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Abstract. We introduce the notion of a t-design on the Grassmann manifold Gm,n of the m-subspaces of the
Euclidean space R

n . It generalizes the notion of antipodal spherical design which was introduced by P. Delsarte,
J.-M. Goethals and J.-J. Seidel. We characterize the finite subgroups of the orthogonal group which have the
property that all its orbits are t-designs. Generalizing a result due to B. Venkov, we prove that, if the minimal
m-sections of a lattice L form a 4-design, then L is a local maximum for the Rankin function γn,m .
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1. Introduction

The notion of strongly perfect lattice is due to Boris Venkov. It is a subclass of the extreme
lattices, i.e. of the lattices on which the Hermite function is a local maximum, distinguished
by a combinatorial property of its minimal vectors. Namely, its minimal vectors form a set
which is a 4-spherical design in the sense of [4].

In this paper, we introduce an analogous notion of t-design on the Grassmann manifold
Gm,n of the m-subspaces of the Euclidean space R

n . To this aim we use the decomposition of
the O(n)-module L2(Gm,n) of square integrable functions on Gm,n into a sum of irreducibles
and the calculation of unique elements in each of the irreducible subspaces as zonal functions
which is performed in [8] (see Section 3). The next section gives various criteria for t-
designs on Gm,n; in particular we characterize the finite subgroups of O(n) whose orbits
on the grassmannians are always t-designs. If the minimal m-sections of a lattice L form
a 4-design, we call the lattice L strongly m-perfect. Using the description of m-extreme
lattices repeated in Section 5, we show that the strongly m-perfect lattices are m-extreme.
The final section gives lower bounds for the minima of strongly m-perfect lattices.

2. The Grassmann manifold

The Grassmann manifoldGm,n is the manifold of m-dimensional subspaces of the Euclidean
space R

n . It is a homogeneous space for the action of the orthogonal group O(n) := O(Rn).
The stabilizer of a given m-subspace p is isomorphic to O(m) × O(n − m) (since an
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orthogonal transformation which preserves p also preserves p⊥). The manifold Gm,n is
compact, and therefore endowed with its Haar measure µ. The space of square-integrable
real valued-functions L2(Gm,n) is endowed with the usual scalar product

〈 f1, f2〉 =
∫
Gm,n

f1(x) f2(x) dµ(x).

In order to parametrise the orbits of pairs of grassmannians under O(n), we have to
introduce principal angles between subspaces. We collect some rather well-known facts
about this notion (see [2], or [6] p. 584). Let m ≤ q ≤ n/2 and (p, p′) ∈ Gm,n × Gq,n .
Denote by prp (resp. prp′) the orthogonal projection on p (resp. p′). As v varies overp′, the
function v �→ ‖prp(v)‖

‖v‖ admits m critical values 0 ≤ tm = cos θm ≤ · · · ≤ t1 = cos θ1 ≤ 1.
Moreover, one can construct orthonormal bases {ui } and {vi } of p and p′ such that ui ·vi = ti
for 1 ≤ i ≤ m, and ui · v j = 0 if i �= j . Completing {ui } to an orthonormal basis B of R

n ,
and writing down the n × q generating matrix M of p′ in this basis, we get:

M =




cos θ1 0 . . . 0 ∗ . . . ∗
0 cos θ2 . . . 0 ∗ . . . ∗
...

...
...

...
...

0 0 . . . cos θm ∗ . . . ∗
sin θ1 0 . . . 0 ∗ . . . ∗

0 sin θ2 . . . 0 ∗ . . . ∗
...

...
...

...
...

0 0 . . . sin θm ∗ . . . ∗
0 0 . . . 0 ∗ . . . ∗
...

...
...

...
...

0 0 . . . 0 ∗ . . . ∗




(1)

In particular, the m-tuple (cos θ1, . . . , cos θm) characterizes the O(n)-orbit of the pair (p, p′).
The yi := cos2 θi may be calculated as the first m eigenvalues, in decreasing order, of

the endomorphism prp ◦ pr′p (or pr′p ◦ prp). Alternatively, if {ei }1≤i≤m and { fi }1≤i≤q are any
bases of p and p′, the yi are just the eigenvalues of the m × m matrix:

(ei · e j )
−1(ei · f j )( fi · f j )

−1( fi · e j ) (2)

3. Decomposition of L2(Gm,n) and intertwining functions

In this section we decompose the O(n)-module L2(Gm,n) into irreducible submodules.
Replacing any subspace p ∈ Gm,n by its orthogonal complement, we may assume that
m ≤ n

2 . We shall make use of several classical results of representation theory, for which
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we refer to the book of Goodman and Wallach [7] and Fulton and Harris [5]. Following [7],
Fµ

n denotes the irreducible module of GL(n, R) of highest weight
∑n

i=1 µi Li , where µ is
a partition µ = µ1 ≥ µ2 ≥ . . . µn ≥ 0 in at most n-parts (cf. [5, Proposition 15.15]).

Definition 3.1 The degree of a partition µ is deg(µ) := ∑
i µi , and the depth of µ is

depth(µ) := max{i | µi �= 0}.

If depth(µ) ≤ n
2 , then the restriction of Fµ

n to the orthogonal group O(n) contains a unique
irreducible submodule V µ

n , which does not occur in the spaces Fκ
n , with deg(κ) < deg(µ).

The representation V µ
n is associated to the partition µ as described in [5, Section 19.5].

From [7, Section 12.3.2] (pp. 544–547) (where they show the analogous assertion for
SO(n)) one gets the following theorem:

Theorem 3.2 Let m ≤ n
2 . Then the O(n)-space L2(Gm,n) is isomorphic to

L2(Gm,n) �
⊕

V µ
n (3)

where the sum is over the µ of depth at most equal to m, with all the µi ≡ 0 mod 2.

Definition 3.3 Denote the unique submodule of L2(Gm,n) isomorphic to V µ
n by Hµ

m,n .

Let p0 be the m-subspace generated by the first m elements of the canonical basis of R
n .

Then the stabilizer of p0 in O(n) is Stab(p0) ∼= O(m) × O(n − m) and L2(Gm,n) is the
induced module from the trivial O(m)× O(n −m)-module. Hence by Frobenius reciprocity
[7, 12.1.8] each of the irreducible O(n)-subspaces Hµ

m,n contains a (up to scalar multiples)
unique zonal function Pµ, i.e. a function that is invariant under O(m) × O(n − m).

In the following we give a more precise description of Hµ
m,n and explain a strategy used

in [8] to calculate Pµ.
We fix the following notations which we will keep for the rest of the paper: for all m,

n ∈ N, let Mn,m denote the vector space of n × m matrices with real coefficients, and SMm

the vector space of the real symmetric m × m matrices.
We consider the spaces of homogeneous polynomials of degree k in the coefficients of

these matrices, denoted by Homk(Mn,m) and Homk(SMm). The group GL(m, R) acts on
Homk(SMm) by (g · f )(S) = f (gt Sg), and the product GL(n, R) × GL(m, R) acts on
Homk(Mn,m) by ((g, h) · f )(M) = f (gt Mh).

The decomposition of the GL(n, R)-module Homk(SMn) is given by ([7, Theorem 5.2.9]):

Homk(SMn) �
⊕

Fµ
n (4)

where the sum is over the µ of depth ≤ n such that µi is even for all i and deg(µ) = 2k.
It is worth noticing here that the space of polynomials ⊕kHomk(SMn) is isomorphic to the
space of polynomial functions on the real symmetric positive definite matrices S+

n . This
set is homogeneous for the action of GL(n, R), and the stabilizer of the identity matrix is
the orthogonal group. So the polynomial functions are the induced module from O(n) to
GL(n, R) of the trivial one.
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The decomposition as a GL(n, R) × GL(m, R)-module of Homk(Mn,m) is ([7, Theorem
5.2.7]):

Homk(Mn,m) �
⊕

Fµ
n ⊗ Fµ

m (5)

where the sum is over the µ of depth at most equal to min(m, n), and of degree equal to k.
From (4) and Frobenius reciprocity, the space of O(n)-invariant elements in Fµ

n is one-
dimensional if and only if µi is even for all i , so, as a GL(n, R)-module:

Homk(Mn,m)O(m) �
⊕

Fµ
n (6)

where the sum is over the µ of depth at most equal to min(m, n) with all the µi ≡ 0 mod 2
and deg(µ) = k (and hence k is even otherwise this space is reduced to 0).

Let p ∈Gm,n be a m-subspace of R
n . We associate to p a n×m matrix X p of an orthonormal

basis of p. Changing the basis amounts to multiplying X p on the right by an element of
O(m), so we can define a mapping:

π : Hom2k(Mn,m)O(m) −→ L2(Gm,n) (7)

f �−→ π f : π f (p) = f (X p)

which commutes with the action of O(n).
If X is a n × m matrix, we denote by X1 the m × m matrix X1 = (Xi, j ) 1≤i≤m

1≤ j≤m
. The map:

τ : Mn,m → SMm defined by τ (X ) = X1 Xt
1 induces a map:

τ ∗ : Homk(SMm) −→ Hom2k(Mn,m)O(m) (8)

Note that τ ∗ sends the degree k polynomials on SMm to degree 2k polynomials on Mn,m ;
one checks easily that its image is contained in the {1} × O(m)-invariant polynomials.

Frobenius reciprocity theorem [7, 12.1.8] asserts that, since the multiplicity of Fµ
m is

one in Homk(SMm), there is up to a multiplicative scalar one zonal function in Fµ
m , which

we denote by Cµ. We have Cµ(S) = cµ(λ1, . . . , λm) where cµ is a symmetric polynomial
homogeneous of degree k (because we can take S diagonal) and (λ1, . . . , λm) are the
eigenvalues of S. We normalize cµ by cµ(1, 1, . . . , 1) = 1. The explicit computation of cµ

is given in [8].

Definition 3.4 Let Cµ ∈ L2(Gm,n) denote the image of the zonal function Cµ above under
the mapping πτ ∗.

The following lemma describes the space of Stab(p0)-invariant functions in L2(Gm,n).

Lemma 3.5 The mapping πτ ∗ yields an isomorphism between the O(m)-invariant ele-
ments of Homk(SMm) and the Stab(p0)-invariant elements in the image of π .

Proof: It is easy to see that the Stab(p0)-invariant polynomial functions in the image of
π are the symmetric polynomials in the squares y1, . . . , ym of the cosines of the principal
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angles of p and p0. From (2), the yi are the eigenvalues of the symmetric matrix X p,1 Xt
p,1 ∈

SMm , so such a function is the image by πτ ∗ of an element of Homk(SMm), which is a
polynomial in the eigenvalues of the matrix.

Since the orbits of O(m) on S+
m are characterized by the set of the eigenvalues of the

matrix, the O(m)-invariant functions in Homk(SMm) are the symmetric polynomials in the
eigenvalues of the matrices (and the mapping R[Y1, . . . , Ym]Sm → (⊕kHomk(SMm))O(m) is
an isomorphism). The possible values for (y1, . . . , ym) are [0, 1]m so a polynomial which
takes the value zero for all p ∈ Gm,n is zero himself, and the mapping is injective.

We have the following commutative diagram of O(n)-modules:

(9)

where the vertical arrow is the multiplication by the degree 2 polynomial
∑

i, j X2
i, j . It shows

that π (Hom2k−2(Mn,m)O(m)) ⊂ π (Hom2k(Mn,m)O(m)). Let us denote

H2k := π
(
Hom2k(Mn,m)O(m)

) ≤ L2(Gm,n).

Then

H2k = H2k−2 ⊥ W2k (10)

Proposition 3.6 For a partition µ of 2k, let P̃µ be the projection of Cµ ∈ H2k = H2k−2 ⊕
W2k to W2k . Then P̃µ is a nonzero Stab(p0)-invariant function in Hµ

m,n and hence P̃µ is (up
to a scalar multiple) the zonal function Pµ above. Moreover, the subspace Hµ

m,n is the image
by π of the (unique) subspace of Hom2k(Mn,m)O(m) isomorphic to V µ

n .

Proof: It is clear that P̃µ is Stab(p0)-invariant. Since P̃µ is Cµ minus a linear combination
of Cκ with

∑n
i=1 κi < 2k, it follows from Lemma 3.5 that P̃µ is non zero. Let Xµ be the

projection of Fµ
n to W2k . Then Xµ is a O(n)-submodule of L2(Gm,n) which contains P̃µ. By

construction and Lemma 3.5 Pµ is the unique O(m) × O(n − m)-invariant function in Xµ,
which implies that Xµ is an irreducible O(n)-module not isomorphic to a submodule of
H2k−2. By induction we may assume that H2k−2 � ⊕V µ

n where the sum is over the µ with
µi even and

∑m
i=1 µi ≤ 2k − 2. With Theorem 3.2 one now sees that Xµ is isomorphic to

V µ
n and hence Xµ = Hµ

m,n .

It is sometimes more convenient to view the zonal functions as functions on Gm,n ×Gm,n .
More generally, for m ≤ q ≤ n

2 , one can consider the space

Zm,q := {Z : Gm,n × Gq,n → R | Z (g(p), g(p′)) = Z (p, p′) ∀ g ∈ O(n),
(11)

s.t. Z (p, ·) ∈ L2(Gq,n), Z (·, p′) ∈ L2(Gm,n) ∀ p ∈ Gm,n, p′ ∈ Gq,n}.
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If m = q , then any function Z ∈ Zm,m yields a zonal function Z (p0, ·) for the stabilizer
of p0. In particular Zm,m contains a unique function Pm,m

µ with Pµ(p) = Pm,m
µ (p0, p) for

all p ∈ Gm,n .
We also need functions Pm,q

µ which relate the spaces L2(Gm,n) and L2(Gq,n) for m ≤ q ≤
n
2 . The fact that the spaces L2(Gm,n) and L2(Gq,n) each contain the irreducible module V µ

n

(for the partitions µ in even parts and of depth at most m) with multiplicity one means for
Zm,q that there exists a unique (up to a multiplicative factor, which we choose in the case
m = q so that Pm,m

µ (p, p) = 1) non zero element Pm,q
µ in Zm,q , such that for all p ∈ Gm,n ,

Pm,q
µ (p, ·) belongs to Hµ

q,n , and for all p′ ∈ Gq,n , Pm,q
µ (·, p′) belongs to Hµ

m,n . This element
is computed explicitly in [8, Theorem 15.1] and has the general form

Pm,q
µ =

∑
κ≤µ

λm,q
µ,κ Cκ . (12)

where κ ≤ µ means that κi ≤ µi for all i . The method used in [8] is to look for eigenvectors
of the Laplace-Beltrami operator on the space R[Y1, . . . , Ym]Sm .

We shall keep the notation Pm,m
µ = Pµ. Since the Pm,q

µ are constant on the orbits of
O(n) on Gm,n × Gq,n and these orbits are characterized by the principal angles between the
subspaces, there is a symmetric polynomial pm,q

µ ∈ R[Y1, . . . , Ym]Sm with Pm,q
µ (p, p′) =

pm,q
µ (y1, . . . , ym), where the yi are the squares of the cosines of the principal angles of p

and p′.
In view of our applications, we give the explicit expressions of a few of the polynomials

Pm,q
µ (p, p′) = pm,q

µ (y1, . . . , ym), normalized by pm,m
µ (1, . . . , 1) = 1, respectively the poly-

nomials cµ. The indices of p and c are the (at most m) non zero parts of the corresponding
partitions µ. Note that m ≤ q ≤ n

2 .

c2 = 1

m

m∑
i=1

yi

pm,q
2 = q

q − n
− n

q − n
c2

c4 = 3

m(m + 2)

( ∑
1≤i≤m

y2
i + 2

3

∑
1≤i< j≤m

yi y j

)
(13)

pm,q
4 = p′

4/p′
4(1 . . . 1), where p′

4 = 1 − 2(n + 2)

q
c2 + (n + 2)(n + 4)

q(q + 2)
c4

c22 = 2

m(m − 1)

∑
1≤i< j≤m

yi y j

pm,q
22 = p′

22/p′
22(1 . . . 1), where p′

22 = 1 − 2(n − 1)

q
c2 + (n − 1)(n − 2)

q(q − 1)
c22

It is a classical fact that the Pm,q
µ can also be constructed in the following way: Let µ be

a fixed partition, with depth(µ) ≤ m, and let d be the dimension of V µ
n . Let (e1, . . . , ed ) be

an orthonormal basis (for the O(n)-invariant scalar product 〈 f, g〉 := ∫
Gm,n

f (x)g(x)dµ(x),
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where µ is the Haar measure for O(n)) of Hµ
m,n and let σ : Hµ

m,n → Hµ
q,n be an isomorphism

of O(n)-modules. Define

Zm,q
µ (p, p′) := 1

d

d∑
i=1

ei (p)σ (ei )(p′). (14)

This definition is independent of the choice of the basis because another orthonormal basis
differs from (e1, . . . , ed ) by an orthogonal matrix of size d; another isomorphism between
the subspaces Hµ

m,n and Hµ
q,n differs from σ by a multiplicative scalar. By construction,

Zm,q
µ (p, ·) ∈ Hµ

q,n and Zm,q
µ (·, p′) ∈ Hµ

m,n . If g ∈ O(n), (g · e1, . . . , g · ed ) is again an or-
thonormal basis of Hµ

m,n , so from the last remark we have Zm,q
µ (g(p), g(p′)) = Zm,q

µ (p, p′).
Moreover, in the case m = q , the value Zµ(p, p) is independent of p because O(n) is tran-
sitive on Gm,n , and from (14), Zµ(p, p) = 〈Zµ(p, p), 1〉 = 1

d

∑d
i=1〈ei , ei 〉 = 1, so Zµ = Pµ.

The expression (14) shows that the operator f → ∫
Zm,q

µ (p, p′) f (p′)dµ(p′) maps f ∈
Hµ

q,n to f ∈ Hµ
m,n , and commutes with the action of O(n).

4. t-designs and examples

In this section, we define the designs in the Grassmannian spaces. Our definition generalizes
the notion of spherical designs given in [4].

Definition 4.1 Let D be a finite subset of Gm,n , and let t be an even number. We say that
D is a t-design if

∑
p∈D f (p) = 0 for all f ∈ Hµ

m,n and for all µ with 2 ≤ deg(µ) ≤ t .

Proposition 4.2 The following assertions are equivalent, where t is an even integer, and
D ⊂ Gm,n.
1. D is a t-design
2. 1

|D|
∑

p∈D f (p) = ∫
Gm,n

f (x)dµ(x) for all f ∈ Ht , where Ht is the subspace of L2(Gm,n)

spanned by all Hµ
m,n with deg(µ) ≤ t .

3. For all µ such that 2 ≤ deg(µ) ≤ t and 1 ≤ depth(µ) ≤ m, there exists m ′, depth(µ) ≤
m ′ ≤ m such that

∑
p∈D Pm ′,m

µ (p′, p) = 0 for all p′ ∈ Gm ′,n.
4. For all µ such that 2 ≤ deg(µ) ≤ t and 1 ≤ depth(µ) ≤ m, there exists m ′, depth(µ) ≤

m ′ ≤ m such that
∑

p∈D Cµ(p′, p) = αµ for all p′ ∈ Gm ′,n, where αµ is independent of
the choice of p′ ∈ Gm ′,n.

5.
∑

p1,p2∈D Pµ(p1, p2) = 0, for all µ with 2 ≤ deg(µ) ≤ t .

Proof: 1 ⇒ 2. Let f ∈ Ht . We can write f = f1 + f0, where f1 ∈ ⊕2≤deg(µ)≤t Hµ
m,n and

f0 ∈ H 0...0
m,n = R1 (where 1 denotes the constant function taking the value one on all the

elements of Gm,n). So f = f1 + λ1 and
∫
Gm,n

f (x)dµ(x) = 〈 f, 1〉 = λ〈1, 1〉 = λ. Since∑
p∈D f1(p) = 0, we obtain 2.

2 ⇒ 3. We can take f = Pm ′,m
µ (p′, ·) and use Pm ′,m

µ (p′, ·) ∈ Hµ
m,n which is orthogonal

to 1.
3 ⇒ 4. Clearly, from (12) we have Cµ(p′, p) = ∑

κ≤µ βκ,µ Pm ′,m
κ (p′, p) for some βκ,µ ∈

R (also depending on m ′, m). Since Pm ′,m
0 (p′, p) = 1, we have

∑
p∈D Cµ(p′, p) = β0,µ|D|.
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4 ⇒ 1. From (12), the same property holds for Pm ′,m
µ (p′, p); but Pm ′,m

µ (·, p) belongs to
Hµ

m ′,n , which is orthogonal to 1 if deg(µ) �= 0. So we have
∑

p∈D Pm ′,m
µ (p′, p) = 0, for all

p′ ∈ Gm ′,n and for all µ with 2 ≤ deg(µ) ≤ t . On the other hand, Pm ′,m
µ (p′, ·) ∈ Hµ

m,n which
is O(n)-irreducible, so Hµ

m,n is spanned by the images by O(n) of this element. Clearly,
g · Pm ′,m

µ (p′, ·) = Pm ′,m
µ (g(p′), ·) for all g ∈ O(n), and we have proved that D is a t-design.

3 ⇒ 5 is obvious, taking m ′ = m (note that we have proved that 3. is equivalent to 1.,
which does not depend on m ′, so we can freely choose m ′ = m).

5 ⇒ 3. We show that 3. holds for m ′ = m, which is enough. Let us define P :=∑
p∈D Pµ(p, ·). In order to prove that P = 0, we show that 〈P, P〉 is equal to a constant

times
∑

p1,p2∈D Pµ(p1, p2). It follows from the lemma:

Lemma 4.3 For all µ, there exists a constant rµ such that, for all f ∈ Hµ
m,n , 〈 f, rµ Pµ

(p, ·)〉 = f (p).

Proof: The operator f → ∫
Pm,q

µ (p, p′) f (p′)dµ(p′) maps Hµ
m,n into Hµ

q,n , and commutes
with the action of O(n) (see the end of Section 3). Since Hµ

m,n is irreducible, it is homothetic,
which is exactly a rephrasement of the lemma.

Corollary 4.4 If D is a t-design, then (3) of Proposition 4.2 holds for all m ′ ≤ m and all
even partitions µ of degree ≤ t in at most m ′ parts.

Some t-designs in Gm,n can arise as orbits under a finite subgroup of O(n) whose repre-
sentations have special properties.

Theorem 4.5 Let G be a finite subgroup of O(n). Let m0 ≤ n/2 be a fixed integer. The
following properties are equivalent:
1. For all m ≤ m0, and for all p ∈ Gm,n, the orbit G · p of p under the action of G is a

2k-design.
2. The representation of G provided by the subspace of Homk(SMn) isomorphic to

⊕µ even, depth(µ)≤m0 Fµ
n contains the trivial character as many times as O(n) itself.

Proof: We consider the mappings:

Homk(SMn)
τ ∗

1−→ Hom2k(Mn,m)O(m) π−→ L2(Gm,n) (15)

where τ ∗
1 is the GL(n, R)-morphism defined by: τ ∗

1 P(X ) = P(X Xt ). The surjectivity of
τ ∗

1 is a classical result of invariant theory (see [7, Ch. 4]). From the decompositions (4) and
(6), we see that its kernel is the sum of the Fµ

n with depth(µ) > m.
Assume the condition 2. holds. Then, H G

2k = R1. Let us consider, for µ with 2 ≤
deg(µ) ≤ 2k, S := ∑

g∈G g · Pµ(·, p); S is G-invariant and belongs to Hµ
m,n so S = 0. So,

for all p′ ∈ Gm,n ,
∑

g∈G Pµ(g(p′), p) = 0, which is equivalent to
∑

g∈G Pµ(p′, g−1(p)) = 0,
which from Proposition 4.2 (3). means that G · p is a 2k-design.

Conversely, we assume that the subspace of Homk(SMn) isomorphic to ⊕µ,depth(µ)≤m0 V µ
n

contains a G-invariant element which is not O(n)-invariant. We can assume that k is minimal
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and non zero for this property. Let µ of minimal depth m (m ≤ m0), such that the submodule
of Homk(SMn) isomorphic to Fµ

n in (4) contains a non zero G-invariant element. Because
k is minimal, this element belongs to the O(n)-submodule of Fµ

n isomorphic to V µ
n . Hence

its image by πτ ∗
1 is a non zero G-invariant element in Hµ

m,n (see Proposition 3.6). Let us
call it f ; there exists p ∈ Gm,n such that f (p) �= 0, which by definition prevents G · p from
being a 2k-design.

Remark 4.6

• When m0 = 1, one recovers the usual criterion for the orbits of a group on the unit sphere
modulo {±1} to be spherical designs, since F (2k)

n � Sym2k(Rn).
• The condition 2. in previous theorem is equivalent to the condition: dim((Fµ

n )G) = 1 for
all partition µ, which are even, of degree 2k and depth at most m0

• The multiplicity of the trivial character for O(n) in ⊕Fµ
n where the sum is over the

partitions µ which are even, of degree 2k and depth at most m0 is clearly equal to the
number of partitions of k into at most m0 parts, since dim(Fµ

n )O(n) = 1 from Frobenius
theorem.

We point out two corollaries of Theorem 4.5. The first one is trivial but leads to several
interesting examples, and the second one links to a condition on the representations of G
which appeared in [9].

Corollary 4.7 Let G be a finite subgroup of O(n). The following properties are equivalent:
1. For all m ≤ n/2, and for all p ∈ Gm,n, the orbit G · p of p under the action of G is a

2k-design.
2. The representation of G provided by Homk(SMn) contains the trivial character as many

times as O(n) itself.

Examples The representation afforded by Homk(SMn) is isomorphic to the representation
Symk(Sym2(V )), where V is the natural representation of the group G; standard formulas
compute its character from the character of G, and hence the multiplicity of the trivial
character in it. This computation shows that the condition 2. of Theorem 4.5 holds for
Aut(D4) and k ≤ 2, Aut(E6) and k ≤ 2, Aut(E7) and k ≤ 2, Aut(E8) and k ≤ 3, Aut(K12)
and k = 1, Aut(BW16) and k ≤ 3, Aut(�24) the Leech lattice and k ≤ 5. In the cases
D4, E6, E7, E8, BW16 and �24, the lowest degree G-invariant polynomial appears for a
partition µ of depth equal to 1, so the degree of the design afforded by the m-sections of the
lattice is the same as the degree of the design on the minimal vectors (which is known from
[1, 11]). In the case of the Coxeter-Todd lattice K12, the minimal vectors form a 4-design,
but a G-invariant polynomial appears for µ = (2, 2, 0, . . . , 0). One can check that the two
orbits of G on the minimal planes of the lattice (of cardinality 5040 and 126) do not form
4-designs (nor their union).

Corollary 4.8 Let G be a finite subgroup of O(n). The following properties are equivalent:
1. For all p ∈ G1,n ∪ G2,n, the orbit G · p of p under the action of G is a 2k-design.
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2. The representation of G provided by Sym2(Symk(Rn)) contains the trivial character as
many times as O(n) itself.

Proof: There is an isomorphism of GL(n, R)-modules between the spaces Hom2k

(Mn,2)O(2) and Sym2(Symk(Rn)) (if X ∈ Mn,2, consider Sj = X j,1 + i X j,2 and Tj = X j,1 −
i X j,2; one easily sees that the O(2)-invariant homogeneous of degree 2k polynomials in
the Xi, j are the polynomials which are of degree k in Si and in Tj and invariant under the
exchange (Si , Ti )).

The condition 2 of Corollary 4.8 is the same as the condition (ii) of [9, Theorem 2.6].
In particular, the almost irreducible groups listed in [9] give rise to 4-designs in both the
grassmannians G1,n and G2,n . When G is the automorphism group of a lattice L , the lattice
is strongly 1- and 2-perfect (see next section).

5. The Rankin function γn,m

Beside the classical Hermite function γ (= γ1 in what follows), Rankin [10] defined a
collection of functions γm , in the following way: let L be a lattice in a Euclidean space E ,
endowed with a scalar product denoted x · y, and m an integer in {1, . . . , n}. One defines

δm(L) = inf
p∈L(m)

det p, (16)

in which L(m) stands for the set of m-dimensional sublattices of L , and

γm(L) = δm(L)/(det L)
m
n (17)

Thus, for m = 1, γ1(L) is the classical Hermite invariant of L . It can be proved ([10])
that γm is bounded as a function on the set of n-dimensional positive definite lattices. The
supremum, which actually is a maximum, is denoted by γm,n . In [3], a notion of m-perfection
and m-eutaxy were proposed, which we recall below, and a characterization of the local
maxima of γm was derived.

We define the set of minimal m-sections of L as

Sm(L) = {p ∈ L(m) | det p = δm(L)} (18)

which is a finite set. If p is a m-section, we denote by prp the orthogonal projection on p,
seen as an element of the space Ends(E) of the symmetric endomorphisms of the Euclidean
space E . We recall the definitions given in [3]:

Definition 5.1

1. A lattice L is called m-perfect if the endomorphisms prp generate Ends(E).
2. A lattice L is m-eutactic if there exist positive coefficients λp, p ∈ Sm(L) such that∑

p∈Sm (L) λpprp = I d.
3. A lattice L is called m-extreme, if γm achieves a local maximum at L .
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Recall ([3, Theorem 3.2.3]) that L is m-extreme if and only if L is both m-perfect and
m-eutactic.

6. Strongly m-perfect lattices

In this section, we study the connection between the notion of design on grassmannians
introduced in Section 4, and the Rankin invariant of lattices. Our goal is to generalise the
result of Boris Venkov, which asserts that, if the minimal vectors of a lattice are a 4-spherical
design, i.e. a 4-design in G1,n , then this lattice is a local maximum of the Hermite function
([12, Theorem 6.4]).

Definition 6.1 Let L be a lattice of dimension n, and let Sm(L) ⊂ Gm,n be the set of its
minimal sections of dimension m. We say that L is strongly m-perfect if Sm(L) is a 4-design
in the sense of Definition 4.1.

Examples The lattices D4, E6, E7, E8, BW16, �24 are strongly m-perfect for all m ≤ n/2
from Section 4. The Coxeter-Todd lattice, which is strongly 1-perfect [1], is not strongly 2-
perfect (see the examples in Section 4). Despite of that, the associated orthogonal projections
span the space of symmetric endomorphisms, and the lattice is 2-extreme.

Theorem 6.2 If L is strongly m-perfect, then it is m-extreme, i.e. it achieves a local
maximum of the Rankin function γm.

Proof: We use the characterization of m-extreme lattices recalled in Section 5. If p belongs
to Gm,n , we denote, as in Section 5, prp the orthogonal projection on p. The space Ends(E)
is endowed with the usual scalar product A · B = trace(AB). The main ingredient for the
proof is the following remark: for all p, p′ in Gm,n , mC2(p, p′) = prp · pr′p, and it is obvious
in view of Section 2 and from the expression of c2 (13).

We first prove that, if Sm(L) is a 2-design, then L is m-eutactic. To that end, we prove
that

∑
p∈Sm (L) prp = λI d for some λ ∈ R. It is worth noticing that λ is forced to be positive

because prp · I d = m, and hence λ = |Sm(L)|m/n. Because Ends(E) is generated by all the
prp′ when p′ runs overGm,n , it is enough to prove that, for all p′ ∈ Gm,n ,

∑
p∈Sm (L) prp·prp′ =

λI d · prp′ , which is equivalent to
∑

p∈Sm (L) C2(p, p′) = λ. But this last condition is exactly
the condition 4. of Proposition 4.2.

Let C := (C2(p, p′))p,p′∈Sm (L). Since the Gram matrix of the projections prp equals mC ,
the m-perfection is equivalent to the property that C has rank equal to dim Ends(E) =
n(n +1)/2. Let J denote the matrix with all coefficients equal to 1. The property that Sm(L)
is a 4-design actually leads to a linear relation between C , C2 and J .

Lemma 6.3 Assume Sm(L) is a 4-design and let C := (C2(p, p′))p,p′∈Sm (L). Let d :=
dim(H 2

m,n) = n(n + 1)/2 − 1 and let sm := |Sm(L)|. Then

C2 = sm

(
n − m

nd
C + m2d + m2 − nm

n2d
J

)
. (19)
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Proof: We introduce the matrix P := (P2(p, p′))p,p′∈Sm (L) where P2 = Zm,m
2 is defined

in (14) and we compute P2. For all p, p′ in Sm(L),

P2(p, p′) =
∑

p′′∈Sm (L)

P2(p, p′′)P2(p′′, p′)

= 1

d2

∑
p′′∈Sm (L)

∑
i, j

ei (p)ei (p′′)e j (p′′)e j (p′)

= 1

d2

∑
i, j

ei (p)e j (p′)
∑

p′′∈Sm (L)

ei (p′′)e j (p′′). (20)

Clearly, the function p → ei (p)e j (p) belongs to H4. According to the decomposition
H4 = R1 ⊥ H 2

m,n ⊥ H 22
m,n ⊥ H 4

m,n , ei e j = λ01 + f2 + f22 + f4. Because Sm(L) is assumed
to be a 4-design, the sums

∑
p′′∈Sm (L) f2(p′′),

∑
p′′∈Sm (L) f22(p′′),

∑
p′′∈Sm (L) f4(p′′) are equal

to zero. Moreover, since δi, j = 〈ei , e j 〉 = 〈ei e j , 1〉 = λ0〈1, 1〉 = λ0,

P2(p, p′) = 1

d2

∑
i

ei (p)ei (p′) sm

= sm

d
P(p, p′) (21)

and we have proved the matrix relation P2 = sm
d P . In order to prove the lemma, we need

to compute C in terms of P and J . From (13) we have

C = m

n
J + n − m

n
P. (22)

Finally, the property that JP = PJ = 0, which holds because Sm(L) is a 2-design, together
with (21) and (22) ends the proof of the lemma.

The matrices C , C2, J are real symmetric matrices which pairwise commute, so they
are simultaneously diagonalizable. The eigenvalues of J are sm with multiplicity one, and
0. Let us denote λ1, λ2, . . . the eigenvalues of C , where λ1 corresponds to the eigenvector
(1, 1, . . . , 1). From the identity CJ = m/n J 2 = smm/n J , we derive λ1 = smm/n. From the
identity (19), for i ≥ 2, λ2

i = sm
n−m
nd λi , so λi = 0 or λi = sm

n−m
nd . Let us denote k the

multiplicity of sm
n−m
nd . We have trace(C) = sm = sm

m
n +ksm

n−m
nd , from which k = d. Finally,

the rank of the matrix C is equal to 1 + d = n(n + 1)/2 = dim(Ends(E)), which ends the
proof of the theorem.

7. Bounds for the minima

In this section we obtain analogous bounds as the ones given in [12 Théorème 10.4]. There
it is shown that for a strongly 1-perfect lattice L , the product of the minima of the lattice L
and its dual lattice satisfies min(L)min(L∗) ≥ n+2

3 .
Using analogous methods we obtain



DESIGNS IN GRASSMANNIAN SPACES AND LATTICES 17

Theorem 7.1 Let L be a strongly 2-perfect lattice of dimension n. Let m be its minimum,

let d be the minimal determinant of a 2-dimensional sublattice of L and m ′ be the minimum
of the dual lattice L∗. Then

dm ′ ≥ m
n + 2

4
.

Proof: Let α be a minimal vector of L∗ and D denote the set of minimal 2-sections of L .
We consider p′ := 〈α〉 ∈ G1,n andD ⊂ G2,n . The polynomials p1,2

2 and p1,2
4 are polynomials

in one variable y1 which can be calculated with Eq. (2): Let p := 〈e1, e2〉 ∈ D be a minimal
2-section of determinant d in L . Then the principal angle between p and p′ is

(α, α)−1d−1((α, e1), (α, e2))

(
(e2, e2) −(e1, e2)

−(e1, e2) (e1, e1)

)(
(α, e1)

(α, e2)

)

= (α, α)−1d−1‖(α, e1)e2 − (α, e2)e1‖2.

To shorten the notation we define N (p) := ‖(α, e1)e2−(α, e2)e1‖2.Then N (p) is the squared
length of a vector in L and hence it is either 0 or ≥min(L) = m. Using Corollary 4.4 we
calculate with the Eqs. (13)

∑
p∈D

N (p) = 2

n
(α, α) d|D|

and

∑
p∈D

N (p)2 = 8

n(n + 2)
(α, α)2d2|D|.

From this we find that

∑
p∈D

N (p)2 − m N (p) = 8

n(n + 2)
(α, α)2d2|D| − m

2

n
(α, α)d|D|

= 2m

n
(α, α)d|D|

(
4

m(n + 2)
(α, α)d − 1

)
.

Since the left hand side is a sum over nonnegative real numbers, also the right hand side is
a nonnegative number. Hence 4

m(n+2) (α, α)d ≥ 1 or equivalently (α, α)d ≥ m(n+2)
4 .

Examples For L = D4 one has m = 2 hence dm ′ ≥ 2(4+2)
4 = 3, which is sharp since

d = 3 and m ′ = 1. For L = E8 the formula yields the bound 5, whereas dm ′ = 6, for
K12 one finds 16 ≥ 14 and for BW16 one has 24 ≥ 18. Theorem 7.1 also allows to conclude
that certain lattices are not strongly 2-perfect. For instance for L = A4 one finds dm ′ = 3 4

5

which is not ≥ 2(4+2)
4 = 3.
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In the case L is integral, one can take a minimal vector α ∈ L instead of α ∈ L∗ in the
proof of Theorem 7.1, and get the following lower bound:

Corollary 7.2 Let L be an integral strongly 2-perfect lattice of dimension n and put
d := δ2(L). Then

d ≥ n + 2

4
.

Theorem 7.3 Let L be an integral strongly 2-perfect lattice of dimension n and put
d := δ2(L) and d ′ := δ2(L∗). Then

dd ′ ≥ (n + 2)(n − 1)

2(3n − 2)δ

where δ ∈ N is the least common multiple of the denominator of the Gram matrices of the
minimal 2-sections on L∗.

Proof: We denote by D the set of minimal 2-sections of L . Let p′ := 〈 f1, f2〉 ⊂ L∗ be a
minimal plane of L∗ of determinant d ′ and let p := 〈e1, e2〉 ∈ D.

Denote by y1, y2 the squares of the cosines of the principal angles between p and p′.
Then

y1 y2 = 1

dd ′ det

((
(e1, f1) (e1, f2)

(e2, f1) (e2, f2)

))2

= 1

dd ′ D(p, p′)

with D(p, p′) ∈ Z and

y1 + y2 = 1

dd ′ N (p, p′)

where N (p, p′) can be calculated from (2) and is in 1
δ
Z where δ is the denominator of the

Gram matrix of p′.
From Eqs. (13) we find that

∑
p∈D

N (p, p′) = dd ′|D|4

n∑
p∈D

D(p, p′) = dd ′|D| 2

n(n − 1)∑
p∈D

(N (p, p′))2 = (dd ′)2|D| 8(3n − 2)

n(n + 2)(n − 1)
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From this one gets that

∑
p∈D

(N (p, p′))2 − 1

δ
N (p, p′) = dd ′|D| 4

δn

(
dd ′ 2(3n − 2)δ

(n + 2)(n − 1)
− 1

)
≥ 0

and hence dd ′ ≥ (n+2)(n−1)
2(3n−2)δ .
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