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Lyubeznik’s Resolution and Rooted Complexes
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Abstract. We describe a new family of free resolutions for a monomial ideal I , generalizing Lyubeznik’s
construction. These resolutions are cellular resolutions supported on the rooted complexes of the lcm-lattice of I .
Our resolutions are minimal for the matroid ideal of a finite projective space.
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A basic problem of combinatorial commutative algebra is a construction of explicit (mini-
mal) free resolutions for a monomial ideal I in a polynomial ring R, that is, exact sequences
of R-modules:

0 → �t
∂→ �t−1

∂→ · · · ∂→ �0
∂→ R → R/I.

One approach involves constructing cellular resolutions, a notion introduced by Bayer
and Sturmfels [2]. Examples of cellular resolutions appearing in literature include Taylor
resolutions, hull complexes, and Bar resolutions.

In what follows we show that the rooted complexes of the lcm-lattice of a monomial
ideal I provide free cellular resolutions of I . Lyubeznik’s resolution [5] turns out to be
a special case of our construction. We also obtain a sufficient condition under which our
resolutions are minimal. A different generalization of Lyubeznik’s resolution using discrete
Morse theory was recently found by Batzies and Welker [1, Section 3].

We start by reviewing several facts and definitions. Let I be a monomial ideal in a
polynomial ring R over a field k, and let m1, . . . , mn be its minimal generators (that is, mi

is not a divisor of m j for any i �= j). The lcm-lattice of I is the set

L = L(I ) = {lcm{mi1 , . . . , mik } : 1 ≤ i1 < · · · < ik ≤ n}

partially ordered by divisibility (see [4]). L is an atomic lattice whose set of atoms is
L1 = {m1, . . . , mn}; a ∨ b = lcm{a, b}, a ∧ b = gcd{a, b} for a, b ∈ L; the minimal
element of L is 0̂ = 1 and the maximal element is 1̂ = lcm{m1, . . . , mn}. For σ ∈ L , the
height of σ , h(σ ), is the length of the longest maximal chain from 0̂ to σ . (In particular, all
atoms of L have height 1.) The height of L is defined via h(L) = h(1̂).

Let 	 be a simplicial complex on the vertices m1, . . . , mn . Label each face F =
{mi1 , . . . , mik } of 	 by the monomial m F = lcm{mi1 , . . . , mik } ∈ L . For σ ∈ L , de-
note by 	σ the subcomplex of 	 consisting of all faces whose label divides σ . As follows
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from [2, Proposition 1.2] (see also [6, Proposition 1.1]), a labeled complex 	 provides a
free cellular resolution of I if and only if 	σ is acyclic (over k) for every σ ∈ L . (In this
case, the free generators of the i-th module in the resolution are the labels of i-dimensional
faces of 	 (i ≥ 0), and the differential is the (homogenized) boundary map of the chain
complex C•(	). In particular, the length of the resolution is dim(	)+1.) If, in addition, for
every two simplexes F ⊂ G ∈ 	, m F �= mG , then 	 provides a minimal free resolution
of I .

Another notion we will use is the notion of a rooted complex introduced by Björner and
Ziegler [3]. A rooting map on L is a function

π : L\{0̂} → L1 = {m1, . . . , mn}

that assigns to every element σ ∈ L a monomial π (σ ) ∈ L1 that divides σ , such that
π (σ )|τ |σ implies π (σ ) = π (τ ). Given a rooting map π and a nonempty subset S of L1,
we define π̃ (S) := π (lcm{m ∈ S}). We say that a subset S of L1 is unbroken (with respect
to the rooting map π ) if π̃ (S) ∈ S, and that S is rooted if all nonempty subsets of S are
unbroken. The collection of all rooted sets for L and π , RC(L , π ), is called the rooted
complex of L . Clearly, RC(L , π ) is a simplicial complex whose vertices are m1, . . . , mn .
Moreover, we have the following result.

Theorem 1 Let I be a monomial ideal whose minimal generators are m1, . . . , mn. Let L
be the lcm-lattice of I, and let π be a rooting map on L. Then
(1) The rooted complex RC(L , π ) provides a free cellular resolution of I .
(2) The length of this resolution is ≤h(L).

Remark First, we note that there exists at least one rooting map on L . Indeed, consider
a total order on the elements of L1, say, m1 ❁ m2 ❁ · · · ❁ mn . Then π : L \ {0̂} → L1

defined by π (σ ) = min❁{mi : mi | σ } is a rooting map on L . Moreover, the free cellular
resolution given by the rooted complex RC(L , π ) coincides with Lyubeznik’s resolution
constructed in [5]. However, we remark that not every rooting map arises this way, that
is, from a total order on L1: although a rooting map π determines a canonical order on
every rooted set for π , these orders are not compatible in general (see [3, Lemma 3.5 and
Section 4]).

The proof of Theorem 1 is a consequence of the above discussion on cellular resolutions
and the following proposition.

Proposition 1 Let 	 = RC(L , π ) be a rooted complex of L , and let σ ∈ L \ {0̂}. Then
(1) 	σ is a cone with apex π (σ ). In particular, 	σ is acyclic.
(2) dim(	σ ) ≤ h(σ ) − 1.

Proof: The first statement is essentially [3, Theorem 3.2 (2)]: If F ∈ 	σ , then any subset
G of π (σ ) ∪ F is either a subset of F , and hence is unbroken, or contains π (σ ). In the latter
case, π (σ )|lcm{mi : mi ∈ G}|σ . Thus, by definition of a rooting map, π̃ (G) = π (σ ) ∈ G.
Hence, such a G is unbroken as well, implying that π (σ ) ∪ F is rooted, that is, π (σ ) ∪ F ∈
	σ .
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The proof of the second statement is by induction on h(σ ). It clearly holds if h(σ ) = 1.
Let F = {mi0 , . . . , mik } be a face of 	σ , where k ≥ 1. Consider the label of F , m F =
lcm{mi0 , . . . , mik } |σ . Since F is rooted, it follows that π̃ (F) ∈ F and m F\{π̃ (F)} is a proper
divisor of m F . Therefore, by induction hypothesis,

dim(F) = dim(F \ {π̃ (F)}) + 1 ≤ h
(
m F\{π̃ (F)}

) ≤ h(σ ) − 1.

�
We now turn to the question of when a rooted complex provides a minimal free cellular

resolution. This will require the following definitions. A finite lattice (L, ) is graded if
every maximal chain in L has the same length. A graded atomic lattice L is a geometric
lattice if it satisfies the following condition (called semimodularity)

h(x) + h(y) ≥ h(x ∨ y) + h(x ∧ y) for all x, y ∈ L . (1)

Thus, if a is an atom of a geometric lattice L, then

h(a ∨ z) = 1 + h(z) (2)

for every z ∈ L that is incomparable with a. (Indeed, since in this case a ∨ z � z, it follows
that h(a∨z) ≥ 1+h(z). On the other hand, by (1), h(a∨z) ≤ h(a)+h(z)−h(a∧z) = 1+h(z),
implying (2).)

Theorem 2 Let I be a monomial ideal whose minimal generators are m1, . . . , mn, and
let L be the lcm-lattice of I . If L is a geometric lattice, then RC(L , π ) is a minimal free
cellular resolution of I for every rooting map π .

Proof: Let π be a rooting map on L . Consider S ∈ RC(L , π ), its label mS = lcm{m ∈ S},
and the corresponding atom π (mS) = π̃ (S) ∈ S. Since S \ π̃ (S) is rooted, π (mS) does not
divide mS\π̃ (S). Therefore, Eq. (2) yields

h(mS) = 1 + h
(
mS\π̃ (S)

)
,

and we infer by induction on the size of S that h(mS) = |S| for any S ∈ RC(L , π ). Thus, if
S′ ⊂ S ∈ RC(L , π ), then mS �= mS′ , and hence RC(L , π ) provides a minimal free cellular
resolution of I . �

Application to matroid ideals

Let M be a (simple) matroid on the ground set {1, . . . , p} (we refer the reader to [8] for
definitions and facts about matroids and geometric lattices), and let M be its matroid ideal
(in the sense of [6]), that is,

M = 〈
xi1 xi2 . . . xik : {i1, . . . , ik} is a cocircuit of M

〉 ⊂ k[x1, . . . , x p].
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Thus, M is the Stanley-Reisner ring of the complex of independent sets of the dual matroid
M∗. (Equivalently, a proper square-free monomial ideal M of k[x1, . . . , x p] is a matroid
ideal if and only if for every pair of monomials m1, m2 ∈ M and any i ∈ {1, . . . , p} such
that xi divides both m1 and m2, the monomial lcm{m1, m2}/xi is in M as well.) Stanley
computed Betti numbers of matroid ideals [7, Theorem 9], and a technique for minimally
resolving such ideals was found in [6, Section 3]. However the question of existence of
minimal free cellular resolutions for (non-orientable) matroid ideals remained open. Here
we settle a special case of this question.

Let L be a geometric lattice of flats of M. Since the complements of cocircuits of M are
flats of corank 1, it follows that the lcm-lattice of a matroid ideal M , L(M), is isomorphic
to the order-dual of the geometric lattice of flats of M: L(M) ∼= Lop. Thus, if M is a
modular matroid, that is, if

h(x) + h(y) = h(x ∨ y) + h(x ∧ y) for all x, y ∈ L

(examples of modular matroids include projective geometries over finite fields), then the
lcm-lattice L(M) ∼= Lop is a geometric lattice as well. Theorem 2 then implies

Corollary 1 If M is a modular matroid, then RC(L(M), π ) is a minimal free cellular
resolution of M for every rooting map π on L(M). In particular, Lyubeznik’s resolution is
a minimal free resolution for the matroid ideal of a finite projective space.

Example Consider the Fano plane depicted in figure 1(a). Note that the poset L of rank
3, whose atoms are lines 1, 2, . . . , 7 in figure 1(a), whose coatoms are points in figure 1(a),
and where the partial order is given by reverse inclusion, is a (modular) geometric lattice.
Therefore, it is a lattice of flats of the Fano matroid M on the ground set {1, 2, . . . , 7}. To
obtain a list of flats of corank 1 of M (lines of M), with every point in figure 1(a) associate
the set of indices of lines containing it. Thus, the flats of corank 1 of M (which are also the
circuits of M) are

123, 167, 347, 257, 246, 145, 356.

(a) (b) (c)

Figure 1. a) Fano plane, b) lcm-lattice of its matroid ideal, c) the corresponding rooted complex.
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Hence the cocircuits of M are also in bijection with the points in figure 1(a): a cocircuit
corresponding to a point consists of the indices of lines not passing through this point. In
particular, the matroid ideal of M is

M = 〈m1 = x4x5x6x7, m2 = x2x3x4x5, m3 = x1x2x5x6, m4 = x1x3x4x6,

m5 = x1x3x5x7, m6 = x2x3x6x7, m7 = x1x2x4x7〉;

its lcm-lattice, L(M) ∼= Lop, is isomorphic to the lattice of flats of the Fano plane (see figure
1(b)) whose points are points in figure 1(b), and whose lines are lines in figure 1(b).

Using the symmetry of the Fano plane, we define a rooting map π on L(M) by

π (1̂) = m1, π (m5 ∨ m2 ∨ m7) = m2, π (m5 ∨ m3 ∨ m6) = m3,

π (m6 ∨ m4 ∨ m7) = m4, π (m3 ∨ m2 ∨ m4) = m2.

Equivalently, π arises from the total order m1 ❁ m2 ❁ · · · ❁ m7 on the minimal generators
of M (see Remark). The rooted complex RC(L(M), π ) is a cone with apex m1 over a 1-
dimensional complex depicted in figure 1(c). It provides a minimal free cellular resolution
of M .
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