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Abstract. We give a bound for codes over an arbitrary alphabet in a non-Hamming metric and define MDS codes
as codes meeting this bound. We show that MDS codes are precisely those codes that are uniformly distributed
and show that their weight enumerators based on this metric are uniquely determined.

Keywords: MDS codes, uniform distributions

1. Introduction

In a classical coding setting, codes are subsets of the ambient space F
n
q and are investigated

with relation to the Hamming metric. Recently, in [5] and [6] the space of Matn,s(Fq ),
the ambient space of n by s matrices with entries from Fq , was studied and bounds were
given for the minimum weight with respect to a non-Hamming metric and MDS codes in
this space were defined, with respect to this metric. In a different setting some of these
ideas were also investigated in [4], namely in terms of orthogonal arrays and association
schemes. In [2], MacWilliams relations for codes in these spaces for the naturally defined
weight enumerators were given.

In this paper we work in the ambient space of n by s matrices with entries from a finite
alphabet A. We generalize the bound given in [5], which is similar to the Singleton bound,
and examine the relationship between these codes and show that the codes meeting this
bound are precisely the codes that are distributed uniformly with respect to this metric.

1.1. Definitions and notations

Let A = {a1, . . . , aq} be any finite alphabet and Matn,s(A) denote the set of all matri-
ces with n rows and s columns with entries from A. A code is a subset of Matn,s(A).
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Note that since we are assuming no binary operations in A, we do not define a linear
code.

If ω, ω′ ∈ Mat1,s(A) with ω = (α1, . . . , αs) and ω′ = (β1, . . . , βs) then we define the
metric ρ by ρ(ω, ω′) = max{i | αi 	= βi }, and ρ(ω, ω′) = 0 if ω = ω′. For �, �′ ∈
Matn,s(A) define

ρ(�, �′) =
n∑

j=1

ρ(ω j , ω
′
j )

where ω j , ω
′
j are the j-th rows of � and �′ respectively. Certainly, the fact that the elements

are matrices is not critical to the definition of the metric. An equivalent definition can easily
be made for a vector in Ans , simply separate the coordinates into n groups of s coordinates.
Possible information theoretic applications of this metric are described in [5].

For vectors in Mat1,s(A) we not only have the triangle inequality, but more importantly
we have the stronger bound:

ρ(ω, ω′) ≤ max{ρ(x, ω), ρ(x, ω′)} ≤ ρ(x, ω) + ρ(x, ω′) (1)

The minimum distance of a code C is given by

ρ(C) = min{ρ(�, �′) | �, �′ ∈ C, � 	= �′}.

Given a code C ⊂ Matn,s(A). The following set of ns non-negative integers

wr (�′) = wr (C ; �′) = |{� ∈ C : ρ(�, �′) = r}|, r ∈ N0, 0 ≤ r ≤ ns (2)

is called the weight spectrum of the code C relative to an element �′ ∈ C . We write |E | for
the cardinality of a subset E ⊂ Matn,s(A).

The weight spectrum gives the number of elements of a code with a given ρ distance from
a specific point of reference, �′. From a coding perspective [5] and from the corresponding
notion in uniform distributions [6], we want these elements to be as far apart from each other
as possible, with respect to the metric ρ, i.e. we want the smallest ρ distance between any
two elements to be as large as possible. As with codes in the classical setting we also want the
code to be as large as possible. These are, of course, conflicting aims. Hence, what is sought
is the largest number of elements one can have and maintain a large minimum distance, or
similarly, to find the greatest possible minimum distance for a given number of elements.

In [6], it is shown that every code C ⊂ Matn,s(Fq ) with qk elements satisfies the bound
ρ(C) ≤ ns − k + 1. Codes meeting this bound were called Maximum Distance Separable
codes. In [5], it was proven that for a code C ∈ Matn,s(Fq ) with cardinality K with minimum
distance d , K ≤ qns−d+1. The proof of this theorem generalizes directly to the following
case:

Theorem 1.1 Let A be any finite alphabet with q elements and let C ⊂ Matn,s(A), be an
arbitrary code, then

|C | ≤ qns−d+1. (3)
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Proof: The proof follows exactly as the proof given in [5]. Namely, mark the first d − 1
positions lexicographically. Two elements of C never coincide in all other positions since
otherwise the distance between them would be less than d. Hence |C | ≤ qns−d+1.

Note that this result resembles the well known bound for the Hamming metric ([3],
Chapter 11).

Corollary 1.2 Let C ⊂ Matn,s(A), where |A| = q, be an arbitrary code consisting of
qk, 0 ≤ k ≤ ns, points. Then

ρ(C) ≤ ns − k + 1. (4)

Naturally, we define a code meeting this bound as a Maximum Distance Separable Code
with respect to the ρ metric (or simply MDS codes for short). This does not cause confusion
with the standard definition of MDS codes since an MDS code with respect to the Hamming
metric is simply an MDS code with respect to the ρ metric with s = 1.

2. Uniformly distributed codes

Throughout this section, C is a code with qk elements.
For a given A = (a1, . . . , an), with 0 ≤ a j ≤ s, define an elementary box centered at

� ∈ Matn,s(A) by

VA(�) = {�′ | ρ(ωi , ω
′
i ) ≤ ai , A = (a1, . . . , an)}. (5)

We shall define the volume of a box VA(�) by

Vol(VA(�)) = |VA(�)|
|Matn,s(A)| = qa1+···+an

qns
= q (a1+···+an )−ns, (6)

so that Vol(Matn,s(A)) = 1.

Let Fk be the family of elementary boxes with volume q−k . We say that a code with qk

elements, is Uniformly Distributed (abbreviated UD) if each elementary box of Fk intersects
the code in exactly one point.

In [6], it is shown that MDS codes in Matn,s(Fq ) are intimately related to uniform distri-
butions in the unit n-dimensional cube, [0, 1)n . The present situation is similar, namely we
have the following theorem.

Theorem 2.1 A code C with qk elements is an MDS code if and only if it is Uniformly
Distributed.

To prove this theorem we require two lemmas.

Lemma 2.2 Two given points X, X ′ ∈ Matn,s(A) fall simultaneously into an elementary
box belonging to the family Fk if and only if ρ(X, X ′) ≤ ns − k.



74 DOUGHERTY AND SKRIGANOV

Proof: If ρ(X, X ′) ≤ ns − k then take VA(X ) with ai = ρ(xi , x ′
i ) and then we have that

X ′ ∈ VA(X ), by the choice of the ai .

Next assume X, X ′ ∈ VA(�) for some � ∈ Matn,s(A) and A = (a1, . . . , an) with
Vol(VA(�)) = q−k , which implies that

∑
ai = ns − k, then ρ(xi , x ′

i ) ≤ max{ρ(xi , ωi ),
ρ(x ′

i , ωi )} ≤ ai , giving that ρ(X, X ′) ≤ ns − k.

Lemma 2.3 Two elementary boxes, VA(�) and VA(�′), with the same A, either coincide
or are disjoint. Therefore, Matn,s(A) can be partitioned by elementary boxes with a given A.

Proof: Consider two elementary boxes VA(�) and VA(�′). Assume the boxes are not
disjoint. Then there exists a point X ∈ VA(�) ∩ VA(�′) which implies

ρ(xi , ωi ) ≤ ai and ρ(xi , ω
′
i ) ≤ ai

for i = 1, . . . , n.

By (1), it is clear that ρ(ωi , ω
′
i ) ≤ max{ρ(xi , ωi ), ρ(xi , ω

′
i )}. This gives that � ∈ VA(�′)

and �′ ∈ VA(�).
If Y ∈ VA(�) then ρ(yi , ωi ) ≤ ai for all i . Since ρ(ω′

i , ωi ) ≤ ai for all i and ρ(yi , ω
′
i ) ≤

max{ρ(yi , ωi ), ρ(ωi , ω
′
i )} we have that Y ∈ VA(�′). Hence the two boxes are equal.

Remark In general, this lemma is not true for boxes of a fixed volume, but only when A
is fixed.

Proof of Theorem 2.1: Let C be an MDS code then, by definition, ρ(C) = ns − k + 1.
By Lemma 2.3, Matn,s(A) can be partitioned by elementary boxes VA(�). The number of
such boxes in the partition is obviously equal to qns−k . Therefore each box VA(�) contains
exactly one point of C . Hence C is uniformly distributed.

Let C be a UD code, then by definition each elementary box VA(�) ∈ Fk contains exactly
one point of C . Therefore, for any two distinct points x, x ′ ∈ C we have ρ(x, x ′) > ns − k
by Lemma 2.2. Hence ρ(x, x ′) ≥ ns − k + 1, and C is an MDS code.

For a fixed A = (a1, . . . , an), the elementary boxes VA partition the ambient space by
Lemma 2.3. If C is an MDS code then each box contains a single point. Note that this is
similar to a perfect code, except that the spheres are replaced by elementary boxes with a
fixed A.

3. Weight enumerators

In [6], a version of the following theorem is proven for codes in Matn,s(Fq ). We shall
extend the result to codes in Matn,s(A). By showing that the weight spectrum is deter-
mined for codes over an arbitrary alphabet, we show that this determination results from
a purely combinatorial argument not dependent on an algebraic structure of the underly-
ing alphabet. We shall see that only the inclusion and exclusion principle is used in the
proof.



MAXIMUM DISTANCE SEPARABLE CODES IN THE ρ METRIC 75

Before stating the next theorem we need an additional definition. We let

σs(l, r ) =
∣∣∣{A = (a1, a2, . . . , al) ∈ N

l
∣∣∣ ∑

ai = r, 0 < a j ≤ s, 1 ≤ j ≤ l
}∣∣∣. (7)

Theorem 3.1 Let C be a Uniformly Distributed (and hence MDS) code in Matn,s(A) then
weights (2) are independent of elements �′ ∈ C and wr = wr (�′) = wr (X ′) are given by

w0 = 1, wr = 0 (8)

for 0 ≤ r < ρ(C) = (n − k)s + 1, and

wr =
n∑

l=1

(
n

l

)
σs(l, r )

r−ρ(C)∑
t=0

(−1)t

(
l

t

)(
qr−ρ(C)+1−t − 1

)
(9)

= (q − 1)
n∑

l=1

(
n

l

)
σs(l, r )

r−ρ(C)∑
t=0

(−1)t

(
l − 1

t

)
qr−ρ(C)−t (10)

for ρ(C) ≤ t ≤ ns.

If the alphabet coincides with a finite field then formulas in the above theorem were found
in [6], moreover for the case of s = 1 (the Hamming metric) this result is well known [3].

We shall require a few definitions and lemmas before proving the theorem. We shall
adopt the notation given in [2].

Balls and spheres in the metric ρ were defined in ([6], Section 3) and [5] in the space
Matn,s(Fq ) and later used in [2]. We extend their definition to the present case defining them
as follows:

B(n,s)(r ) = {� ∈ Matn,s(A) | ρ(�) ≤ r} (11)

S(n,s)(r ) = {� ∈ Matn,s(A) | ρ(�) = r} (12)

We require the following lemma which was proven in a different setting (with different
notation) in [6].

Lemma 3.2 Each ball is a union of the following subsets

B(n,s)(r ) =
⋃

r1+···+rn=r

VR (13)

where R = (r1, . . . , rn) and VR = {� | ρ(ωi ) ≤ ri }, and each sphere is the union of the
following subsets

Sn,s(r ) =
⋃

r1+···+rn=r

FR (14)

where R = (r1, . . . , rn) and FR = {� | ρ(ωi ) = ri }.



76 DOUGHERTY AND SKRIGANOV

The following lemma is similar to Lemma 1.2 in [6]. However, it does not follow
from the results in [6], because now A is an arbitrary alphabet, so we include a new
proof.

Lemma 3.3 Let C be an MDS code (equivalently a UD code) with qk elements in
Matn,s(A), with |A| = q. Let A = (a1, . . . , an) then
1. VA(�) contains qk−a1−a2−···−an points of C if a1 + a2 + · · · + an ≤ k.
2. VA(�) contains at most one point of C if a1 + a2 + · · · + an > k.

Proof: (1) Let c1 + c2 + · · · + cn = k − ∑
ai , with b j = a j + c j (so that

∑
b j = k ).

We shall show that VA(�) is the disjoint union of qc1+c2+···+cn elementary boxes of volume
q−k . Since the code is UD each box contains exactly one element so the union contains
qc1+···+cn = qk−a1−···−an points.

Let B = (b1, . . . , bn) then

VA(�) =
c1+···+cn⋃

β=1

VB(�β) (15)

then VA(�) is the disjoint union of elementary boxes. We know that the VB(�β) are either
disjoint or coincide by Lemma 2.3. They have to fill the space so there are

∑
ci of these

boxes.
(2) We know that if

∑
ai > k then it is contained in an elementary box of volume q−k

so it either has 0 or 1 point in the box.

Proof of Theorem 3.1: Let C be a uniformly distributed (and hence MDS) code with qk

elements, and fix a point �′. It is clear that w0(�′) = 1, namely �′ is the only point ρ

distance 0 from �′.
For 0 ≤ r < ρ(C) = ns − k + 1, we have wr (�′) = 0 since ns − k + 1 is the minimum

ρ distance of the code.
We consider ρ weights r ≥ ns − k + 1.
By Lemma 3.2 we know that each sphere is a disjoint union of the fragments

Sn,s(r ) =
⋃

r1+···+rn=r

FR (16)

where R = (r1, . . . , rn).
Consider the fragment FR, R = (r1, . . . , rn), where l of the ri are non-zero, we note that

l > 0 since r > 0. We let J denote the set of indices that are non-zero, i.e. ri 	= 0 if and
only if i ∈ J . Then we have:

FR = VP0 (�′) −
⋃
i∈J

VP1 (�′) (17)

where

(P0)i = s − r j 1 ≤ j ≤ n (18)
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and

(Pi ) j =




s if j /∈ J

s − r j if j ∈ J and j 	= i

s − r j + 1 if j ∈ J and j = i.

(19)

Then

(P0)1 + · · · + (P0)n = ns −
∑

ri = ns − r. (20)

Let I = {i1, . . . , it } ⊂ J = {J1, . . . , jl}. Namely, we pick I to be any subset of the non-zero
entries of R.

Then we have

VAi1
(�′) ∩ · · · ∩ VAit

(�′) = VAI (�
′) (21)

where AI = (aI
1 , . . . , aI

n ) with

aI
j = max

{
ai1

j , . . . , ait
j

} =
{

s − r j j ∈ I

s − r j + 1 j ∈ I.
(22)

Notice that the following relation holds

aI
1 + · · · + aI

n = ns − r + l. (23)

Now we apply the principle of inclusion and exclusion to count C ∩ FR , i.e.

|C ∩ FR| = |C ∩ V − A0(�′)| −
l∑

t=1

∑
I⊂J

(−1)t
∣∣C ∩ VAI (�

′)
∣∣ (24)

where the inner sum is taken over all subsets I of J with cardinality t , which consists of
( l

t ) summands.
We have

|C ∩ VA(�)| =
{

qs−a1−···−an if
∑

ai < k

1 if
∑

ai ≥ k
(25)

which follows from Lemma 3.3.
Putting (25) into (24) and using the previous computations we get

|C ∩ Fr | =
r−ns−k−1∑

t=0

(−1)t

(
l

t

)
qr−ns−k−t +

l∑
t=r−ns−k

(−1)t

(
l

t

)

=
r−ρ(C)∑

t=0

(−1)t

(
l

t

)(
qr−ρ(C)+1−t − 1

)

= (q − 1)
r−ρ(C)∑

t=0

(−1)t

(
l − 1

t

)
qr−ρ(C)−t .
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Hence the relation is written as

wr =
n∑

l=1

∑
R,H (R)=l

|C ∩ FR| (26)

where the inner sum is over all FR with the Hamming weight of R equal to l. The number
of such FR is ( l

t )σs(l, r ).

As a corollary to the theorem we get the standard weight enumerators for MDS codes in
the Hamming metric by setting s = 1, see [3, 6]. When we set n = 1 we get

wr = (q − 1)
1∑

l=1

(
1

l

)
σs(l, r )

r−ρ(C)∑
t=0

(−1)t

(
l − 1

t

)
qr−ρ(C)−t

= (q − 1)qd−s+r−1.

This result can be viewed in a different way. Let C be a free linear code in Mat1,s(Zq ) with
|C | = qk , that is the code is a submodule and the free rank is equal to the rank. Moreover,
assume that the code is MDS, giving that the minimum ρ weight is s − k + 1 and that there
are vectors of all ρ weight α, with s − k + 1 ≤ α ≤ s.

Let v be a vector with a 1 in the α-th coordinate and a 0 elsewhere. The vector v is not
in C⊥ since there are non-zero vectors in C with a 1 in the α-th coordinate. Let C1 denote
the subcode of vectors of C that are orthogonal to v and note that C1 is codimension 1 in C
and contains those vectors that are 0 on the α-th coordinate. The vectors that are non-zero
on the coordinates are precisely the set C − C1. Moreover,

|C − C1| = |C | − |C1| = |C | − |C |
q

= q − 1

q
|C |. (27)

Then define Ct from Ct−1 in an analogous manner. It is clear then that Ct has cardinality
1
q |Ct−1| and that |Ck −Ct−1| = q−1

q |Ct | = q−1
qt qk = (q−1)qk−t . Then setting d = s+1−r ,

it follows then that the number of the vectors of with ρ weight r is (q −1)qk−s+r−1. In terms
of classical coding language, the k coordinates containing ρ weights can be considered as
the information symbols and the other coordinates as the redundancy. Note that the codes
are not MDS with respect to the Hamming weight, but that every code in Mat1,s(Zq ) is
equivalent to an MDS code with respect to the ρ metric. However the above result does not
require that the code is linear nor that the underlying alphabet has any algebraic structure at
all. But we see that the arbitrary code resembles the linear case in a very fundamental way.

4. Projections

Throughout this section when we say that a code is projected on a subset of coordinates,
we shall always mean that it is projected on the upper right hand corner, that is if a code
in Matn,s(A) is projected to Matn′,s ′ (A) with n′ ≤ n and s ′ ≤ s then it is projected to the
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rows 1, 2, . . . , n′ and columns s − s ′ + 1, s − s ′ + 2, . . . , s. Let π denote the projection to
Matn′,s ′ (A) where n′s ′ ≥ d .

Theorem 4.1 Let C ⊂ Matn,s(A) be an MDS code with qk elements. Suppose that s ′ ≤ s,
n′ ≤ n, and s ′n′ ≥ k. Then the projection of C onto Matn′,s ′ (A) is an MDS code.

Before proving the theorem we require a lemma.

Lemma 4.2 Let C be an MDS code in Matn,s(A), with qk elements. Then the code πC
has qk distinct elements, i.e. the projection is injective.

Proof: First of all, we note that for two arbitrary points �, �′ ∈ Matn,s(A) we have

ρ(�, �′) ≤ ρ(π�, π�′) + (s − s ′)n′ + s(n − n′) = ρ(π�, π�′) + sn − s ′n′ (28)

that follows at once from the definition of the projection π .
Assume � and �′ are two points such that π� = π�′. Then ρ(�, �′) ≤ n′(s − s ′) +

(n − n′)s = ns − n′s ′ ≤ ns − d , which contradicts that the closest any two points are with
respect to the ρ metric is ns − d + 1.

Proof of Theorem 4.1: Let � ∈ C and denote the i-th row of � by ωi . We shall use ρn,s

and ρn′,s ′ to denote the ρ metric in the Matn,s(A) and Matn′,s ′ (A) respectively.
Notice by Lemma 4.2 the projection is injective, i.e. |πC | = |C |.
We have

ρn,s(�) = ρ1,s(ω1) + · · · + ρ1,s(ωn) ≥ ns − d + 1. (29)

Case 1: s = s ′, n′ < n

ρn′,s(πn′,s�) = ρ1,s(ω1) + · · · + ρ1,s(ωn′ )

= ρ1,s(ω1) + · · · + ρ1,s(ωn) − ρ1,s(ωn′+1) − · · · − ρ1,s(ωn)

≥ ns − d + 1 − s(n − n′) = n′s − d + 1

Case 2: s ′ < s, n′ = n

ρn,s ′ =
{
ρ1,s(ω) − (s − s ′), if ρ1,s ≥ (s − s ′)
0 = ρ1,s(ω) − ρ1,s(ω), if ρ1,s(ω) < (s − s ′)

Without loss of generality, let the second relation be valid to rows j = 1, . . . , l and the
first relation be valid for rows j = l + 1, . . . , n.

Then

ρs ′,n(πs ′,n)� = ρ1,s(ω1) − ρ1,s(ω1) + · · · + ρ1,s(ωl) − ρ1,s(ωl) + ρs,1(ωl+1)

− (s − s ′) + · · · + ρs,1(ωn) − (s − s ′)
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= ρs,n(�) − ρs,1(ω1) − · · · − ρs,1(ωl) − (n − l)(s − s ′)
≥ ns − d + 1 − ρ1,s(ω1) − · · · − ρ1,s(ωl) − ns + ns ′ + ls − ls ′

= ns ′ − d + 1 + l(s − s ′) − ρ1,s(ω1) − · · · − ρs,1(ωl)

≥ ns ′ − d + 1

because ρ1,s(ω j ) ≤ s − s ′ for j = 1, . . . , l.

4.1. Existence of MDS codes over Zq

In this section, we shall use the Chinese Remainder Theorem to construct MDS codes
and show when such codes can exist. Here we shall assume that the codes are linear in
Matn,s(Zq ), i.e. the codes are submodules of Matn,s(Zq ). Let q be any integer greater than
1 with q = ∏α

i=1 pai
i , where the pi are distinct primes, and let Ci be a code in Matn,s(Zp

ai
i

).
Let

C = CRT(C1, . . . , Cα) = {
c | c

(
mod pai

i

) ∈ Ci for all i
}
.

Namely C is the Chinese Remainder Theorem applied coordinatewise on all elements of
C1 × C2 × · · · × Cα . See [1] for an application of this map to MDS codes over rings in the
Hamming metric.

Lemma 4.3 Let C be constructed as above. Then |C | = |C1| × |C2| × · · · × |Cα| and
ρ(C) ≥ min{ρ(Ci )}.

Proof: The cardinality follows immediately. If v ∈ C with ρ(c) < ρ(Ci ) for some i then
ρ(v(mod pai

i )) < ρ(Ci ) which is a contradiction unless v(mod pai
i ) = 0 with v 	= 0 which

is impossible since CRT is an isomorphism.

Lemma 4.4 Let C1, C2, . . . , Cα be MDS codes over Zp
ai
i

with |Ci | = (pai
i )k, then C =

CRT(C1, . . . , Cα) is an MDS code over Zq .

Proof: The previous lemma gives that |C | = qk and ρ(C) ≥ ns −k +1, and by the bound
(4) we have ρ(C) = ns − k + 1.

In [6], Theorem 5.1 it is shown that for each 1 ≤ k ≤ ns there exists an MDS code in
Matn,s(Fq ) with qk elements, if q ≥ n − 1. This is also shown in [5] as the construction
of Reed-Solomon m-codes. However this can easily be made to show that there exists an
MDS code in Matn,s(Zq ). Namely the code is equivalent to a uniform distribution and this
distribution is easily seen to produce an MDS code in Matn,s(Zq ). In fact, in many ways,
the relationship is more natural in this setting. Hence we have the following:

Theorem 4.5 There exists MDS codes in Matn,s(Zq ) for q ≥ 2, with q = ∏
pai

i , and
pai

i ≥ n − 1, where the pi are distinct primes, with qk elements for all k with 1 ≤ k ≤ ns.

Proof: Follows from the above discussion with the previous two lemmas.
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