Polynomials with All Zeros Real and in a Prescribed Interval

JEAN B. LASSERRE
LAAS-CNRS, 7 Avenue du Colonel Roche, 31077 Toulouse Cédex 4, France

lasserre@laas.fr

Received April 18, 2001; Revised March 4, 2002

Abstract

We provide a characterization of the real-valued univariate polynomials that have only real zeros, all in a prescribed interval $[a, b]$. The conditions are stated in terms of positive semidefiniteness of related Hankel matrices.

Keywords: algebraic combinatorics, real algebraic geometry, the \mathbb{K}-moment problem

1. Introduction

From a fundamental result of Aissen et al. [1], a real-valued univariate polynomial has all its zeros real and nonpositive, if and only if a certain infinite Toeplitz matrix is totally nonnegative (see also [9, Theorem 1, p. 21]). However, despite its theoretical significance, this result involves checking infinitely many conditions, and therefore, cannot be applied directly for practical purposes (see Stanley [9] on some open problems in Algebraic Combinatorics). Using a modified Routh array, Šiljak has provided a finite algebraic procedure to count the number of positive (or negative) zeros, with their multiplicity (see also the more recent paper [8, Theorem 3.9, p. 140]).

In this paper we provide a characterization of such polynomials $\theta: \mathbb{R} \rightarrow \mathbb{R}$ different from that of Šiljak. Our conditions are stated in terms of two Hankel matrices $M(n, s), B(n, s)$ formed with some functions s of the coefficients of the polynomial θ (the normalized Newton's sums). The conditions state that $M(n, s)$ and $-B(n, s)$ must be positive semidefinite $(M(n, s) \succeq 0, B(n, s) \preceq 0)$ and the rank of $M(n, s)$ gives the number of distinct zeros. This condition is of the same flavour as Gantmacher's conditions for the number of real zeros of θ (see Gantmacher [4]). If we drop the nonpositivity condition on the zeros, then the condition reduces to $M(n, s) \succeq 0$, that is, a necessary and sufficient condition for θ to have only real zeros (as before, the rank of $M(n, s)$ also giving the number of distinct zeros). The basic idea is to consider conditions for a probability measure to have its support on the real zeros of θ. Then, we use a deep result in algebraic geometry of Curto and Fialkow [3] on the \mathbb{K}-moment problem.

In addition, this methodology allows us to also provide a similar necessary and sufficient condition on the coefficients for θ to have all its zeros real and in a prescribed interval $[a, b]$ of the real line.

2. Notation and definitions

Let $\mathbb{R}[x]$ be the ring of real-valued univariate polynomials $u: \mathbb{R} \rightarrow \mathbb{R}$. In a standard fashion, we identify u with its vector of coefficients $\left\{u_{i}\right\}$ when we write

$$
\begin{equation*}
u(x)=\sum_{i=0}^{n} u_{i} x^{i} \tag{2.1}
\end{equation*}
$$

in the canonical basis

$$
\begin{equation*}
1, x, x^{2}, \ldots \tag{2.2}
\end{equation*}
$$

The problem under investigation is thus to characaterize the polynomials u with all its zeros real and nonpositive.

2.1. Moment matrix

Given an infinite vector $y \in \mathbb{R}^{\infty}$, let $M(n, y), B(n, y) \in \mathbb{R}^{(n+1) \times(n+1)}$ be the Hankel matrices

$$
M(n, y)=\left[\begin{array}{ccccc}
1 & y_{1} & y_{2} & \cdots & y_{n} \\
y_{1} & y_{2} & y_{3} & \cdots & y_{n+1} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
y_{n} & y_{n} & y_{n+1} & \cdots & y_{2 n}
\end{array}\right]
$$

and

$$
B(n, y)=\left[\begin{array}{ccccc}
y_{1} & y_{2} & y_{3} & \cdots & y_{n+1} \\
y_{2} & y_{3} & y_{4} & \cdots & y_{n+2} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
y_{n+1} & y_{n+2} & y_{n+3} & \cdots & y_{2 n+1}
\end{array}\right]
$$

respectively. $M(0, y)$ is just the $(1,1)$-matrix [1]. $M(n, y)$ is called a moment matrix. Whenever y is the vector of moments of some measure μ, then for every vector $q \in \mathbb{R}[x]$ of degree less than n, with vector of coefficients $q \in \mathbb{R}^{n+1}$, we have

$$
\begin{equation*}
\langle q, M(n, y) q\rangle=\int q(x)^{2} \mu(d x) \geq 0 \tag{2.3}
\end{equation*}
$$

and therefore, as (2.3) is true for every $q \in \mathbb{R}^{n+1}$, we must have $M(n, y) \succeq 0$, that is, $M(n, y)$ is positive semidefinite.

2.2. Localizing matrix

Similarly, given a polynomial $\theta \in \mathbb{R}[x]$ of degree s, and given an infinite vector $y \in \mathbb{R}^{\infty}$, define the localizing matrix $M_{\theta}(n, y)$ (with respect to θ) to be

$$
M_{\theta}(n, y)(i, j)=\sum_{k=0}^{s} \theta_{k} y_{i+j+k}, \quad \forall i, j \leq n
$$

Observe that $B(n, y)=M_{x}(n, y)$, that is, $B(n, y)$ is a localizing matrix with respect to the polynomial $x \mapsto \theta(x):=x$. The term localizing is used in Curto and Fialkow [3] because if y is the vector of moments of some measure $\mu, M_{\theta}(n, y) \succeq 0$ states a necessary condition for μ to have its support contained in the algebraic set $\{x \in \mathbb{R}: \theta(x) \geq 0\}$. Indeed if y is the vector of moments of some measure μ, then for every vector $q \in \mathbb{R}[x]$ of degree less than n, with vector of coefficients $q \in \mathbb{R}^{n+1}$, we have

$$
\begin{equation*}
\left\langle q, M_{\theta}(n, y) q\right\rangle=\int \theta(x) q(x)^{2} \mu(d x) \tag{2.4}
\end{equation*}
$$

and therefore, as (2.4) is true for every $q \in \mathbb{R}^{n+1}$, we must have $M_{\theta}(n, y) \succeq 0$, whenever the support of μ is contained in the set $\{x \in \mathbb{R} \mid \theta(x) \geq 0\}$.

Therefore, if y is the vector of moments of some measure μ, the condition $M_{\theta}(n, y)=0$ will state a necessary condition for μ to have its support on the real zeros of $\theta(x)$. With the additional condition $B(n, y) \preceq 0$, we will state a necessary condition for μ to have its support on the nonpositive real zeros of θ.

Remark 2.1 In the sequel, we will use the following observation. Let $\theta \in \mathbb{R}[x]$ be a polynomial of degree $n+1$, and let $\left\{a_{i}\right\}, i=1, \ldots, q$, be its distinct zeros (real or complex) with associated multiplicity n_{i}. Let $s \in \mathbb{R}^{\infty}$ be the infinite sequence defined by

$$
\begin{equation*}
s_{k}=\frac{1}{n+1} \sum_{i=1}^{q} n_{i} a_{i}^{k}, \quad k=1,2, \ldots \tag{2.5}
\end{equation*}
$$

From the definition of $M_{\theta}(n,$.$) , it then follows that M_{\theta}(n, s)=0$ for all $n=1,2, \ldots$

3. Main result

For notational convenience, we consider a polynomial $\theta \in \mathbb{R}[x]$ of degree $n+1$ and, with no loss of generality, we may and will assume that $\theta_{n+1}=1$, that is, we will consider the polynomial $\theta \in \mathbb{R}[x]$:

$$
x \mapsto \theta(x):=x^{n+1}+\sum_{i=0}^{n} \theta_{i} x^{i}, \quad x \in \mathbb{R} .
$$

We first need to introduce some additional material. Given n fixed, let $e_{k}: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ be the elementary symmetric functions

$$
e_{k}:=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n+1} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}, \quad k=1,2, \ldots
$$

It is well known that every symmetric polynomial $p \in \mathbb{C}\left[x_{1}, \ldots, x_{n+1}\right]$ is also a member of $\mathbb{C}\left[e_{1}, \ldots, e_{n+1}\right]$.

In particular, denote by $\left\{q_{\alpha}^{(k)}\right\}$ the coefficients in \mathbb{C} of the expansion of $(n+1)^{-1} \sum_{i=1}^{n+1} x_{i}^{k}$ in the basis $\left(e_{1}, \ldots, e_{n+1}\right)$. That is,

$$
\begin{align*}
(n+1)^{-1} \sum_{i=1}^{n+1} x_{i}^{k} & =q_{k}\left(e_{1}, \ldots, e_{n+1}\right) \\
& =\sum_{|\alpha| \leq k} q_{\alpha}^{(k)} e_{1}^{\alpha_{1}} \cdots e_{n+1}^{\alpha_{n+1}}, \quad k=1, \ldots \tag{3.1}
\end{align*}
$$

with $q_{\alpha}^{(k)} \in \mathbb{C}$, for all α, and $|\alpha|:=\sum_{i} \alpha_{i}$. In fact, the coefficients $\left\{q_{\alpha}^{(k)}\right\}$ are all in \mathbb{Q} and have a well-known combinatorial interpretation (see e.g. Macdonald [6, Ch. I, Section 6, Example 8] and Beck et al. [2]).

Consider the moment matrix $M(n, s) \in \mathbb{R}^{(n+1) \times(n+1)}$ defined as follows: For all $2<$ $i+j \leq 2 n+2$,

$$
\begin{equation*}
M(n, s)(i, j)=s_{i+j-2}=q_{i+j-2}\left(-\theta_{n}, \theta_{n-1}, \ldots,(-1)^{n+1} \theta_{0}\right), \tag{3.2}
\end{equation*}
$$

where the q_{i} 's are defined in (3.1). Thus, the s_{i} 's are the Newton's sums (here normalized) already considered in Gantmacher [4]. More precisely, if $\theta \in \mathbb{R}[x]$ has q distinct zeros a_{1}, \ldots, a_{q} (real or complex) with associated multiplicity n_{1}, \ldots, n_{q}, then

$$
\begin{equation*}
s_{k}=\frac{1}{n+1} \sum_{i=1}^{q} a_{i}^{k} n_{i}, \quad k=0,1, \ldots \tag{3.3}
\end{equation*}
$$

It is important to notice that the number q of all distinct zeros of θ (real or complex) is equal to the rank of the matrix associated with the quadratic form $Q_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}$,

$$
\begin{equation*}
x \mapsto Q_{n}(x, x):=\sum_{i, k=0}^{n-1} s_{i+k} x_{i} x_{k}, \quad \forall n \geq q \tag{3.4}
\end{equation*}
$$

see Gantmacher [4, Theorem 6, p. 202]. Similarly, let $B(n, s) \in \mathbb{R}^{(n+1) \times(n+1)}$ be such that for all $1 \leq i, j \leq n+1$,

$$
\begin{equation*}
B(n, s)(i, j)=s_{i+j-1}=q_{i+j-1}\left(-\theta_{n}, \theta_{n-1}, \ldots,(-1)^{n+1} \theta_{0}\right) \tag{3.5}
\end{equation*}
$$

Theorem 3.1 Let $\theta \in \mathbb{R}[x]$ be the polynomial $x \mapsto \theta(x):=x^{n+1}+\sum_{i=0}^{n} \theta_{i} x^{i}$, and let $s \in \mathbb{R}^{\infty}$ be the infinite vector of (normalized) Newton's sums defined in (3.3). Then the following two propositions are equivalent:
(i) All the zeros of θ are real, nonpositive, and q are distinct.
(ii) $M(n, s) \succeq 0, B(n, s) \preceq 0$ and $\operatorname{rank}(M(n, s))=q$.

Proof: (i) \Rightarrow (ii). Let $a_{1} ; a_{2}, \ldots, a_{q}$ be the q real zeros of θ, all assumed to be nonpositive, and with associated multiplicity $n_{i}, i=1, \ldots, q$. Let μ be the probability measure on \mathbb{R}, defined by

$$
\mu:=\frac{1}{n+1} \sum_{i=1}^{q} n_{i} \delta_{a_{i}}
$$

(where δ_{x} stands for the Dirac measure at the point $x \in \mathbb{R}$), and let $s \in \mathbb{R}^{\infty}$ be its associated infinite vector of moments, that is,

$$
s_{k}=\int_{\mathbb{R}} x^{k} d \mu=\frac{1}{n+1} \sum_{i=1}^{q} n_{i} a_{i}^{k}, \quad k=1,2, \ldots
$$

In other words, the moments of μ are the (normalized) Newton's sums defined in (3.3).
Therefore, $M(n, s) \succeq 0$ (as it is the moment matrix associated with μ) and moreover, since every zero of θ is real and nonpositive, then, necessarily, μ has its support contained in $(-\infty, 0]$. This clearly implies $B(n, s) \preceq 0$. Finally, observe that $M(n, s)$ is the matrix associated with the quadratic form $x \mapsto Q_{n+1}(x, x)$ (cf. (3.4)). Therefore, as the number of distinct zeros is q, from Gantmacher [4, Theorem 6, p. 202], we must have $q=\operatorname{rank}(M(n, s))$.
(ii) \Rightarrow (i). Remember that since $M(n, s)$ is the matrix associated with the quadratic form $x \mapsto Q_{n+1}(x, x)$ (cf. (3.4)), we know that $\operatorname{rank}(M(n+k, s))=q$ for all $k=0,1, \ldots$ as it is the number of distinct zeros (real or complex) of θ (and we will show that they all are real). Next, from $M(n, s) \succeq 0$ and $\operatorname{rank}(M(n+k, s))=\operatorname{rank}(M(n, s))=q$, it follows that $M(n+k, s) \succeq 0$ for all $k=0,1, \ldots$. In other words, and in the terminology of Curto and Fialkow [3], the matrices $M(n+k, s)$ are all flat positive extensions of $M(n, s)$, for all $k=1,2, \ldots$.

In addition, observe that from the definition of the s_{k} 's, and as $\theta\left(a_{i}\right)=0$ for all $i=$ $1,2, \ldots, q$, we also have $M_{\theta}(n, s)=0$ (cf. Remark 2.1). Therefore, s also satisfies

$$
\begin{equation*}
M(2 n+1, s) \succeq 0 ; \quad B(n, s) \preceq 0 ; \quad M_{\theta}(n, s)=0 \tag{3.6}
\end{equation*}
$$

Equivalently,

$$
\begin{equation*}
M(2 n+1, s) \succeq 0 ; \quad M_{-x}(n, s) \succeq 0 ; \quad M_{\theta}(n, s)=0 \tag{3.7}
\end{equation*}
$$

But then, from Theorem 1.6 in Curto and Fialkow [3, p. 6] (adapated here to the onedimensional case), s is the vector of moments of $\operatorname{arank}(M(n, s)$)-atomic (or, q-atomic) probability measure with support contained in $\{\theta(x)=0\} \cap(-\infty, 0]$ (the constraint $M_{\theta}(n, s)=$ 0 is equivalent to $M_{\theta}(n, s) \succeq 0$ and $\left.M_{-\theta}(n, s) \succeq 0\right)$.

As q was the number of distinct (real or complex) zeros of θ, this shows that in fact θ has only real zeros, all nonpositive and q distinct.

If in Theorem 3.1 we drop the condition $B(n, s) \preceq 0$, then $M(n, s) \succeq 0$ becomes a necessary and sufficient condition for θ to have only real zeros.

We next consider the case where all the zeros are real and in a prescribed interval $[a, b] \subseteq \mathbb{R}$.

Theorem 3.2 Let $[a, b] \subseteq \mathbb{R}, \theta \in \mathbb{R}[x]$ be the polynomial $x \mapsto \theta(x):=x^{n+1}+\sum_{i=0}^{n} \theta_{i} x^{i}$, and let $s \in \mathbb{R}^{\infty}$ be the infinite vector of (normalized) Newton's sums defined in (3.3). Then the following two propositions are equivalent:
(i) All the zeros of θ are in $[a, b]$, and q are distinct.
(ii) $M(n, s) \succeq 0, b M(n, s) \succeq B(n, s) \succeq a M(n, s)$ and $\operatorname{rank}(M(n, s))=q$.

Proof: The proof mimics that of Theorem 3.1. It is immediate to check that $b M(n, s)-$ $B(n, s)$ is the localizing matrix $M_{b-x}(n, s)$ whereas $B(n, s)-a M(n, s)$ is the localizing matrix $M_{x-a}(n, s)$. Therefore, exactly as in the proof of Theorem 3.1, invoking Theorem 1.6 in Curto and Fialkow [3], the conditions in (ii) are necessary and sufficient for the vector s to be the vector of moments of a probability measure with support in the set

$$
\{x \in \mathbb{R} \mid \theta(x)=0 ; b-x \geq 0 ; x-a \geq 0\}
$$

When $a>-\infty$ and $b<\infty$, the condition $M(n, s) \succeq 0$ is implied by the other one. However, as it stands, Theorem 3.2 includes Theorem 3.1 as a particular case with $a=-\infty$ and $b=0$.

Example Consider the 3rd degree polynomial

$$
x \mapsto \theta(x):=x^{3}+\theta_{2} x^{2}+\theta_{1} x+\theta_{0}, \quad x \in \mathbb{R} .
$$

$M(2, s) \in \mathbb{R}^{3 \times 3}$ is the Hankel matrix

$$
\left[\begin{array}{ccc}
1 & -\theta_{2} / 3 & \left(\theta_{2}^{2}-2 \theta_{1}\right) / 3 \\
-\theta_{2} / 3 & \left(\theta_{2}^{2}-2 \theta_{1}\right) / 3 & -\theta_{2}^{3} / 3+\theta_{1} \theta_{2}-\theta_{0} \\
\left(\theta_{2}^{2}-2 \theta_{1}\right) / 3 & -\theta_{2}^{3} / 3+\theta_{1} \theta_{2}-\theta_{0} & \theta_{2}^{4} / 3-4 \theta_{2}^{2} \theta_{1} / 3+2 \theta_{1}^{2} / 3+4 \theta_{2} \theta_{0} / 3
\end{array}\right],
$$

whereas $B(2, s) \in \mathbb{R}^{3 \times 3}$ is the Hankel matrix

$$
\left[\begin{array}{ccc}
-\theta_{2} / 3 & \left(\theta_{2}^{2}-2 \theta_{1}\right) / 3 & -\theta_{2}^{3} / 3+\theta_{1} \theta_{2}-\theta_{0} \\
* & -\theta_{2}^{3} / 3+\theta_{1} \theta_{2}-\theta_{0} & \theta_{2}^{4} / 3-4 \theta_{2}^{2} \theta_{1} / 3+2 \theta_{1}^{2} / 3+4 \theta_{2} \theta_{0} / 3 \\
* & * & -\theta_{2}^{5} / 3+5\left(\theta_{2}^{3} \theta_{1}-\theta_{2}^{2} \theta_{0}-\theta_{2} \theta_{1}^{2}+\theta_{1} \theta_{0}\right) / 3
\end{array}\right],
$$

where we have displayed only the upper triangle.

4. Conclusion

In this paper we have provided finitely many necessary and sufficient conditions on the coefficients of a polynomial $\theta \in \mathbb{R}[x]$, for θ to have only real zeros, all in a prescribed
interval $[a, b]$ of the real line. Those conditions are diffferent from those of Šiljak stated for $a, b= \pm \infty$.

Acknowledgment

The authors wishes to thank anonymous referees for helpful comments and suggestions.

References

1. M. Aissen, I.J. Schoenberg, and A. Whitney, "On generating functions of totally positive sequences, I," J. Analyse Math. 2 (1952), 93-103.
2. D.A. Beck, J.B. Remmel, and T. Whitehead, "The combinatorics of the transition matrices between the bases of the symmetric functions and the B_{n} analogues," Discr. Math. 153 (1996), 3-27.
3. R.E. Curto and L. Fialkow, "The truncated complex \mathbb{K}-moment problem," Trans. Amer. Math. Soc. $\mathbf{3 5 2}$ (2000), 2825-2855.
4. F.R. Gantmacher, The Theory of Matrices: Vol II, Chelsea, New York, 1959.
5. J.B. Lasserre, "Polynomials with all zeros real and in a prescribed interval," Technical Report, LAAS-CNRS, Toulouse, France, April 2001.
6. I.G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford University Press, Oxford, 1995.
7. D.D. Šiljak, Nonlinear Systems : The Parameter Analysis and Design, Wiley, New York, 1969.
8. D.D. Šiljak and M.D. Šiljak, "Nonnegativity of uncertain polynomials," Mathematical Problems in Engineering 4 (1998), 135-163.
9. R.P. Stanley, "Positivity problems and conjectures in algebraic combinatorics," in Mathematics: Frontiers and Perspectives, V. Arnold, M. Atiyah, P. Lax, and B. Mazur (Eds.), American Mathematical Society, Providence, RI, 2000, pp. 295-319.
