in the j th row of T

(1.14)
w∗

p =
{
v∗

1 if p ∈ t

v∗
n− j+1 if p ∈ t c and p is in the j th row of T ∗

When y = yT yT ∗cs,t is applied to the simple tensor x = xT,T ∗,s,t the result yx is a nonzero
highest weight vector for yM . Moreover, all the highest weight vectors in M are produced
in this fashion.

Observe that the factors in x lie in {v1, . . . , vr , v
∗
1 , v

∗
n , . . . , v

∗
n+1−r }. When the pair (si , ti )

belongs to (s, t), then the vector v1 lies in slot si in V ⊗k , and v∗
1 lies in slot ti in (V ∗)⊗k .

Replace v1 by vr+i and v∗
1 by v∗

r+i in slots si and ti for i = 1, . . . , k − r , to produce a
new simple tensor x ′. Then yx = yx ′, as the effect of applying a contraction to v1 ⊗
v∗

1 or to vr+i ⊗ v∗
r+i is the same. However, if si �= ti for any i = 1, . . . , k − r , then

p j x ′ = 0 for all j . The reason for this is that the vector factors of x ′ form a subset of
{v1, . . . , vr , vr+1, . . . , vk, v

∗
n , . . . , v

∗
n+1−r , v

∗
k , . . . , v

∗
r+1}. If n ≥ 2k, these are all distinct.

As si �= ti for any i = 1, . . . , k − r , slot j on the left and slot j on the right do not contain
a pair of dual vectors (of the form v
, v

∗

 ). Therefore p j x ′ = 0 for all j and ex ′ = x ′.

These calculations show that yeM �= 0, as it contains yex ′ = yx ′ = yx , which is a
maximal vector of weight (λ, µ). But then yeM ⊆ yM , and the irreducibility of yM forces
yeM = yM . To summarize we have

Proposition 1.15 Assume n ≥ 2k. If y = yT yT ∗cs,t and si �= ti for any pair (si , ti ) in
(s, t), then yeM = yM, an irreducible g-module of highest weight (λ, µ), where λ is the
shape of T and µ is the shape of T ∗.

Let c j denote the diagram in Bk,k(n) corresponding to the contraction c j, j , but scaled by
a factor of 1/n. Then under the representation φ : Bk,k(n) → Endg(M), c j is sent to p j ,
and b = ∏k

j=1(1 − c j ) is mapped to the idempotent e.
Let us consider the subspace A spanned by the diagrams d having no forbidden pairs.

By a forbidden pair we mean that the i th node on the left is connected to the i th node on
the right of the wall either in the top or in the bottom row of d for some i = 1, . . . , k.

We claim that the map Bk,k(n) → bBk,k(n)b is injective on the subspace A of diagrams
with no forbidden pairs. Indeed,

∑
d∈A add �→ ∑

d∈A adbdb = ∑
d∈A add + f , where

ad ∈ C and f is a linear combination of diagrams in Bk,k(n) having at least one forbidden
pair. The reason for this is that when diagrams are multiplied, the horizontal edges in the top
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row of the top diagram and the horizontal edges in the bottom row of the bottom diagram
always appear in the resulting product diagram.

Assume y = yT yT ∗cs,t is such that si �= ti for any i = 1, . . . , k − r , and consider the
map yM = yeM → eyeM given by yem �→ eyem. We have argued that yeM = yM, an
irreducible g-module. Therefore, this map either is an injection or is identically zero. In the
latter case, eye must be the zero transformation in Endg(M). But there is a linear combination
z of diagrams in A which maps to y under the representation φ, and bzb �→ eye. Because
the product bzb is nonzero, and the representation φ is faithful on M if n ≥ 2k, eye must
be nonzero. Therefore yM = yeM → eyeM is an injection. But it is clearly surjective and
a g-module map, so eyeM ∼= yM, an irreducible g-module with highest weight (λ, µ). We
have proved part (1) of the following:

Theorem 1.16 Assume n ≥ 2k, g = gln, and M = V ⊗k ⊗ (V ∗)⊗k .
(1) Let y = yT yT ∗cs,t , where si �= ti for any i = 1, . . . , k − r . Then eye(eM) = eyeM is

an irreducible g-submodule of eM of highest weight (λ, µ) where λ is the shape of T
and µ is the shape of T ∗.

(2) sl⊗k
n

∼= eM = ⊕
y eyeM, where the sum is over all y = yT yT ∗cs,t such that si �= ti for

any i .

Proof: What remains to be shown is that eM = ⊕
y eyeM . Observe that because

M =
⊕

T,T ∗,s,t

yT yT ∗cs,t M, (1.17)

([2, Theorem 2.11], compare also [7]),

eM =
∑

y

eyM =
∑

y

eyeM, (1.18)

where the sum is over all y = yT yT ∗cs,t such that si �= ti for any i . We need to argue that
the decomposition eM = ∑

y(eye)eM (over such y) is direct.
We have shown previously that yM = yeM and the map E : yeM → eyeM given by

yem �→ eyem is an isomorphism of g-modules for y = yT yT ∗cs,t such that si �= ti for any
i . Fix one such idempotent y′ and consider the intersection

ey′eM ∩
∑
y �=y′

eyeM

of ey′eM with the sum over the remaining ones. Then

ey′eM ∩
∑
y �=y′

eyeM
E−1→ y′eM ∩

∑
y �=y′

yeM = y′M ∩
∑
y �=y′

yM

But y′M ∩ ∑
y �=y′ yM = 0 by (1.17). Thus, the sum in (1.18) is direct and we have (2).
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2. Multiplicities

Knowing that

sl
⊗k
n

∼= eM =
⊕

y

eyeM,

where the sum is over all y = yT yT ∗cs,t such that si �= ti for any i , we may deduce the
multiplicity of a particular irreducible summand in sl⊗k

n labelled by (λ, µ), where λ, µ � r
and r = 0, 1, . . . , k. That multiplicity is the number of y = yT yT ∗cs,t with T having shape
λ, T ∗ having shape µ, and cs,t having no pairs si = ti . Counting the number of cs,t with at
least j factors of the form c
,
, we have (k

j) for the choice of those contractions, ( k − j
k − r − j)

choices for the remaining si ’s in s, and ( k − j
k − r − j) for the rest of the ti ’s in t , and

(k − r − j)! for the number of ways to pair the chosen si ’s with the chosen ti ’s. Thus,
the number of such yT yT ∗cs,t with at least j contractions of the form c
,
 is

(
k

j

)(
k − j

k − r − j

)2

(k − r − j)! f λ f µ =
(

k

j

)(
k − j

r

)2

(k − r − j)! f λ f µ, (2.1)

where f λ (resp. f µ) is the number of standard tableaux of shape λ, (resp. µ). Therefore,
by the inclusion-exclusion principle, we have the following result.

Theorem 2.2 When n ≥ 2k, the multiplicity mk
λ,µ in sl⊗k

n of the irreducible g = gln-
module L(λ, µ) with highest weight (λ, µ), where λ, µ � r, is

mk
λ,µ = f λ f µ

(
k−r∑
j=0

(−1) j

(
k

j

)(
k − j

r

)2

(k − r − j)!

)
. (2.3)

For a partition λ of r , the number f λ of standard tableaux of shape λ is given by the
well-known hook length formula

f λ = r !

h(λ)
,

where h(λ) = ∏
(i, j)∈λ hi, j , the product of the hook lengths of the boxes of λ. Thus, hi, j is

the number of boxes in the (i, j) hook of λ: the number of boxes to the right of (i, j) plus
the number of boxes below (i, j) plus 1.

As a result, the expression for the multiplicity of the summand labelled by (λ, µ) also
can be written as

mk
λ,µ = 1

h(λ)h(µ)

k−r∑
j=0

(−1) j k!(k − j)!

j!(k − r − j)!
. (2.4)
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Let us consider a few interesting special cases. The multiplicity of the trivial g-module
in sl⊗k

n (that is, the dimension of the space of g-invariants) is

mk
∅,∅ =

k∑
j=0

(−1) j

(
k

j

)
(k − j)! = k!

k∑
j=0

(−1) j 1

j!
= Dk, (2.5)

which is the number of derangements on the set {1, . . . , k} (permutations with no fixed
elements). For small values of k, this number is given by

k 1 2 3 4 5 6 7 8

Dk 0 1 2 9 44 265 1854 14,833
(2.6)

Next, we compute the number of times the adjoint module sln = L( , ) occurs in sl
⊗k
n .

Using the fact that sln is self-dual as a g-module, we see that the number of times sln appears
in sl

⊗k
n is the number of times the trivial module appears in sl

⊗k
n ⊗ sln = sl

⊗(k+1)
n . Hence,

the number of times sln appears in sl
⊗k
n is

mk
, = Dk+1. (2.7)

This can also be derived from (2.4) which gives

mk
, =

k−1∑
j=0

(−1) j k!(k − j)

j!
=

k∑
j=0

(−1) j k!(k − j)

j!

= k
k∑

j=0

(−1) j k!

j!
+

k∑
j=1

(−1) j−1 k!

( j − 1)! (2.8)

= k
k∑

j=0

(−1) j k!

j!
+ k

k−1∑
j=0

(−1) j (k − 1)!

j!

= k(Dk + Dk−1) = Dk+1.

The last equality in (2.8) is a linear recurrence relation satisfied by the derangement numbers
(see for example, [3, (6.5)]).

For any g-module X ,

X ⊗ X∗ ∼= End(X )

where the action on the right is (g · ψ)(x) = gψ(x) − ψ(gx) for all g ∈ g, ψ ∈ End(X ),
and x ∈ X . Considering the g-invariants on both sides, we see that

(X ⊗ X∗)g ∼= End(X )g = Endg(X ). (2.9)

Now applying this to X = sl
⊗k
n

∼= X∗, we have

Endg

(
sl

⊗k
n

) ∼= (
sl

⊗2k
n

)g
(2.10)
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Consequently,

dim Endg

(
sl

⊗k
n

) = m2k
∅,∅ = D2k, (2.11)

the number of derangements on a set of 2k elements.
We conclude by displaying the multiplicities mk

λ,µ for k = 4. By double centralizer
theory, it follows that

dim Endg

(
sl

⊗k
n

) =
∑

λ,µ�r≤k

(
mk

λ,µ

)2
.

The reader can verify that the squares of the numbers in the following tables do indeed sum
to D8 =14,833.

Example m4
λ,µ:

3. The centralizer algebra

Now we consider the centralizer algebra C = Endg(sl⊗k
n ) = Endsln (sl⊗k

n ) and its represen-
tation theory. As has already been pointed out in (1.12), we have an isomorphism

C ∼= eEndg(M)e (3.1)
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where e is the idempotent defined in (1.6). We also have a representation φ : Bk,k(n) →
End(M) which commutes with the g-action on M . Thus the image of this representation
lies in the commuting algebra Endg(M). In [2, Theorem 5.8] it was shown that φ induces
an algebra isomorphism

Bk,k(n) ∼= Endg(M) (3.2)

for n ≥ 2k. Let b ∈ Bk,k(n) be given as above, b = ∏k
j=1(1 − c j ) where c j is the diagram

corresponding to the contraction map c j, j but scaled by 1/n. Then φ maps b onto e, and
we obtain the following.

Proposition 3.3 Let n ≥ 2k. The map φ induces an algebra isomorphism between
bBk,k(n)b and C = Endg(sl⊗k

n ). Moreover, the set of all elements of the form bdb, as
d ranges over all diagrams with no forbidden pairs, is a basis for bBk,k(n)b.

Proof: The first claim follows from the remarks above, so only the second claim remains
to be proved. We observe that left (resp., right) multiplication by b kills any diagram with
a forbidden pair in its top (resp., bottom) row. Since the diagrams form a basis for Bk,k(n),
the result follows.

The basis statement of Proposition 3.3 provides another proof of (2.11), that the dimension
of the centralizer algebra C is D2k . Indeed, the diagrams with no forbidden pairs are easily
seen to be in bijective correspondence with the permutations σ on the set {1, . . . , 2k} such
that σ (i) �= i for all i = 1, . . . , 2k. This correspondence is given by performing two “flips”,
which take a walled Brauer diagram to the diagram obtained by first interchanging the
rightmost k dots in its top and bottom rows and then switching corresponding dots on the
two sides of the wall on the top row while retaining the edges.

Let r ≤ k and let λ, µ be fixed partitions of r . In [2] Mλ,µ was defined to be the space
spanned by all maximal vectors yx , where y = yT yT ∗cs,t and x = xT,T ∗,s,t (notation of
(1.14)), for all pairs s = {s1, . . . , sk−r }, t = {t1, . . . , tk−r } of ordered subsets of {1, . . . , k},
and all standard tableaux T (resp., T ∗) of shape λ (resp., µ) with entries from sc (resp.,
t c). Moreover, for n ≥ 2k, the Mλ,µ provide a complete set of pairwise nonisomorphic
irreducible modules for the algebra Endg(M) (and hence also for Bk,k(n)).

Lemma 3.4 Assume n ≥ 2k and let y = yT yT ∗cs,t , x = xT,T ∗,s,t . Then ey �= 0 if and
only if si �= ti for all pairs (si , ti ) in (s, t). Hence eMλ,µ �= 0 precisely when this condition
can be satisfied, and in that case, eMλ,µ is the linear span of all the nonzero eyx, y and x
as above.

Proof: This follows from results in [2], Lemma 1.13, and its converse, which is in the
paragraph before Theorem 1.16.

We remark that for y, x as in the preceding lemma, we have eyx = eyx′ = eyex ′, where
x ′ is the modified simple tensor described in Section 1.
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Moreover, it is easy to see that eMλ,µ = 0 when λ = µ = ∅ and k = 1, for in that case
it is impossible to construct a y = yT yT ∗cs,t satisfying the condition si �= ti for all pairs
(si , ti ) in (s, t). In all other cases eMλ,µ �= 0 when n ≥ 2k.

Theorem 3.5 Assume n ≥ 2k. The collection of all nonzero eMλ,µ for λ, µ partitions of
r, r = 0, 1, . . . , k, forms a complete set of pairwise nonisomorphic irreducible modules
for the algebra C ∼= bBk,k(n)b.

Proof: It is well-known that if u is an idempotent in an algebra A, the functor u(−)
(sometimes called the Schur functor; see [5, 6.2]) taking A-modules to u Au-modules is an
exact covariant functor which maps an irreducible module to either an irreducible module
or zero. In the particular case that A = Bk,k(n) and u = b, this functor takes the irreducible
module Mλ,µ to bMλ,µ = eMλ,µ.

Theorem 3.6 Assume n ≥ 2k. Then as a bimodule for C × g,

sl
⊗k
n

∼= eM ∼=
k⊕

r=0

⊕
λ,µ�r

eMλ,µ ⊗ L(λ, µ),

where the decomposition is into pairwise nonisomorphic irreducible modules for C × g.

Proof: This follows from the previous results and standard double-centralizer theory.

For n ≥ 2k the dimension of the irreducible C-module eMλ,µ is given by mk
λ,µ (see

Theorem 2.2).

References

1. G. Benkart, D.J. Britten, and F.W. Lemire, “Projection maps for tensor products of gl(r, C)-representations,”
Publ. RIMS, Kyoto 28 (1992), 983–1010.

2. G. Benkart, M. Chakrabarti, T. Halverson, R. Leduc, C. Lee, and J. Stroomer, “Tensor product representations
of general linear groups and their connections with Brauer algebras,” J. Algebra 166 (1994), 529–567.

3. R.A. Brualdi, Introductory Combinatorics, 3rd ed., Prentice Hall, Englewood Cliffs, N.J., 1999.
4. C.W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Vol. XI, Pure and

Applied Math, Interscience Publ. John Wiley, New York, 1962.
5. J.A. Green, Polynomial Representations of GLn , Lecture Notes in Math., Vol. 830, Springer-Verlag, Heidelberg,

1980.
6. P. Hanlon, “On the construction of the maximal vectors in the tensor algebra of gln ,” Combinatorics and Algebra

(Boulder, Colo., 1983) Contemp. Math., Vol. 34, Amer. Math. Soc., Providence R.I., 1984, pp. 73–80.
7. P. Hanlon, “On the decomposition of the tensor algebra of the classical Lie algebras,” Adv. in Math. 56 (1985),

238–282.


